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ABSTRACT 

Force control of parallel robots with rotational degrees of freedom through impedance algorithms is 

considerably influenced by the representation method of the end-effector orientation. Using the natural 

invariants of the rotation matrix and the angular velocity vector in the impedance control law has some 

theoretical advantages, which derive from the Euclidean-geometric meaning of these entities. These 

benefits are particularly evident in case of robotic architectures with three rotational degrees of freedom 

(serial or parallel wrists with spherical motion). The behaviour of a 3-CPU parallel robot controlled by an 

impedance algorithm based on this concepts is assessed through multibody simulations, and the results 

confirm the effectiveness of the proposed approach. 
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1. INTRODUCTION 

Several robotic applications involve the control of the interaction forces between end-effector and external 

environment; the control laws that can fulfil this requirement can be divided into two families: hybrid 

position/force control algorithms and impedance control algorithms. These two approaches have been 

widely discussed and compared in the scientific literature during the last decades, in particular with 

reference to serial kinematics [1-5]. 

In the last years the industrial interest about parallel robots (parallel kinematics machines, PKMs) is 

growing; mass-produced parallel manipulators are widely used especially in two categories of applications: 
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- fast speed pick-and-place tasks with small payloads; in this case high-speed, lightweight parallel robots 

are adopted for their excellent dynamic performances, due to the low moving masses (for example the 

FlexPicker IRB340 by ABB based on the Delta kinematics [6]); 

- machining or assembly tasks characterized by high forces, which requires high structural stiffness and 

positioning accuracy; in this case high-stiffness PKMs (for example the F-200iB by Fanuc based on the 

Gough-Stewart kinematics [7, 8] or the Tricept by Neos Robotics AB) [9]) offer a high ratio between 

maximum payload/force and robot mass. 

In most cases, parallel robots are position-controlled; nevertheless, the scientific and industrial interest 

about force-controlled PKMs is growing, even if only a few works on the subject are presently available, 

probably due to the fact that PKM’s are relatively new architectures, characterised by quite complex 

kinematic and dynamic models [10-12]. In particular, the use of impedance-controlled parallel robots    

[13-16] is an effective solution: the moving masses of PKMs are limited, because the actuators are usually 

fixed to the ground, then it is possible to realise the desired stiffness-damping behaviour neglecting the 

compensations of the inertial terms. 

One of the major problems in the synthesis of a suitable impedance control law (both for serial and parallel 

robots) is the definition of the rotational stiffness, which is strictly related to the representation method for 

the end-effector orientation [17]. While the position of a point in space can be easily defined by a three-

dimensional vector, there are many mathematical tools to represent the orientation of a rigid body in space 

[18, 19] and this influences the resulting impedance control law. In the following of the paper this aspect 

will be discussed with reference to simulation results involving an impedance-controlled 3-CPU parallel 

robotic wrist. 

 

2. REPRESENTATION OF THE END-EFFECTOR ORIENTATION 

Probably, the most common method to describe the orientation of a rigid body is the use of the Euler 

angles; nevertheless, this method has many drawbacks [20, 21]:  

- there are 12 different sets of Euler angles, and the choice of a set influences arbitrarily the control 

algorithm; 
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- there are representation singularities (configurations defined by non-unique values of Euler angles), and 

in these singularity loci it is impossible to describe an arbitrary angular velocity as function of the 

Euler angles time derivatives. 

Some researchers tried to overcome these limitations by using a modified set of Euler angles that avoid 

singularities [22] or the so-called Euler parameters, a 4-dimensional vector of invariants that are not 

geometric entities [23]. 

Another possible representation of the orientation is the 3x3 rotation matrix, but its nine elements are not 

independent and an impedance algorithm based on three independent rotation matrix elements is poor of 

geometrical meaning. 

An arbitrary rigid body rotation is uniquely defined by the axis of rotation (represented by the unit      

vector e) and the angle of rotation , which is the amount of rotation according to the right-hand rule; the 

unit vector e and the angle  are the natural invariants of the rotation matrix, independent from the 

reference frame [18]. 

In [24] the use of the frame-invariant vector E = e in the impedance control law is proposed. The main 

advantage of the use of this vector is related to its geometrical meaning and strict relation to the angular 

velocity vector : 

sin θ (1 cosθ) θe e e e&& &  (1) 

In an impedance algorithm the vector E can be used to represent the rotation between the actual end-

effector orientation and the reference orientation; in this case the maximum values of  are limited. It is 

easy to demonstrate that if  tends to zero, the angular velocity vector tends to the time derivative of E: 

0

lim θ θ
d

dt
e e E&&  (2) 

This is a very important propriety of the vector E, because an impedance control law based on the vector E 

for the stiffness term and on the angular velocity vector  for the damping term uses two vectors that are 

nearly in relation of time derivative. This important propriety is not shared by the other orientation 



 4 

representation methods, and it leads to a more natural and intuitive robot behaviour. The advantages of 

such an approach in case of a six-degree-of-freedom parallel robot are shown in [24]; in case of a purely 

rotational three-degree-of-freedom parallel robot the benefits are even more evident, and this will be 

shown in the following of the paper. 

 

3. THE 3-CPU PARALLEL ARCHITECTURE 

In the 3-CPU architecture [25] (Fig. 1) three identical serial chains (legs) connect the fixed base and the 

rotating end-effector platform; each leg (Fig. 2) is composed of two links; the first link is connected to the 

base by a cylindrical joint and to the second link by a prismatic joint; the second link is connected to the 

end-effector by a universal joint. 

 

 

 Fig. 1 – the 3-CPU parallel architecture Fig. 2 – leg of the CPU parallel architecture 

 

The axes of the cylindrical joints 
i

a , i=1,2,3, intersect at the centre of motion O and are aligned to the x,y,z 

axes of the fixed reference frame, with its centre in O. The first link of i-th leg is perpendicular to the axis 

i
a , and has a variable length bi thanks to the prismatic joint Di; the second link is parallel to 

i
a . The first 

axis of the universal joint Bi is perpendicular to the plane of the i-th leg, while the second axis intersects at 

the point P the corresponding axes of the other legs; these three axes are coincident to the v,w,u axes of a 
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cartesian frame located in P and attached to the end-effector. If proper manufacturing and mounting 

conditions are fulfilled the centres of the fixed frame O(x,y,z) and rotating frame P(u,v,w) remain 

coincident during the motion, and the end-effector performs a spherical motion. In particular, in the initial 

configuration the three linear displacements ai of the cylindrical joints are equal to c and the linear 

displacements bi of the prismatic joints are equal to d (Fig. 2). The spherical motion of the end-effector can 

be driven by actuating the linear displacements of the cylindrical joints; therefore, the vector of the internal 

coordinates is: 

1

2

3

a

a

a

q  (3) 

The direct and inverse kinematics of the robot make the forward and backward connections between the 

internal coordinates and the relative rotation of the frame P(u,v,w) with respect to O(x,y,z). 

The choice of the three external coordinates influences the impedance control law; in the following, two 

possible sets of external coordinates are considered: 

- the set of Euler angles  corresponding to three subsequent rotations along the axes u,v,w that 

represent the overall relative rotation between O(x,y,z) and P(u,v,w); 

- the three components of the vector O

P
E  that represent the overall relative rotation between O(x,y,z) 

and P(u,v,w). 

Independently of the selected set of external coordinates, the direct kinematic problem admits up to 8 

solutions, while the solution of the inverse kinematics is single [25]. The choice of the external coordinates 

determines the consequent Jacobian matrix: deriving the two possible sets of inverse kinematics equations, 

two alternative analytical Jacobian matrices can be found: 

- the analytical Jacobian matrix JA, which relates the time derivative of q and the time derivatives of the 

Euler angles, collected in the vector P: 

A A P

d d

dt dt
q J J α

&

&

&

 (4) 
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- the analytical Jacobian matrix JE, which relates the time derivative of q and the time derivative of E: 

O

E P

d d

dt dt
q J E  (5) 

The geometric Jacobian JG represents the relationship between the time derivative of q and the end-

effector angular velocity vector P: 

G P

d

dt
q J ω  (6) 

It is easy to demonstrate, by using the equations (2), (5) and (6), that if  tends to zero, the Jacobian 

matrices JG and JA tends to be equal: 

0 0

lim lim
G E

J J  (7) 

 

4. IMPEDANCE CONTROL ALGORITHM 

The basic concept of impedance control is that the robot end-effector, subject to external forces, follows a 

trajectory with a predetermined spatial compliance [26, 27]; this compliance, which influences the end-

effector dynamic behaviour, is defined by the stiffness matrix K and the damping matrix C; the reference 

configuration of the end-effector is a virtual equilibrium state because it corresponds to an actual 

equilibrium only if no force is exerted by the environment. 

The actual position of the end-effector can be represented alternatively by the external coordinates vectors 

P or 
O

P
E ; similarly, the virtual equilibrium configuration, corresponding to the reference frame D, can be 

represented by the Euler angles D or by the vector O

D
E . Using the principle of the virtual work and 

considering the equations (4), (5) and (7), the two impedance control laws (8) and (10) can be derived, the 

first based on the Euler angles and the analytical Jacobian matrix JA, the second based on the vector E and 

the geometric Jacobian matrix JG: 

1
T

A r D P r D P
F J K α α C α α& &  (8) 

where [25]: 
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0

0
A

s s c c

d c c s s

s s c c s c c c c s s s c

J  (9) 

1
T O O

G r D P r D P
F J K E E C ω ω  (10) 

where [25]: 

0

0

0

G

c s s s c c c s s s

d c c s

s s c c c s c c

J  (11) 

In the control laws (8) and (10): 

- F is the vector of the three actuation forces, acting along the axes of the cylindrical joints; 

- Kr is the rotational stiffness matrix, which expresses the relation between rotation and elastic 

torque in the desired impedance control behaviour; 

- Cr is the rotational damping matrix, which expresses the relation between rate of rotation and 

viscous torque in the desired impedance control behaviour. 

Let us note that in the control law (10) the damping term is not based on the derivatives of the external 

coordinates, but on the angular velocity vector. The matrices Kr and Cr are in general non-diagonal; it is 

possible to define Kr and Cr using a principal reference frame (PR) in which they are diagonal; this 

principal reference frame can be selected on the basis of the task requirements; it is possible to obtain Kr 

and Cr in the world frame (O) by means of the rotation matrix P R

O
R  [24]: 

T T
PR PR PR O PR O

r O r O PR r PR
K R K R R K R  (12) 

T T
PR PR PR O PR O

r O r O PR r PR
C R C R R C R  (13) 

where 
P R

r
K  and 

P R

r
C  are the stiffness and damping matrices expressed in the principal reference frame. 

In the following section, the control laws (8) and (10) will be compared by means of multibody simulation, 

to show the advantages of the second control law, due to the geometric properties of the vector E. 

 



 8 

5. SIMULATION RESULTS 

The impedance control laws (8) and (10) have been applied to a 3-CPU parallel robot with the geometric 

and inertial parameters shown in Table 1. Since the two links of each leg rotate only about the 

corresponding cylindrical joint axis, only the moments of inertia with respect to this direction are reported; 

the universal joints crosses can be considered lumped masses concentrated in the corresponding universal 

joint centres. 

geometric parameters 

c 93.5 mm 

d 106.07 mm 

main inertial parameters 

end-effector mass 3.893·10
-1

 kg 

end effector inertia matrix with respect to the coordinate frame 

P(u,v,w) 3 2

1.426 0.356 0.356

0.356 1.426 0.356 10

0.356 0.356 1.426

kgm  

mass of the leg link 1 3.944·10
-2

 kg 

moment of inertia of the leg link 1 about its cylindrical joint axis 2.364·10
-4

 kgm
2
 

mass of the leg link 2 3.928·10
-2

 kg 

moment of inertia of the leg link 2 about its principal axis parallel 

to the cylindrical joint axis of the same leg 

8.447·10
-7

 kgm
2
 

mass of the universal joint cross 3.59·10
-3

 kg 

Table 1 – geometric and inertial properties of the considered 3-CPU mechanism 

 

Case study A 

In the case study A, starting form the initial condition with the coordinate frames P and O coincident, a 

moment 
O
M with direction [-1,1,0.5]

T
 and magnitude 20 Nmm is applied to the end-effector. The control 

system imposes an isotropic rotational behaviour, defined by the following diagonal stiffness and damping 

matrices: 

100 0 0

0 100 0

0 0 100

P R

r r
K K  Nmm/rad (14) 

16.88 0 0

0 16.88 0

0 0 16.88

P R

r r
C C  Nmms/rad (15) 
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The value of the desired isotropic stiffness (k=100 Nmm/rad) is arbitrary; the value of the isotropic 

damping coefficient is selected using an heuristic approach, considering each rotational direction as a 

linear inertia-torsional spring-torsional damper system with a damping coefficient  = 2 / 2 . Therefore, 

the following well-known formula is used: 

 =  2   c k J  (16) 

where J = 1.426·10
-3

 kgm
2
 = 1.426 Ns

2
/mm is the end-effector moment of inertia (Table 1). 

The rotational behaviour of the robot about the three directions can be compared with three decoupled 

second-order inertia-rotational spring-rotational damper systems, characterized by the following linear 

differential equations: 

3.10  16.88  100  13.33

3.10  16.88  100  13.33

3.10  16.88  100  6.67

x x x

y y y

z z z

&& &

&& &

&& &

 (17) 

For these three decoupled systems: 

- the inertia of 3.10·10
-3

 kgm
2
 = 3.10 Ns

2
/mm derives from the end-effector moment of inertia 

increased considering approximately the leg links 1 and 2 as lumped masses placed respectively at 

a distance of d/2 and d from the point O; 

- the stiffness and damping coefficients are equal to the isotropic stiffness and damping coefficients k 

and c; 

- the applied moments are the three components of the moment 
O
M. 

Figures 3 to 5 show the rotational behaviour of the robot controlled by the law (8), based on the analytical 

Jacobian matrix, in comparison with the three decoupled systems (17); in these graphs the end-effector 

orientation is represented both by the components of the vector 
O

P
E  and by the Euler angles; figures 6 to 8 

refer to the rotational behaviour of the robot controlled by the law (10), based on the geometric Jacobian 

matrix. 
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Fig. 3 – comparison of O

P x
E ,  and 

x
 with the control law (8) in the case study A 

 

 

Fig. 4 – comparison of O

P y
E ,  and 

y
 with the control law (8) in the case study A 

 

 

Fig. 5 – comparison of 
O

P z
E ,  and 

z
 with the control law (8) in the case study A 
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Fig. 6 – comparison of O

P x
E ,  and 

x
 with the control law (10) in the case study A 

 

 

Fig. 7 – comparison of O

P y
E ,  and 

y
 with the control law (10) in the case study A 

 

 

Fig. 8 – comparison of 
O

P z
E ,  and 

z
 with the control law (10) in the case study A 
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Both the control laws apply the isotropic stiffness and damping expressed by the matrices (14) and (15), 

but only the geometric control law (10) realizes an isotropic behaviour: in final steady state the end-

effector rotation is 0.1333, 0.1333, 0.0667
TO

P
E rad, that is a rotation with the same direction of the 

external moment 
O
M and magnitude equal to the magnitude of 

O
M divided by the isotropic stiffness k. On 

the contrary, using the analytical control law (8) the final rotation is 0.1601, 0.1582, 0.0724
TO

P
E rad. 

Moreover, it is possible to note that using the geometric control law (10) the time histories of the three 

components of O

P
E  are very similar to the ones of the three decoupled linear systems; this means that the 

rotational behaviour of the robot is very intuitive and almost decoupled in the three directions. 

 

Case study B 

In the case study B, starting form the initial condition with the coordinate frames P and O coincident, a 

moment 
O
M with direction [-1,0,1]

T
 and magnitude 20 Nmm is applied to the end-effector. Now the 

control system imposes an non-isotropic rotational behaviour; the stiffness and damping matrices are 

defined in a principal reference frame PR, which is rotated with respect to O according to the following 

vector E: 

1 1 1

3 3 3

T

PR

O
E  (18) 

which corresponds to the rotation matrix: 

0.6935 0.3326 0.6391

0.6391 0.6935 0.3326

0.3326 0.6391 0.6935

O

PR
R  (19) 

The principal rotational stiffness and damping matrices are: 

50 0 0

0 1000 0

0 0 1000

P R

r
K  Nmm/rad (20) 

11.94 0 0

0 53.4 0

0 0 53.4

PR

r
C  Nmms/rad (21) 



 13 

The matrix P R

r
K  imposes a rotational stiffness about the first principal axis much lower than about the 

other two axes, in order to have large rotations only in one direction and negligible rotations in the other 

two directions, independently of the direction of the applied moment; the diagonal values of P R

r
C  are 

obtained by the formula (16) as in the previous case study. The rotational stiffness and damping matrices in 

the reference frame O can be obtained by the equations (12) and (13). 

The rotational behaviour of the robot about the three principal directions is compared with three decoupled 

second-order inertia-rotational spring-rotational damper systems loaded by the components of the external 

moment 14.51 13.74 0.769
TPR PR O

O
M R M : 

3.10  11.94  50  14.51

3.10  53.4  1000  13.74

3.10  53.4  1000  0.769

x x x

y y y

z z z

&& &

&& &

&& &

 (22) 

Figures 9 to 11 show the behaviour of the robot controlled by the law (8), based on the analytical Jacobian 

matrix, in comparison with the three decoupled systems (22); figures 12 to 14 show the same comparison, 

but applying the law (10), based on the geometric Jacobian matrix. In these graphs the end-effector 

orientation with respect to the principal stiffness and damping reference frame is represented both by the 

components of the vector PR PR O

P O P
E R E  and by the Euler angles. 

 

Fig. 9 – comparison of 
O

P x
E ,  and 

x
 with the control law (8) in the case study B 
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Fig. 10 – comparison of O

P y
E ,  and 

y
 with the control law (8) in the case study B 

 

 

Fig. 11 – comparison of 
O

P z
E ,  and 

z
 with the control law (8) in the case study B 

 

 

Fig. 12 – comparison of 
PR

P x
E ,  and 

x
 with the control law (10) in the case study B 
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Fig. 13 – comparison of PR

P y
E ,  and 

y
 with the control law (10) in the case study B 

 

 

Fig. 14 – comparison of PR

P z
E ,  and 

z
 with the control law (10) in the case study B 

 

It is possible to note that using the control law (8) the rotational behaviour of the robot is remarkably 

different from the decoupled systems; on the contrary, using the control law (10) the time histories of the 

three components of the vector 
P R

P
E  are very close to the ones of the three decoupled systems: 

- the relative difference between 
PR

P x
E  and 

x
, after 0.5s, remains lower than 0.15% (Fig. 12); this 

rotation direction is the most significant because it is the one with higher compliance; 
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- the relative difference between PR

P y
E  and 

y
has a peak of 9.8% at 0.2s (zoom box of Fig. 13) but 

rapidly decreases; 

- the relative difference between PR

P z
E  and 

z
 is high only in the first second (zoom box of Fig. 14). 

All the relative differences tends to zero in steady state. These results show that the control law (10) 

imposes successfully the rotational compliance about the three principal axes, and is capable of effectively 

constrain the rotation direction; the robot behaviour is almost decoupled in the three rotation directions and 

similar to a linear three-degree-of-freedom second-order system. Let us note that compete decoupling of 

the robot dynamic behaviour could be obtained by introducing the model-based compensation of the 

inertial terms [28], but this increases remarkably the computational burden without significant benefits. 

 

6. CONCLUSIONS 

The vector E = e is the product of the unit vector e representing the axis of rotation and the angle of 

rotation , which are the natural invariants of the rotation matrix, independent from the reference frame; 

this frame-invariant vector has been applied to the impedance control of a three-degree-of-freedom purely 

rotational parallel robot (3-CPU). 

If the Euler angles are used as external coordinates, the kinematics is characterized by the analytical 

Jacobian matrix JA; on the contrary, using the components of the vector E as external coordinates leads to 

the definition of the analytical Jacobian matrix JE , which tends to the geometric Jacobian matrix JG if  

tends to zero. 

This important geometric property has relevant consequences on the behaviour of the resulting impedance 

control; to show that, the behaviours of the 3-CPU parallel robot controlled by two different impedance 

algorithms, based on the Jacobian matrices JA and JG , have been compared. 

The simulation results show that only the geometric Jacobian-based impedance control law allows to 

impose properly isotropic and non-isotropic end-effector stiffness and damping; moreover, the end-effector 

rotations along the three principal stiffness/damping directions are almost decoupled and similar to linear 
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second-order systems, without the need of the model-based compensation of the inertial terms, which is 

computationally heavy. 

For all of these reasons, using the components of the vector E as external coordinates is suitable for all the 

applications in which a intuitive and decoupled control of the rotational compliance is required; for 

example, haptic human-machine interfaces for teleoperation of robots and control sticks of real or virtual 

aircrafts and helicopters; compliant tables for carrying parts in robotized assembly lines. 

The dynamic performance of a robot controlled by the proposed algorithm depends on the inertial 

properties, on the features of the actuators and on the stiffness and damping matrices; adopting a proper 

mechanical design in combination with actuators characterized by high force/torque it is possible to impose 

high values of control stiffness and consequently to perform high frequency motion. 

Although the main objective of impedance control is to obtain rotational compliance in one or more 

directions, high rotational positioning accuracy can be obtained in the remaining directions by imposing 

high values of the corresponding elements of the stiffness matrix; obviously, in the real implementation the 

maximum accuracy is limited by the mechanical stiffness and by the accuracy of the sensors. 

In the following of the research, the proposed control algorithms will be experimentally tested on the 3-

CPU rotational parallel robot prototype shown in Fig. 15 [29]. 

 

         

Fig. 15 – 3-CPU parallel robot prototype 
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