1,169 research outputs found

    Application of the Rotation Matrix Natural Invariants to Impedance Control of Rotational Parallel Robots

    Get PDF
    Force control of parallel robots with rotational degrees of freedom through impedance algorithms is considerably influenced by the representation method of the end-effector orientation. Using the natural invariants of the rotation matrix and the angular velocity vector in the impedance control law has some theoretical advantages, which derive from the Euclidean-geometric meaning of these entities. These benefits are particularly evident in case of robotic architectures with three rotational degrees of freedom (serial or parallel wrists with spherical motion). The behaviour of a 3-CPU parallel robot controlled by an impedance algorithm based on this concepts is assessed through multibody simulations, and the results confirm the effectiveness of the proposed approach

    A spatial impedance controller for robotic manipulation

    Get PDF
    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the fact that it is difficult to select suitable impedances given tasks. A spatial impedance controller is presented that simplifies impedance selection. Impedance is characterized using ¿spatially affine¿ families of compliance and damping, which are characterized by nonspatial and spatial parameters. Nonspatial parameters are selected independently of configuration of the object with which the robot must interact. Spatial parameters depend on object configurations, but transform in an intuitive, well-defined way. Control laws corresponding to these compliance and damping families are derived assuming a commonly used robot model. While the compliance control law was implemented in simulation and on a real robot, this paper emphasizes the underlying theor

    Application of Half-Derivative Damping to Cartesian Space Position Control of a SCARA-like Manipulator

    Get PDF
    In classical Cartesian space position control, KD, the end-effector follows the set-point trajectory with a stiffness expressed in the directions of the external coordinates through the stiffness matrix, K, and with a damping proportional to the first-order derivatives of errors of the external coordinates through the damping matrix, D. This work deals with a fractional-order extension of the Cartesian space position control, KDHD, which is characterized by an additional damping term, proportional to the half-order derivatives of the errors of the external coordinates through a second damping matrix, HD. The proposed Cartesian position control scheme is applied to a SCARA-like serial manipulator with elastic compensation of gravity. Multibody simulation results show that the proposed scheme was able to reduce the tracking error, in terms of mean absolute value of the end-effector position error and Integral Square Error, with the same amount of Integral Control Effort and comparable maximum actuation torques

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Ein hierarchisches Framework für physikalische Mensch-Roboter-Interaktion

    Get PDF
    Robots are becoming more than machines performing repetitive tasks behind safety fences, and are expected to perform multiple complex tasks and work together with a human. For that purpose, modern robots are commonly built with two main characteristics: a large number of joints to increase their versatility and the capability to feel the environment through torque/force sensors. Controlling such complex robots requires the development of sophisticated frameworks capable of handling multiple tasks. Various frameworks have been proposed in the last years to deal with the redundancy caused by a large number of joints. Those hierarchical frameworks prioritize the achievement of the main task with the whole robot capability, while secondary tasks are performed as well as the remaining mobility allows it. This methodology presents considerable drawbacks in applications requiring that the robot respects constraints imposed by, e.g., safety restrictions or physical limitations. One particular case is unilateral constraints imposed by, e.g., joint or workspace limits. To implement them, task hierarchical frameworks rely on the activation of repulsive potential fields when approaching the limit. The performance of the potential field depends on the configuration and speed of the robot. Additionally, speed limitation is commonly required in collaborative scenarios, but it has been insufficiently treated for torque-controlled robots. With the aim of controlling redundant robots in collaborative scenarios, this thesis proposes a framework that handles multiple tasks under multiple constraints. The robot’s reaction to physical interaction must be intuitive and safe for humans: The robot must not impose high forces on the human or react unexpectedly to external forces. The proposed framework uses novel methods to avoid exceeding position, velocity and acceleration limits in joint and Cartesian spaces. A comparative study is carried out between different redundancy resolution solvers to contrast the diverse approaches used to solve the redundancy problem. Widely used projector-based and quadratic programming-based hierarchical solvers were experimentally analyzed when reacting to external forces. Experiments were performed using an industrial redundant collaborative robot. Results demonstrate that the proposed method to handle unilateral constraints produces a safe and expected reaction in the presence of external forces exerted by humans. The robot does not exceed the given limits, while the tasks performed are prioritized hierarchically

    Application of Elliptic Jerk Motion Profile to Cartesian Space Position Control of a Serial Robot

    Get PDF
    The paper discusses the application of a motion profile with an elliptic jerk to Cartesian space position control of serial robots. This motion profile is obtained by means of a kinematic approach, starting from the jerk profile and then calculating acceleration, velocity and position by successive integrations. Until now, this profile has been compared to other motion laws (trapezoidal velocity, trapezoidal acceleration, cycloidal, sinusoidal jerk, modified sinusoidal jerk) considering single-input single-output systems. In this work, the comparison is extended to nonlinear multi-input multi-output systems, investigating the application to Cartesian space position control of serial robots. As case study, a 4-DOF SCARA-like architecture with elastic balancing is considered; both an integer-order and a fractional-order controller are applied. Multibody simulation results show that, independently of the controller, the behavior of the robot using the elliptic jerk profile is similar to the case of adopting the sinusoidal jerk and modified sinusoidal jerk laws, but with a slight reduction in the position error (−3.8% with respect to the sinusoidal jerk law and −0.8% with respect to the modified sinusoidal jerk law in terms of Integral Square Error) and of the control effort (−8.2% with respect to the sinusoidal jerk law and −1.3% with respect to the modified sinusoidal jerk law in terms of Integral Control Effort)

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots

    A Visual Velocity Impedance Controller

    Get PDF
    Successful object insertion systems allow the object to translate and rotate to accommodate contact forces. Compliant controllers are used in robotics to provide this accommodation. The impedance compliant controller is one of the more researched and well known compliant controllers used for assembly. The velocity filtered visual impedance controller is introduced as a compliant controller to improve upon the impedance controller. The velocity filtered impedance controller introduces a filter of the velocity impedance and a gain from the stiffness. The velocity impedance controller was found to be more stable over larger ranges of stiffness values than the position based impedance controller. This led to the velocity impedance controller being more accurate and stable with respect to external forces. The velocity impedance controller was also found to have a better compliant response when tested on various insertion geometries in various configurations, including a key insertion acting against gravity. Finally, a novel kinetic friction cone compliance model is introduced for the velocity impedance controller. It was determined that the new compliance model provided a more reliable insertion than the standard insertion model by increasing the error tolerance for failure

    Whole-Body Impedance Control of Wheeled Humanoid Robots

    Full text link
    corecore