251 research outputs found

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied

    Serious Game Engineering and Lighting Models for the Realistic Emulation of 5G Systems

    Full text link
    [ES] La quinta generación de comunicaciones móviles, 5G, promete ser una revolución tecnológica que vaya más allá de multiplicar la velocidad de transmisión de datos de sus predecesoras. Pretende soportar una gran cantidad de dispositivos y alcanzar latencias muy cercanas a 1 milisegundo. Para satisfacer estos ambiciosos requisitos, se han investigado nuevas tecnologías habilitadoras. Una de ellas es el uso de las bandas de ondas milimétricas (mmW) en las cuales hay una gran cantidad de espectro disponible. Para predecir las características del canal radio y evaluar las prestaciones de la 5G de forma fiable en las bandas mmW se requieren modelos de canal complejos. Concretamente, los modelos de propagación más precisos son los basados en trazado de rayos, pero su alto costo computacional los hacen inviables para la caracterización del canal radio en escenarios complejos. Por otro lado, en los últimos años, la tecnología de videojuegos ha desarrollado potentes herramientas para modelar la propagación de la luz en escenarios superrealistas. Dada la cercanía espectral entre el espectro visible y las ondas mmW, la presente Tesis ha estudiado la aplicación de las herramientas de modelado de propagación de la luz de los motores de juego para el modelado del canal radio en mmW. Esta Tesis propone un modelo de estimación de las pérdidas de propagación en mmW llamado "Modelo de Intensidad de Luz'' (LIM). Usando este modelo, basado en los procesos de iluminación realizados por los motores de juego, los transmisores de señal se sustituyen por focos de luz y la intensidad lumínica recibida en un punto se traduce a potencia de señal en milimétricas a través de una función polinómica sencilla. Una de las ventajas de usar los motores de juego es su gran capacidad y la facilidad que tiene el usuario para crear escenarios superrealistas que representen fielmente la geometría de escenarios donde se quiera evaluar el canal radio. De esta forma se pueden obtener estimaciones precisas de las pérdidas de propagación. La estimación de las pérdidas de propagación con LIM ha sido comparada con campañas de medida en las bandas de 28 GHz y 73 GHz y con otros modelos de propagación. Como resultado, el error de estimación de LIM es menor que los modelos estocásticos actuales y es comparable con el modelo de trazado de rayos. Y, además, el coste computacional de LIM comparado con el trazado de rayos es 130 veces menor, lo que posibilita el uso de LIM en escenarios altamente complejos para la estimación del canal radio en tiempo real. Los motores de juego permiten caracterizar de forma diferente la interacción de los materiales con la luz configurando el mapa de normales de sus superficies y sus funciones de dispersión y reflexión. En esta Tesis se ha determinado la caracterización de varios materiales que mejor se ajusta a medidas de laboratorio realizadas en un escenario controlado en la banda de 28 GHz. El modelo de LIM empleando materiales con esta caracterización óptima reduce más de un 50\% su error de estimación con respecto a la aplicación de LIM con los materiales por defecto, mientras que su coste computacional sigue siendo 26 veces menor que el modelo de trazado de rayos. Finalmente, se ha desarrollado sobre un motor de juego una primera versión de plataforma para la emulación de los sistemas 5G que es el punto de partida para un emulador completo de 5G. Esta plataforma no sólo contiene el modelo de LIM sino que incluye varios casos de uso de la 5G en entornos superrealistas. La plataforma, que se basa en el concepto de "Serious Game Engineering", rompe las limitaciones de los simuladores de redes móviles en cuanto a las capacidades de visualización e interacción del usuario con los componentes de la red en tiempo real.[CA] La cinquena generació de comunicacions mòbils, 5G, promet ser una revolució tecnològica que vaja més enllà de multiplicar la velocitat de transmissió de dades de les seues predecessores. Pretén suportar una gran quantitat de dispositius i aconseguir latències molt pròximes a 1 mil·lisegon. Per a satisfer aquests ambiciosos requisits, s'han investigat noves tecnologies habilitadores. Una d'elles és l'ús de les bandes d'ones mil·limètriques (mmW) en les quals hi ha una gran quantitat d'espectre disponible. Per a predir les característiques del canal ràdio i avaluar les prestacions de la 5G de forma fiable en les bandes mmW es requereixen models de canal complexos. Concretament, els models de propagació més precisos són els basats en traçat de rajos, però el seu alt cost computacional els fan inviables per a la caracterització del canal ràdio en escenaris complexos. D'altra banda, en els últims anys, la tecnologia de videojocs ha desenvolupat potents eines per a modelar la propagació de la llum en escenaris superrealistes. Donada la proximitat espectral entre l'espectre visible i les ones mmW, la present Tesi ha estudiat l'aplicació de les eines de modelatge de propagació de la llum dels motors de joc per al modelatge del canal radie en mmW. Aquesta Tesi proposa un model d'estimació de les pèrdues de propagació en mmW anomenat "Model d'Intensitat de Llum'' (LIM). Usant aquest model, basat en els processos d'il·luminació realitzats pels motors de joc, els transmissors de senyal se substitueixen per focus de llum i la intensitat lumínica rebuda en un punt es tradueix a potència de senyal en mil·limètriques a través d'una funció polinòmica senzilla. Una dels avantatges d'usar els motors de joc és la seua gran capacitat i la facilitat que té l'usuari per a crear escenaris superrealistes que representen fidelment la geometria d'escenaris on es vulga avaluar el canal ràdio. D'aquesta forma es poden obtindre estimacions precises de les pèrdues de propagació. L'estimació de les pèrdues de propagació amb LIM ha sigut comparada amb campanyes de mesura en les bandes de 28~GHz i 73~GHz i amb altres models de propagació. Com a resultat, l'error d'estimació de LIM és menor que els models estocàstics actuals i és comparable amb el model de traçat de rajos. I, a més, el cost computacional de LIM comparat amb el traçat de rajos és 130 vegades menor, la qual cosa possibilita l'ús de LIM en escenaris altament complexos per a l'estimació del canal ràdio en temps real. Els motors de joc permeten caracteritzar de forma diferent la interacció dels materials amb la llum configurant el mapa de normals de les seues superfícies i les seues funcions de dispersió i reflexió. En aquesta Tesi s'ha determinat la caracterització de diversos materials que s'ajusta millor a mesures de laboratori realitzades en un escenari controlat en la banda de 28 GHz. El model de LIM emprant materials amb aquesta caracterització òptima redueix més d'un 50 % el seu error d'estimació respecte a l'aplicació de LIM amb els materials per defecte, mentre que el seu cost computacional continua sent 26 vegades menor que el model de traçat de rajos. Finalment, s'ha desenvolupat sobre un motor de joc una primera versió de plataforma per a l'emulació dels sistemes 5G que és el punt de partida per a un emulador complet de 5G. Aquesta plataforma no solament conté el model de LIM sinó que inclou diversos casos d'ús de la 5G en entorns superrealistes. La plataforma, que es basa en el concepte de "Serious Game Engineering", trenca les limitacions dels simuladors de xarxes mòbils quant a les capacitats de visualització i interacció de l'usuari amb els components de la xarxa en temps real.[EN] The fifth generation of mobile communications, 5G, promises to be a technological revolution that goes beyond multiplying the data transmission speed of its predecessors. It aims to support a large number of devices and reach latencies very close to 1 millisecond. To meet these ambitious requirements, new enabling technologies have been researched. One of these is the use of millimetre-wave bands (mmW) in which a large amount of spectrum is available. Complex channel models are required to predict radio channel characteristics and reliably evaluate 5G performance in the mmW bands. Specifically, the most accurate propagation models are those based on ray tracing, but their high computational cost makes them unfeasible for radio channel characterization in complex scenarios. On the other hand, in recent years, video game technology has developed powerful tools to model the propagation of light in super realistic scenarios. Given the spectral closeness between the visible spectrum and the mmW waves, the present Thesis has studied the application of light propagation modeling tools from game engines for radio channel modeling in mmW. This Thesis proposes a model for estimating propagation losses in mmW called "Light Intensity Model'' (LIM). Using this model, based on the lighting processes performed by the game engines, the signal transmitters are replaced by light sources and the light intensity received at a point is translated into signal strength in mmW through a simple polynomial function. One of the advantages of using the game engines is their great capacity and the ease with which the user can create super realistic scenarios that faithfully represent the geometry of scenarios where the radio channel is to be evaluated. In this way, accurate estimates of propagation losses can be obtained. The estimation of propagation losses with LIM has been compared with measurement campaigns in the 28 GHz and 73 GHz bands and with other propagation models. As a result, the LIM estimation error is smaller than the current stochastic models and is comparable with the ray tracing model. In addition, the computational cost of LIM compared to ray tracing is 130 times lower, allowing the use of LIM in highly complex scenarios for real-time radio channel estimation. The game engines allow to characterize in a different way the interaction of the materials with the light configuring the normal map of their surfaces and their scattering and reflection functions. In this Thesis it has been determined the characterization of several materials that best fits to laboratory measurements made in a controlled scenario in the 28 GHz band. The LIM model using materials with this optimal characterization reduces by more than 50% its estimation error with respect to the application of LIM with default materials, while its computational cost remains 26 times lower than the ray tracing model. Finally, a first version of a platform for the emulation of 5G systems has been developed on a game engine, which is the starting point for a complete 5G emulator. This platform not only contains the LIM model but also includes several 5G use cases in super realistic environments. The platform, which is based on the concept of "`Serious Game Engineering", breaks the limitations of mobile network simulators in terms of visualization capabilities and user interaction with network components in real time.Inca Sánchez, SA. (2019). Serious Game Engineering and Lighting Models for the Realistic Emulation of 5G Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/132695TESI

    Modeling and Design of Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Connected and autonomous vehicles will play a pivotal role in future Intelligent Transportation Systems (ITSs) and smart cities, in general. High-speed and low-latency wireless communication links will allow municipalities to warn vehicles against safety hazards, as well as support cloud-driving solutions to drastically reduce traffic jams and air pollution. To achieve these goals, vehicles need to be equipped with a wide range of sensors generating and exchanging high rate data streams. Recently, millimeter wave (mmWave) techniques have been introduced as a means of fulfilling such high data rate requirements. In this paper, we model a highway communication network and characterize its fundamental link budget metrics. In particular, we specifically consider a network where vehicles are served by mmWave Base Stations (BSs) deployed alongside the road. To evaluate our highway network, we develop a new theoretical model that accounts for a typical scenario where heavy vehicles (such as buses and lorries) in slow lanes obstruct Line-of-Sight (LOS) paths of vehicles in fast lanes and, hence, act as blockages. Using tools from stochastic geometry, we derive approximations for the Signal-to-Interference-plus-Noise Ratio (SINR) outage probability, as well as the probability that a user achieves a target communication rate (rate coverage probability). Our analysis provides new design insights for mmWave highway communication networks. In considered highway scenarios, we show that reducing the horizontal beamwidth from 9090^\circ to 3030^\circ determines a minimal reduction in the SINR outage probability (namely, 41024 \cdot 10^{-2} at maximum). Also, unlike bi-dimensional mmWave cellular networks, for small BS densities (namely, one BS every 500500 m) it is still possible to achieve an SINR outage probability smaller than 0.20.2.Comment: Accepted for publication in IEEE Transactions on Vehicular Technology -- Connected Vehicles Serie

    Machine Learning-Based 3D Channel Modeling for U2V mmWave Communications

    Get PDF
    corecore