6,821 research outputs found

    A transfer principle and applications to eigenvalue estimates for graphs

    Full text link
    In this paper, we prove a variant of the Burger-Brooks transfer principle which, combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a universal constants CC such that the kk-th eigenvalue λknr\lambda_k^{nr} of the normalized Laplacian of a graph GG of (geometric) genus gg on nn vertices satisfies λknr(G)Cdmax(g+k)n,\lambda_k^{nr}(G) \leq C \frac{d_{\max}(g+k)}{n}, where dmaxd_{\max} denotes the maximum valence of vertices of the graph. This result is tight up to a change in the value of the constant CC, and improves recent results of Kelner, Lee, Price and Teng on bounded genus graphs. To show that the transfer theorem might be of independent interest, we relate eigenvalues of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss an application to the mesh partitioning problem, extending pioneering results of Miller-Teng-Thurston-Vavasis and Spielman-Tang to arbitrary meshes.Comment: Major revision, 16 page

    Moduli of Tropical Plane Curves

    Get PDF
    We study the moduli space of metric graphs that arise from tropical plane curves. There are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus gg, our moduli space is a stacky fan whose cones are indexed by regular unimodular triangulations of Newton polygons with gg interior lattice points. It has dimension 2g+12g+1 unless g3g \leq 3 or g=7g = 7. We compute these spaces explicitly for g5g \leq 5.Comment: 31 pages, 25 figure

    Brill-Noether theory of squarefree modules supported on a graph

    Get PDF
    We investigate the analogy between squarefree Cohen-Macaulay modules supported on a graph and line bundles on a curve. We prove a Riemann-Roch theorem, we study the Jacobian and gonality of a graph, and we prove Clifford's theorem.Comment: Major revision, new author added, paper restructured, results correcte
    corecore