14 research outputs found

    Data Analysis with Intersection Graphs

    Get PDF
    AbstractThis paper presents a new framework for multivariate data analysis, based on graph theory, using intersection graphs [1]. We have named this approach DAIG – Data Analysis with Intersection Graphs. This new framework represents data vectors as paths on a graph, which has a number of advantages over the classical table representation of data. To do so, each node represents an atom of information, i.e. a pair of a variable and a value, associated with the set of observations for which that pair occurs. An edge exists between a pair of nodes whenever the intersection of their respective sets is not empty. We show that this representation of data as an intersection graph allows an easy and intuitive geometric interpretation of data observations, groups of observations, and results of multivariate data analysis techniques such as biplots, principal components, cluster analysis, or multidimensional scaling. These will appear as paths on the graph, relating variables, values and observations. This approach allows for a compact and memory efficient representation of data that contains many missing values or multi-valued attributes. The basic principles and advantages of this approach are presented with an example of its application to a simple toy problem. The main features of this methodology are illustrated with the aid software specifically developed for this purpose

    A probabilistic spectral framework for grouping and segmentation

    Get PDF

    Salient closed boundary extraction with ratio contour

    Full text link

    Grouping Uncertain Oriented Projective Geometric Entities with Application to Automatic Building Reconstruction

    Get PDF
    The fully automatic reconstruction of 3d scenes from a set of 2d images has always been a key issue in photogrammetry and computer vision and has not been solved satisfactory so far. Most of the current approaches match features between the images based on radiometric cues followed by a reconstruction using the image geometry. The motivation for this work is the conjecture that in the presence of highly redundant data it should be possible to recover the scene structure by grouping together geometric primitives in a bottom-up manner. Oriented projective geometry will be used throughout this work, which allows to represent geometric primitives, such as points, lines and planes in 2d and 3d space as well as projective cameras, together with their uncertainty. The first major contribution of the work is the use of uncertain oriented projective geometry, rather than uncertain projective geometry, that enables the representation of more complex compound entities, such as line segments and polygons in 2d and 3d space as well as 2d edgels and 3d facets. Within the uncertain oriented projective framework a procedure is developed, which allows to test pairwise relations between the various uncertain oriented projective entities. Again, the novelty lies in the possibility to check relations between the novel compound entities. The second major contribution of the work is the development of a data structure, specifically designed to enable performing the tests between large numbers of entities in an efficient manner. Being able to efficiently test relations between the geometric entities, a framework for grouping those entities together is developed. Various different grouping methods are discussed. The third major contribution of this work is the development of a novel grouping method that by analyzing the entropy change incurred by incrementally adding observations into an estimation is able to balance efficiency against robustness in order to achieve better grouping results. Finally the applicability of the proposed representations, tests and grouping methods for the task of purely geometry based building reconstruction from oriented aerial images is demonstrated. lt will be shown that in the presence of highly redundant datasets it is possible to achieve reasonable reconstruction results by grouping together geometric primitives.Gruppierung unsicherer orientierter projektiver geometrischer Elemente mit Anwendung in der automatischen Gebäuderekonstruktion Die vollautomatische Rekonstruktion von 3D Szenen aus einer Menge von 2D Bildern war immer ein Hauptanliegen in der Photogrammetrie und Computer Vision und wurde bisher noch nicht zufriedenstellend gelöst. Die meisten aktuellen Ansätze ordnen Merkmale zwischen den Bildern basierend auf radiometrischen Eigenschaften zu. Daran schließt sich dann eine Rekonstruktion auf der Basis der Bildgeometrie an. Die Motivation für diese Arbeit ist die These, dass es möglich sein sollte, die Struktur einer Szene durch Gruppierung geometrischer Primitive zu rekonstruieren, falls die Eingabedaten genügend redundant sind. Orientierte projektive Geometrie wird in dieser Arbeit zur Repräsentation geometrischer Primitive, wie Punkten, Linien und Ebenen in 2D und 3D sowie projektiver Kameras, zusammen mit ihrer Unsicherheit verwendet. Der erste Hauptbeitrag dieser Arbeit ist die Verwendung unsicherer orientierter projektiver Geometrie, anstatt von unsicherer projektiver Geometrie, welche die Repräsentation von komplexeren zusammengesetzten Objekten, wie Liniensegmenten und Polygonen in 2D und 3D sowie 2D Edgels und 3D Facetten, ermöglicht. Innerhalb dieser unsicheren orientierten projektiven Repräsentation wird ein Verfahren zum Testen paarweiser Relationen zwischen den verschiedenen unsicheren orientierten projektiven geometrischen Elementen entwickelt. Dabei liegt die Neuheit wieder in der Möglichkeit, Relationen zwischen den neuen zusammengesetzten Elementen zu prüfen. Der zweite Hauptbeitrag dieser Arbeit ist die Entwicklung einer Datenstruktur, welche speziell auf die effiziente Prüfung von solchen Relationen zwischen vielen Elementen ausgelegt ist. Die Möglichkeit zur effizienten Prüfung von Relationen zwischen den geometrischen Elementen erlaubt nun die Entwicklung eines Systems zur Gruppierung dieser Elemente. Verschiedene Gruppierungsmethoden werden vorgestellt. Der dritte Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen Gruppierungsmethode, die durch die Analyse der Änderung der Entropie beim Hinzufügen von Beobachtungen in die Schätzung Effizienz und Robustheit gegeneinander ausbalanciert und dadurch bessere Gruppierungsergebnisse erzielt. Zum Schluss wird die Anwendbarkeit der vorgeschlagenen Repräsentationen, Tests und Gruppierungsmethoden für die ausschließlich geometriebasierte Gebäuderekonstruktion aus orientierten Luftbildern demonstriert. Es wird gezeigt, dass unter der Annahme von hoch redundanten Datensätzen vernünftige Rekonstruktionsergebnisse durch Gruppierung von geometrischen Primitiven erzielbar sind

    Grouping Uncertain Oriented Projective Geometric Entities with Application to Automatic Building Reconstruction

    Get PDF
    The fully automatic reconstruction of 3d scenes from a set of 2d images has always been a key issue in photogrammetry and computer vision and has not been solved satisfactory so far. Most of the current approaches match features between the images based on radiometric cues followed by a reconstruction using the image geometry. The motivation for this work is the conjecture that in the presence of highly redundant data it should be possible to recover the scene structure by grouping together geometric primitives in a bottom-up manner. Oriented projective geometry will be used throughout this work, which allows to represent geometric primitives, such as points, lines and planes in 2d and 3d space as well as projective cameras, together with their uncertainty. The first major contribution of the work is the use of uncertain oriented projective geometry, rather than uncertain projective geometry, that enables the representation of more complex compound entities, such as line segments and polygons in 2d and 3d space as well as 2d edgels and 3d facets. Within the uncertain oriented projective framework a procedure is developed, which allows to test pairwise relations between the various uncertain oriented projective entities. Again, the novelty lies in the possibility to check relations between the novel compound entities. The second major contribution of the work is the development of a data structure, specifically designed to enable performing the tests between large numbers of entities in an efficient manner. Being able to efficiently test relations between the geometric entities, a framework for grouping those entities together is developed. Various different grouping methods are discussed. The third major contribution of this work is the development of a novel grouping method that by analyzing the entropy change incurred by incrementally adding observations into an estimation is able to balance efficiency against robustness in order to achieve better grouping results. Finally the applicability of the proposed representations, tests and grouping methods for the task of purely geometry based building reconstruction from oriented aerial images is demonstrated. It will be shown that in the presence of highly redundant datasets it is possible to achieve reasonable reconstruction results by grouping together geometric primitives.Gruppierung unsicherer orientierter projektiver geometrischer Elemente mit Anwendung in der automatischen Gebäuderekonstruktion Die vollautomatische Rekonstruktion von 3D Szenen aus einer Menge von 2D Bildern war immer ein Hauptanliegen in der Photogrammetrie und Computer Vision und wurde bisher noch nicht zufriedenstellend gelöst. Die meisten aktuellen Ansätze ordnen Merkmale zwischen den Bildern basierend auf radiometrischen Eigenschaften zu. Daran schließt sich dann eine Rekonstruktion auf der Basis der Bildgeometrie an. Die Motivation für diese Arbeit ist die These, dass es möglich sein sollte, die Struktur einer Szene durch Gruppierung geometrischer Primitive zu rekonstruieren, falls die Eingabedaten genügend redundant sind. Orientierte projektive Geometrie wird in dieser Arbeit zur Repräsentation geometrischer Primitive, wie Punkten, Linien und Ebenen in 2D und 3D sowie projektiver Kameras, zusammen mit ihrer Unsicherheit verwendet.Der erste Hauptbeitrag dieser Arbeit ist die Verwendung unsicherer orientierter projektiver Geometrie, anstatt von unsicherer projektiver Geometrie, welche die Repräsentation von komplexeren zusammengesetzten Objekten, wie Liniensegmenten und Polygonen in 2D und 3D sowie 2D Edgels und 3D Facetten, ermöglicht. Innerhalb dieser unsicheren orientierten projektiven Repräsentation wird ein Verfahren zum testen paarweiser Relationen zwischen den verschiedenen unsicheren orientierten projektiven geometrischen Elementen entwickelt. Dabei liegt die Neuheit wieder in der Möglichkeit, Relationen zwischen den neuen zusammengesetzten Elementen zu prüfen. Der zweite Hauptbeitrag dieser Arbeit ist die Entwicklung einer Datenstruktur, welche speziell auf die effiziente Prüfung von solchen Relationen zwischen vielen Elementen ausgelegt ist. Die Möglichkeit zur effizienten Prüfung von Relationen zwischen den geometrischen Elementen erlaubt nun die Entwicklung eines Systems zur Gruppierung dieser Elemente. Verschiedene Gruppierungsmethoden werden vorgestellt. Der dritte Hauptbeitrag dieser Arbeit ist die Entwicklung einer neuen Gruppierungsmethode, die durch die Analyse der änderung der Entropie beim Hinzufügen von Beobachtungen in die Schätzung Effizienz und Robustheit gegeneinander ausbalanciert und dadurch bessere Gruppierungsergebnisse erzielt. Zum Schluss wird die Anwendbarkeit der vorgeschlagenen Repräsentationen, Tests und Gruppierungsmethoden für die ausschließlich geometriebasierte Gebäuderekonstruktion aus orientierten Luftbildern demonstriert. Es wird gezeigt, dass unter der Annahme von hoch redundanten Datensätzen vernünftige Rekonstruktionsergebnisse durch Gruppierung von geometrischen Primitiven erzielbar sind

    Knowledge trading : computational support for individual and collaborative sense-making activities

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2004.Includes bibliographical references (leaves 127-132).(cont.) outlined. 2. Demonstration that computer systems can use the discovered relations among data items to help users search for relevant information, prioritize the data exchange between collaborating users, and visualize data in various ways. This investigation looks at how a human's increasing knowledge about a problem space is influential in the subsequent accumulation of new data. The findings are converted into computational equivalents that can support individual and collaborative sense-making processes.This dissertation explores the potential for computational systems to analyze and support individual and collaborative human sense-making activities. In this context human sense-making refers to the act of mentally and physically relating pieces of information so as to develop an understanding of a particular situation. Human sense-making activities such as brainstorming, decision-making, and problem solving sessions often produce a lot of data such as notes, sketches, and documents. The participants of sense-making activities usually develop a good understanding of the relations among these individual data items. These relations define the context. Because the relations remain within the minds of the participants they are neither accessible to outsiders and computational systems nor can they be recorded or backed up. This dissertation outlines a first set of computational mechanisms that construct relations from the spatial arrangement, use, and storage of data items. A second set of computational mechanisms takes advantage of these relations by helping users to keep track of, search for, exchange, arrange, and visualize data items. The computational mechanisms are both adaptive and evocative, meaning that the computational mechanisms dynamically adapt to users and changing circumstances while also trying to influence the human sense-making process. Contributions: 1. Demonstration that computer systems can discover probable relations among data items from their spatial arrangement and use by users. This work identifies and analyzes various human mental processes involved in the determination of possible relations among data items such as documents on a work desk or files in a computer system. A computational equivalent is proposed for every mental processby Paul Erich Keel.Ph.D
    corecore