330,981 research outputs found

    Multi-method Modeling Framework for Support of Integrated Water Resources Management

    Get PDF
    The existing definition of integrated water resources management (IWRM) promotes a holistic approach to water resources management practice. The IWRM deals with planning, design and operation of complex systems in order to control the quantity, quality, temporal and spatial distribution of water with the main objective of meeting human and ecological needs and providing protection from water disasters. One of the main challenges of IWRM is development of tools for operational implementation of the concept and dynamic coupling of physical and socio-economic components of water resources systems. This research examines the role of simulation in IWRM practices, analyses the advantages and limitations of existing modeling methods, and, as a result, suggests a new generic multi-method modeling framework that has the main goal to capture all structural complexities and interactions within water resources systems. Since traditional modeling methods solely do not provide sufficient support, this framework uses multi-method simulation approach to examine the co-dependence between natural resources and socio-economic environment. Designed framework consists of (i) a spatial database, (ii) a process-based model for representing the physical environment and changing conditions, and (iii) an agent-based model for representing spatially explicit socio-economic environment. The main idea behind multi-agent models is to build virtual complex systems composed of autonomous entities, which operate on local knowledge, possess limited abilities, affect and are affected by local environment, and thus enact the desired global system behavior. Based on the architecture of the generic multi-method modeling framework, an operational model is developed for the Upper Thames River basin, Southwestern Ontario, Canada. Six different experiments combine three climate and two socio-economic scenarios to analyze spatial dynamics of a complex physical-social-economic system. Obtained results present strong dependence between changes in hydrologic regime, in this case surface runoff and groundwater recharge rates, and regional socio-economic activities

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    Framework for Product Lifecycle Management integration in Small and Medium Enterprises networks

    Get PDF
    In order to improve the performance of extended enterprises, Small and Medium Enterprises (SMEs) must be integrated into the extended networks. This integration must be carried out on several levels which are mastered by the Product Lifecycle Management (PLM). But, PLM is underdeveloped in SMEs mainly because of the difficulties in implementing information systems. This paper aims to propose a modeling framework to facilitate the implementation of PLM systems in SMEs. Our approach proposes a generic model for the creation of processes and data models. These models are explained, based on the scope and framework of the modeling, in order to highlight the improvements provided

    On the Potential of Generic Modeling for VANET Data Aggregation Protocols

    Get PDF
    In-network data aggregation is a promising communication mechanism to reduce bandwidth requirements of applications in vehicular ad-hoc networks (VANETs). Many aggregation schemes have been proposed, often with varying features. Most aggregation schemes are tailored to specific application scenarios and for specific aggregation operations. Comparative evaluation of different aggregation schemes is therefore difficult. An application centric view of aggregation does also not tap into the potential of cross application aggregation. Generic modeling may help to unlock this potential. We outline a generic modeling approach to enable improved comparability of aggregation schemes and facilitate joint optimization for different applications of aggregation schemes for VANETs. This work outlines the requirements and general concept of a generic modeling approach and identifies open challenges

    Generic unified modelling process for developing semantically rich, dynamic and temporal models

    Get PDF
    Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models
    • 

    corecore