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Abstract

This paper presents an iterative spectral framework for pairwise clustering and perceptual grouping. Our model is expressed
in terms of two sets of parameters. Firstly, there are cluster memberships which represent the affinity of objects to clusters.
Secondly, there is a matrix of link weights for pairs of tokens. We adopt a model in which these two sets of variables are
governed by a Bernoulli model. We show how the likelihood function resulting from this model may be maximised with
respect to both the elements of link-weight matrix and the cluster membership variables. We establish the link between the
maximisation of the log-likelihood function and the eigenvectors of the link-weight matrix. This leads us to an algorithm in
which we iteratively update the link-weight matrix by repeatedly refining its modal structure. Each iteration of the algorithm
is a three-step process. First, we compute a link-weight matrix for each cluster by taking the outer-product of the vectors of
current cluster-membership indicators for that cluster. Second, we extract the leading eigenvector from each modal link-weight
matrix. Third, we compute a revised link weight matrix by taking the sum of the outer products of the leading eigenvectors
of the modal link-weight matrices.
© 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction graphs using the eigenvalues and eigenvectors of the Lapla-

cian matrix. The result that is key to the grouping problem
is that the eigenvalue gap (i.e. the difference between the
first and second eigenvalues of the Laplacian matrix), is a
measure of the degree of bijectivity of the graph (i.e. the ex-
tent to which its nodes form two distinct clusters which can
be separated by a minimum cut). To exploit this property,
graph spectral segmentation methods share the feature of
commencing from an initial characterisation of the percep-
tual affinity of different image tokens in terms of a matrix of
link-weights. Once this matrix is to hand then its eigenval-
ues and eigenvectors are located. The eigenmodes represent
pairwise relational clusters which can be used to group the
raw perceptual entities together.

Many problems in computer vision can be posed as ones
of pairwise clustering. That is to say they involve group-
ing objects together based on their mutual similarity rather
than their closeness to a cluster prototype. Such problems
naturally lend themselves to a graph-theoretic treatment in
which the objects to be clustered are represented using a
weighted graph. Here the nodes represent the objects to be
clustered and the edge-weights represent the strength of pair-
wise similarity relations between objects. One of the most
elegant solutions to the pairwise clustering problem comes
from spectral graph theory, which is a field of mathemat-
ics which aims to characterise the structural properties of
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of utility measure for the cluster process. There are two
quantities that are commonly used to define the utility. The
first of these is the association, which is a measure of to-
tal edge linkage within a cluster and is useful in defining
clump structure. The second is the cut, which is a measure
of linkage between different clusters and can be used to split
extraneous nodes from a cluster. The second step is to show
how to use eigenvectors to extract clusters using the utility
measure, and this can be regarded as a post-processing step.
There are several examples of the graph-spectral approach
described in the literature. Some of the earliest work was
conducted by Scott and Longuet-Higgins [1] who developed
a method for refining the block-structure of the affinity ma-
trix by relocating its eigenvectors. At the level of image
segmentation, several authors have used algorithms based
on the eigenmodes of an affinity matrix to iteratively seg-
ment image data. For instance, Sarkar and Boyer [2] have
a method which uses the leading eigenvector of the affinity
matrix, and this locates clusters that maximise the average
association. This method is applied to locating line-segment
groupings. Perona and Freeman [3] have a similar method
which uses the second largest eigenvector of the affinity ma-
trix. The method of Shi and Malik [4], on the other hand,
uses the normalised cut which balances the cut and the as-
sociation. Clusters are located by performing a recursive
bisection using the eigenvector associated with the second
smallest eigenvalue of the Laplacian (the degree matrix mi-
nus the adjacency matrix), i.e. the Fiedler vector. Focussing
more on the issue of post-processing, Weiss [5] has shown
how this, and other closely related methods, can be improved
using a normalised affinity matrix. Recently, Shi and Meila
[6] have analysed the convergence properties of the method
using Markov chains. In cognate work, Tishby and Slonim
[7] have developed a graph-theoretic method which exploits
the stationarity and ergodicity properties of Markov chains
defined on the affinity weights to locate clusters.

Recent work has looked in more detail at the spectral
grouping method. For instance, Fowlkes et al. [8] and
Belongie et al. [9] have shown how it can be rendered
more efficient by sub-sampling the affinity matrix and us-
ing the Nystrom method to approximate the eigenvectors.
Soundararajan and Sarkar [10] have investigated the role
of the utility measure underpinning the graph-partitioning
method. They conclude that the minimum cut and the
normalised cut lead to the same average segmentations.
Empirical results show that the minimum, average and
normalised cuts give results that are statistically equivalent.

The problem of clustering by graph partitioning is of
course one of generic utility throughout computer science. In
the algorithms community, there has also been considerable
effort expended at analysing the properties and behaviour
of graph spectral clustering methods. For instance, Mohar
[11] provides a good review of the properties of Laplace
eigenvalues and eigenvectors. Recent work by Kannan et
al. [12] present a new partition quality measure. The mea-
sure draws on the minimum conductance and the ratio of the

inter-cluster edge weight (the cut) to the total cluster edge
weight (the association). An analysis reveals that although
the clustering problem is NP hard, the proposed measure
leads to an approximation algorithm with poly-logarithmic
guarantees.

The problem of perceptual grouping has also been ex-
tensively studied using information theoretic and proba-
bilistic frameworks. Early work by Dickson [13] has used
Bayes nets to develop an hierarchical framework for split-
ting and merging groups of lines. Cox et al. [14] have
developed a grouping method which combines evidence
from the raw edge attributes delivered by the Canny edge
detector. Leite and Hancock [15] have pursued similar
objectives with the aim of fitting cubic splines to the out-
put of a bank of multi-scale derivative of Gaussian filters
using the EM algorithm. Castafio and Hutchinson [16]
have developed a Bayesian framework for combining evi-
dence for different graph-based partitions or groupings of
line-segments. The method exploits bilateral symmetries. It
is based on a frequentist approach over the set of partitions
of the line-segments and is hence free of parameters. Re-
cently, Crevier [17] has developed an evidence combining
framework for extracting chains of colinear line-segments.
Amir and Lindenbaum [18] have a maximum likelihood
method for grouping which relies on searching for the best
graph partition. The method is two step. First, grouping
cues are used to construct the graph. Second, a greedy mod-
ification step is used to maximise the likelihood function.
Turning our attention to information theoretic approaches,
one of the best known methods is that of Hofmann and
Buhmann [19], which uses mean-field theory to develop
update equations for the pairwise cluster indicators. In re-
lated work, Gdalyahu et al. [20] use a stochastic sampling
method. These iterative processes have some features in
common with the use of iterative relaxation style opera-
tors for edge grouping. This approach was pioneered by
Shashua and Ullman [21] and later refined by Guy and
Medioni [22] among others. Parent and Zucker have shown
how co-circularity can be used to gauge the compatibility
of neighbouring edges [23].

1.2. Contribution

Although elegant by virtue of their use of matrix factori-
sation to solve the underlying optimisation problem, one of
the criticisms which can be levelled at the graph-spectral
methods is that their foundations are not statistical or infor-
mation theoretic in nature. As demonstrated by Hofmann and
Buhmann [19], Gdalyahu et al. [20] and Amir and Linden-
baum [18], there are significant advantages to be had from
posing the problem of grouping by graph partitioning in a
statistical or probabilistic setting. Since they do not do this,
the post-processing strategies adopted by spectral methods
are not able to characterise uncertainties in the raw affinity
data or to combine evidence to overcome these uncertainties.
Moreover, they lack the robustness that evidence combining
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approaches offer. The aim in this paper is to overcome these
shortcomings by developing a maximum likelihood frame-
work for pairwise clustering. We parameterise the pairwise
clustering problem using two sets of indicator variables. The
first of these are cluster membership variables which indi-
cate to which cluster an object belongs. The second set of
variables are the elements of a link-weight matrix which
convey the strength of association between pairs of nodes.

We use these two sets of parameters to develop a prob-
abilistic model of the pairwise clustering process. We use
Bernoulli trials to model the probability that pairs of nodes
belong to the same pairwise cluster. The parameter of the dis-
tribution is the link-weight between pairs of nodes. The ran-
dom variable associated with the Bernoulli trial is the cluster
co-membership indicator that measures whether, or not, a
pair of nodes belong to the same cluster. The co-membership
is found by taking the product of the cluster membership
indicators for pairs of nodes. We develop a log-likelihood
function under the assumption that pairs of nodes associate
to form clusters as the outcome of a series of independent
Bernoulli trials of this sort.

The resulting log-likelihood function is in fact the to-
tal association of a logarithmic transformation of the
link-weight matrix for the set of clusters. To maximise
the log-likelihood function, we develop a post-processing
method that is realised as an iterative clustering algorithm
based on dual interleaved steps. First, the link weights are
updated using the currently available cluster membership
indicators. This is done by differentiating the log-likelihood
function with respect to the link weights and solving the
associated saddle-point equations. The update equation is
particularly simple. We compute an updated link-weight
matrix for each cluster by taking the outer-product of the
vectors of cluster-membership indicators. We refine the
structure of the updated link-weight matrix with the aim of
removing noisy link-weights. To do this we decompose the
updated link-weight matrix into components that originate
from the different clusters. For each cluster-component of
the link-weight matrices, we compute the leading eigenvec-
tor. We compute a revised link weight matrix by taking the
sum of the outer products of the leading eigenvectors of the
cluster link-weight matrices. This updating and refinement
of the link-weight matrix is a unique feature of our method.
In the pairwise clustering algorithm of Hoffman and Buh-
mann [19], and, the normalised cuts method of Shi and Ma-
lik [4], the link-weights remain static. The second step of the
algorithm is concerned with updating the cluster member-
ship indicators. However, since the saddle-point equations
for the cluster membership indicators are not tractable in
closed form, we take recourse to a naive mean field method
known as soft-assign to develop update equations.

Stated in this way the dual update steps of our method is
reminiscent of the EM algorithm. In fact in related work, we
have developed an EM algorithm for grouping using a mix-
ture of Bernoulli distributions [24]. However, the method
proved slow to converge and resulted in overlapped clus-

ters. By contrast, here we use the modal structure of the
link-weight matrix to define the clusters. In doing so we
develop on the work of Sarkar and Boyer [2]. We initialise
the cluster memberships using the same sign positive eigen-
vectors of the initial link-weight matrix. We show how the
log-likelihood function can be separated into distinct terms
associated with the different modes of the link-weight ma-
trix. This allows us to refine the cluster membership indica-
tors using the leading eigenvector of the updated link-weight
matrices for the different clusters.

It is important to stress that although there have been
some attempts at using probabilistic methods for grouping
elsewhere in the literature [16], our method has a number of
unique features which distinguish it from these alternatives.
First, although there have been successful attempts to de-
velop probabilistic methods for grouping via graph partition-
ing, these do not use spectral information, and are instead
based on search heuristics. Second, although our method re-
lies on the iterative updating of cluster membership indica-
tors it differs from the methods of Hofmann and Buhmann
[19], and Shi and Malik [4] by virtue of the fact that the
link-weight matrix is iteratively refined.

2. Grouping by matrix factorisation

To commence, we require some formalism. The grouping
problem is characterised by the set of objects to be clus-
tered 7 and a |V| x |V| matrix of link-weights 4. The el-
ement 4; ; of the link weight matrix represents the strength
of association between the objects i and j. We will work
with link-weights which are constructed to fall in the inter-
val [0, 1]. When the link weight is close to one, then there
is a strong association between the pair of nodes; when it is
close to zero then there is a weak association. The aim in
grouping is to partition the object-set V" into disjoint subsets.
If V,, represents one of these subsets and € is the index-set
of different partitions (i.e. the different pairwise clusters),
then V =J,cq Vo and Voy NV =0 if o # "

To represent the assignment of nodes to clusters, we in-
troduce a cluster membership indicator s;,. This quantity
measures the degree of affinity of the node i to the cluster
w € Q and is in the interval [0, 1]. When the cluster mem-
bership is close to 1 then there is a strong association of the
node to the cluster; when the value is close to 0 then the
association is weak.

Later on, it will be convenient to work with a matrix
representation of the cluster membership indicators. Hence,
we introduce a vector of indicator variables for the cluster
indexed @ S = (S10,520,-..) . The vectors are used as the
columns of the |V| x |Q| cluster membership matrix S =
(s1]82] - - - |s)0)) whose rows are indexed by the set of nodes
and whose columns are indexed by the set of clusters.

In this paper, we are interested in how matrix factorisa-
tion methods can be used to partition the nodes into disjoint
clusters. One way of viewing this is as the search for the
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permutation matrix which re-orders the elements of 4 into
non-ovelapping blocks. Sarkar and Boyer [2] have shown
how the positive eigenvectors of the matrix of link-weights
can be used to assign nodes to perceptual clusters. Using the
Rayleigh—Ritz theorem, they observe that the scalar quan-
tity x'Ax, where 4 is the weighted adjacency matrix, is max-
imised when x is the leading eigenvector of 4. Moreover,
each of the subdominant eigenvectors corresponds to a dis-
joint perceptual cluster.

We confine our attention to the same-sign positive eigen-
vectors (i.e. those whose corresponding eigenvalues are real
and positive, and whose components are either all positive or
are all negative in sign). If a component of a positive eigen-
vector is non-zero, then the corresponding node belongs to
the perceptual cluster associated with the relevant eigen-
modes of the weighted adjacency matrix. The eigenvalues
A1, Z2,... of A are the solutions of the equation [4 — /| =0
where / is the N X N identity matrix. The corresponding
eigenvectors X, ,X;,,... are found by solving the equation
Ax;, = Zix;;. Let the set of positive same-sign eigenvec-
tors be represented by Q = {w|4s, > 0 A [(x,(i) > OVi) V
x5 (i) < OVi]}, where x}, indicates a same-sign eigenvector.
Since the positive eigenvectors are orthogonal, this means
that there is only one value of w for which x},(i) # 0. In
other words, each node i is associated with a unique clus-
ter. We denote the set of nodes assigned to the cluster with
modal index w as V., = {i|x},(i) # 0}.

3. Maximum likelihood framework

In practice the link-weight matrix is likely to be subject to
noise and error. As a result, the eigenvector clustering algo-
rithm described above will produce poor clusters. To over-
come this problem, Sarkar and Boyer allow a certain frac-
tion of the components of the eigenvectors to flip sign. This
simple method is aimed a modelling the effect of noise on
the eigenvectors and is motivated by a perturbation analysis.

The aim in this paper is to develop a more sophisticated
probabilistic method. We commence from a simple model
of the cluster formation process based on a series of inde-
pendent Bernoulli trials. The linkage of each pair of nodes
within a cluster is treated as a separate Bernoulli trial. We
treat the link-weight for the pair of nodes as the success
probability of the trial. The random variable associated with
the trial is the product of cluster indicators for the pair of
nodes; this indicates whether the two nodes belong to the
same cluster. Using this model we develop a joint likelihood
function for the link-weights and the cluster membership in-
dicators. This likelihood function can be used to make both
a maximum likelihood re-estimate of the link-weight matrix
and a maximum a posteriori probability estimate of the clus-
ter membership indicators. In the case of re-estimating the
link-weight matrix, the cluster indicators are treated as data.

It is important to stress that the dual update steps which
constitute our algorithm are decoupled from the raw image

data, once the initial link-weight matrix has been computed.
The two steps are aimed at improving the structure of the
link-weight matrix and the pairwise clusters that can be ex-
tracted from it. One way of viewing this process is that of
applying a kind of relaxation process which smooths the
link-weight matrix by re-enforcing adjacent elements within
a block.

3.1. Joint likelihood function

Our grouping process aims to estimate the cluster mem-
bership indicators S and to obtain an improved estimate of
the link-weight matrix 4. We pose both problems in terms of
the conditional likelihood P(S|4). The problem of recover-
ing indicator variables is one of maximum a posteriori prob-
ability estimation of S given the current link-weight matrix
A. Here the link weight matrix plays the role of fixed data.
The re-estimation of 4 is posed as maximum likelihood es-
timation, with the cluster membership indicators playing the
role of fixed data.

To develop the two update steps, we turn our at-
tention to the conditional likelihood function P(S|4) =
P(s1,52,...,5|0||4). To simplify the likelihood function, we
make a number of independence assumptions. We com-
mence by applying the chain rule of conditional probability
to rewrite the likelihood function as a product of conditional
probabilities

P(SlA): P(§1 ‘52""’5\5”9‘4) X P(§2|§3,...,§‘Q|,A)
X - X P(s]0(|4). ()

To simplify this product, we assume that vectors of class in-
dicators are conditionally independent of one-another given
the matrix of link-weights. Hence,

P(Ei\§i+17~-,§\£z|w4) = P(si|4).

It is important to stress that this condition may not hold
in general. It is violated when there is cluster overlap or
linkage, and this effect is measured by the between cluster
cut. However, when we initialise the process with cluster
indicator variables computed from the eigenvectors of the
adjacency matrix, then the condition is satisfied due to the
fact that the eigenvectors are orthogonal. Using this simpli-
fication, then, we can write the conditional likelihood as a
product over the cluster indices

P(S|4) = ] P(sol4). )

weQ

An important consequence of this factorisation over clusters,
is that when combined with our cluster membership model
developed in Section 3.2, it leads to a likelihood function in
which there is no dependence on the between cluster link
structure. This is in contrast with other work on pairwise
clustering (e.g. the normalised cut), where both the within
and between cluster link weights play a role.
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Next we apply the definition of conditional probability to
re-write terms under the product in the following manner:

P(A|s)P(80)

Pl =11 ==55

w€eQ

3)

To further develop the expression for the likelihood we
turn our attention to the conditional probability for the
link-weight matrix given the vector of cluster indicators for
the cluster , i.e. P(4|s.). Again applying the chain rule of
conditional probability, we can perform the following fac-
torisation over the non-diagonal elements of the link-weight
matrix:

PAls) = [[ PUijldiik >il> j.so). (4)
(i,j)e®

where @ =V x V —{(i,i)|i € V'} is the set of non-diagonal
elements of 4. To simplify the factorisation, we assume
that the element 4, ; is conditionally dependant only on the
cluster indicators for the nodes indexed i and ;. Hence, we
can write

P(Ai,j ‘Ak,h k> i, /> js Qﬂ)) = P(A[,b/'|5/unsj(u)~
Under this simplification

P(4|sw) = H P(Ai i Sjer)- ©))

(i.j)ed

Substituting this expression into that for the joint-likelihood
we have that

P(sla) =[]

w€eQ

P(s0) 11 [P(Siw,S_/w |4i.;)P(Ai.;)
P(4) (i)ed P(Siw,sjm)

(6)

As stated earlier, we aim to recover revised estimates
of both the link-weight matrix and the cluster indicators.
These estimates are realised using dual interleaved update
operations. The recovery of the revised link weight matrix
is posed as the maximum likelihood parameter estimation
problem

A" :argm/?xP(S|A). (7)

The recovery of the cluster membership indicators, on the
other hand, is posed as the maximum a posteriori probability
estimation problem

S* :argmsaxP(S|A). (8)

Since we are interested in the joint dependence of the
link-weight matrix 4 and the cluster membership indica-
tors S, we turn our attention instead to the maximisation
of the log-likelihood function for the observed pattern of
link weights. Further, since we assume that the link-weights
belonging to each cluster are independent of one another,

we can write

ag)(A,S) = Z Z In p(siw>S/w|Ai,j)~ (9)

weQ (i,j)EP

In the next section, we describe a simple model for the
conditional probability density for the indicator variables
given the current estimate of the link-weight matrix elements
i.e. p(Siw»Sjw|di;). The cluster membership indicators play
the role of random variables, and the link-weights the role
of distribution parameters. In Section 3.3, we describe how
the log-likelihood function may be optimised with respect
to the cluster indicator variables, given the initial estimates
of the link-weights. We also describe how the estimates
of link-weights may be refined once cluster membership
indicators are to hand.

3.2. Bernoulli model

We now describe the generative model which underpins
our pairwise clustering method. The model assumes that
pairs of nodes associate to clusters as the outcome of a
Bernoulli trial. The idea is that the observed link structure
of the pairwise clusters arises as the outcome of a series of
Bernoulli trials. The probability that a link form between a
pair of nodes if simply the link-weight between the nodes.
To be more formal, let us consider the pair of nodes i and
j. We are concerned with whether or not this pair of nodes
both belong to the cluster indexed w. The random variable
that governs the outcome of the Bernoulli trial is the prod-
uct of indicator variables {; j.» = SiwSjo. There of four com-
binations of the two indicator variables s;, and s;.,. For the
single case when s;, = sj», = 1, then the two nodes have a
pairwise association to the cluster indexed w, and {; j, = 1.
In the three cases when either s, = 0 or sj, = 0, then the
pair of nodes do not both associate to the cluster @ and
{i.j.o=0. We model the cluster formation process as a series
of independent Bernoulli trials over all pairs of nodes. Ac-
cording to this model, success is the event that both nodes
belong to the same cluster, while failure is the event that
they do not. The probability of success, i.e. the parameter
of the Bernoulli trial is the link-weight 4; ;. Success is the
event {;;» = 1, and there is a single combination of clus-
ter indicators s;,, = S, = 1 that results in this outcome. The
remaining probability mass 1 — 4;; is assigned to the three
cases which result in failure, i.e. those for which (; ., = 0.
This simple model is captured by the distribution rule

A,',j if Siow = 1 and Sjow = 1,
P(Sios Sjo|dij) = .
(lfAi,j) if S,‘w:OOI"SijO.
(10)
This rule can be written in the more compact form
p(wa, Sjo ‘Ai,j) _ Af"‘/?‘va’(l _ A[\,’)l —SiwSjo . (1 1 )

We could clearly have adopted a more complicated model,
by not distributing the probability uniformly among the three
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cases for which {; ;,, = 0. Moreover, the model is developed
under the assumption that the quantities s, and sj,, and
hence (; . are binary in nature. When we come to update
the cluster indicators, then we relax this condition and the
quantities no longer belong to the set {0, 1}, but instead
belong to the interval [0, 1].

After substituting this distribution into the log-likelihood
function, we find that

LAS)=D " > {sivsjo Indy
0€EQ (i,))EPD
+ (1 = Sinsjo) In(1 — 4; )} . (12)

Performing algebra to collect terms, the log-likelihood func-
tion simplifies to

LAS)=D" > {si,us/,uln . f"fAU

w€eEQ (i,j))EP

The structure of the log-likelihood function deserves further
comment. The first term, which depends on the cluster mem-
bership indicators, is closely related to the association mea-
sure for the configuration of clusters. Classically, the asso-
ciation of the cluster indexed o is defined to be Assoc(w)=
diev 2jev SioSjodi; = 5T 45,,. Hence, our log-likelihood
function is the sum of the individual cluster associations
for the logarithmically transformed link weight matrix. Our
method hence does not take into account the cut-measure be-
tween clusters. The cut between the clusters indexed w, and
wy is defined to be Cut(wq, cuh):zie% Zjewh SicogSjeoy Ai -
There is considerable debate in the spectral clustering liter-
ature concerning the choice of utility measure. Maximising
the association is widely thought to work well with com-
pact well separated clusters, and is at the heart of the Sarkar
and Boyer method. Minimising the cut, on the other hand
can remove outliers from an otherwise well-defined cluster.
To strike a balance between these two behaviours has lead
to the development of more sophisticated measures such as
the normalised cut [4]. As evidenced by the recent paper
of Kannan et al. [12], the debate on the optimal choice of
utility measure continues. However, as noted by Weiss [5]
the post-processing of the spectral representation can play a
pivotal role in determining the quality of the clusters recov-
erable. This is not surprising. For instance, techniques such
as relaxation labelling have proved to be very effective in
improving the results of otherwise limited initial labellings.
However, the aim here is to commence from a principal
starting point. Our Bernoulli model, and indeed any sim-
ple probability distribution, is unlikely to lead to a measure
that has a structure similar to the normalised cut or the con-
ductance measure defined by Kannan et al. [12]. Hence, we
turn our attention to the post-processing of the likelihood
function using spectral analysis. As we will demonstrate

experimentally, this leads to results which are comparable
to and sometimes better than the normalised cut.

There are a number of additional points concerning
the structure of the log-likelihood function. First, when
the cluster membership indicators are initialised using the
components of the same-sign eigenvectors of 4 (as de-
scribed later), it gauges only the within-cluster structure
of the link-weight matrix. There are no contributions from
between cluster links. The second feature is that the struc-
ture of the log-likelihood function is reminiscent of that
underpinning the expectation-maximisation algorithm. The
reason for this is that the product of cluster-membership
variables s,/ plays a role similar to that of the a posteriori
measurement probability in the EM algorithm, and weight
contributions of the link-weights to the likelihood function.

In a recent paper, we have developed an EM algorithm
for grouping which is based on a mixture of Bernoulli dis-
tributions. However, this method proved slow to converge
and resulted in overlapped clusters. To overcome these prob-
lems, in this paper we aim to develop an iterative grouping
method which focuses on refining the modal structure of the
link-weight matrix.

3.3. Maximising the likelihood function

In this section, we focus on how the log-likelihood func-
tion can be maximised with respect to the link-weights
and the cluster membership variables. This is a three-step
process. We commence by showing how the maximum
likelihood link-weight matrix can be located by taking
the outer-product of the vectors of cluster membership
indicators. Second, we show how to remove noise from
the link-weight matrix using a process which we refer
to as modal sharpening. This involves decomposing the
link-weight matrix into components corresponding to the
same-sign eigenvectors. For each component or cluster
there is an individual link-weight matrix. For each such
matrix, we compute the leading eigenvector. The modal
sharpening process involves reconstructing the overall
link-weight matrix by summing the outer products of the
leading eigenvectors of the cluster link-weight matrices,
The third, and final component of the update process is to
update the link-weights. This is done by applying a naive
mean field method to the likelihood function.

3.3.1. Updating the link-weight matrix

Our aim is to explore how the log-likelihood function can
be maximised with respect to the link-weights and the cluster
membership indicators. In this section, we turn our attention
to the first of these. To do this we compute the derivatives
of the expected log-likelihood function with respect to the
elements of the link-weight matrix

0 1 1
oAy Z {Siwsjw Ay(1—4y)  1—4y } ' (14)

(019}
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The matrix of updated link weights A, may be found by
setting the derivatives to zero and solving the equation
0¥ /é’A,-/ = 0. The derivative vanishes when

= o 3 s (s)

weQ

In other words, the link-weight for the pair of nodes (i, j)
is simply the average of the product of individual node clus-
ter memberships over the different perceptual clusters. We
can make the structure of the updated link-weight matrix
clearer if we make use of the vector of membership vari-
ables for the cluster indexed w, i.e. s, = (Slw,Szw,...)T.
With this notation the updated link-weight matrix is 4 =
(1/12]) 3 co Sws,- Hence, the updated link-weight ma-
trix is simply the average of the outer-products of the vec-
tors of cluster membership indicators. We can make the
cluster-structure of the link-weight matrix clearer if we in-
troduce the link-weight matrix Aw= Swsy, for the cluster in-
dexed w. With this notation, we can write the updated link
weight matrix as the sum of contributions from different
clusters, i.e.

A=—SN "4, 16
|Q| > (16)

wEeQ

Finally, we note that the upda{ted link-weight matrix can be
written in the compact form 4 = (1/|Q|)SS™.

3.3.2. Modal sharpening of the link-weight matrix

In practice, the link-weight matrix may be noisy and hence
the cluster structure may be subject to error. In an attempt to
overcome this problem, in this section we turn our attention
to how the updated link-weight matrix may be refined with
a view to improving its block structure. The aim here is to
suppress structure which is not associated with the principal
modes of the matrix.

We commence by focussing in more detail on the signifi-
cance of the update process described in the previous section.
To do this, we return to the expression for the log-likelihood
function. The component of the log-likelihood which de-
pends on the cluster indicators is

PA4,8)=>"> {smsﬂu 1f } (17)

weQ (i,j))EP

We can rewrite this component of the log-likelihood function
using matrix notation as a@(A,S) = Tr[STTS] where S is
the cluster membership matrix defined earlier and 7 is the
|V| x | V| matrix whose elements are given by

Ay

Tj=In 1— 4y,

(18)

Since the trace of a matrix product is invariant under
the cyclic permutation of the matrices, we have that
QS?(A,S ) = Tr[SSTT]. From the previous section of this pa-
per, we know that the matrix SST is related to the updated
link-weight matrix by the equation SST = |Q|4. Hence, we

can write #(4,8) = |Q|Tr[/iT]. As shown by Scott and
Longuet-Higgins [1] in a study of correspondence matching,
this quantity may be maximised by performing an eigende-
composition on the matrix 7 and setting the columns of A
equal to the eigenvectors of 7. It has been shown by Dieci
[25] that the eigenvectors of the matrices 4 and In 4, have
identical directions. This suggests a means by which we
might refine our estimate of the link-weight matrix.

Returning to our analysis, we note that the eigenvector
expansion of the matrix 4 is

14

A= Jhxixi. (19)
-

This matrix may be approximated by the same-sign eigen-
vectors, i.e.

A~ Z Dokl (20)

weQ

We can exploit this property to develop a means of refin-
ing the structure of the updated link-weight matrix, with the
aim of improving its block structure. To commence, let the
rank-one matrix A, = sos). represent the component of the
updated link-weight matrix which results from the cluster
of nodes indexed w. We can write

A=) A, +E, (21)

w€eQ

where E is an error matrix. Since fiw is rank one, it has
only one non-zero eigenvalue ;. Let the eigenvector cor-
responding to this eigenvalue be ¢;,. With this notation, we
can write

weQ

Hence, provided that the error matrix £ is small, then we
can approximate the updated link-weight matrix 4 by the
matrix

Z %(% : (23)

1S Q

Thus, we construct a new link-weight matrix from the
leadmg elgenvectors of the cluster link-weight matrices
/LJ = swsw The eigenvalues and eigenvectors of the new
link-weight matrix are the leading eigenvalues and eigen-
vectors of the individual cluster adjacency matrices. We
refer to this process as modal sharpening. The effect is to
impose a strong block structuring on the link-weight ma-
trix. For each cluster or mode of the link-weight matrix, we
effectively partition the nodes into foreground and back-
ground. The background nodes for each cluster are then
removed from further consideration. This can be viewed as
a form of noise removal.

The modal decomposition of the link-weight matrix also
suggests an initialisation. We assign cluster-membership
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probabilities so that they are close to the eigenmodes of
the raw adjacency matrix. To do this we use the same sign
eigenvectors by setting

i ()

T e, RO e

Since each node is associated with a unique cluster,
this means that the updated affinity matrix is composed
of non-overlapping blocks. Moreover, the link-weights are
guaranteed to be in the interval [0, 1]. Finally, it is impor-
tant to note that the updating of the link-weights is a unique
feature of our algorithm which distinguishes it from the
pairwise clustering methods of Hoffman and Buhmann [19]
and Shi and Malik [4].

3.3.3. Updating cluster membership variables

We can repeat the gradient-based analysis of the
log-likelihood function to develop update equations for
the cluster-membership variables. Recall that we have
relaxed the condition s, € {0,1} so that the cluster
membership indicators s;, instead belong to the interval
[0,1]. As a result, we can compute the derivatives of
the expected log-likelihood function with respect to the
cluster-membership variable

02(4,5)

=D
/(/)
0Sio»

JjeV

(25)

Since the associated saddle-point equations are not tractable
in closed form, we use the soft-assign ansatz of Bridle [26]
to update the cluster membership assignment variables.
This is a form of naive mean field theory [27]. Accord-
ing to mean field theory the cluster memberships should
be updated by replacing them with their expected val-
ues [19]. Rather than performing the detailed expectation
analysis, soft-assign allows the cluster memberships to be
approximated by exponentiating the partial derivatives of
the expected log-likelihood function. The updated cluster
memberships are given by

A exp[&fi(A,S)/@Siw]
ZiEV exp[@f(/l, S)/asiw]

Sio =

_ exp [ZjEV Sjo In 4 j/(1 *Alﬁi)] (26)

Sier exb [Syey sio Indis/(1 = 4y)]

After simplifying the argument of the exponential, the up-
date formula reduces to

Siw = [Tep {4i/(1 = A}
iw ZzeV H,eV {Alj/(l Az,)}?/w .

It is worth pausing to consider the structure of this update
equation. First, the updated link weights are an exponential
function of the current ones. Second, the exponential con-
stant is greater than unity, i.e. there is re-enforcement of the
cluster memberships, provided that 4, ; > %

@7)

We can take the analysis of the cluster membership update
one step further and establish a link with the eigenvectors of
the updated adjacency matrix. To this end we make use of
the matrix 7 defined in Section 3.3.2. We turn our attention
to the argument of the exponential appearing in Eq. (26)
and write

D sl

JEV t,j

=(Ts0)i- (28)

In other words, the argument of the exponential is simply
the ith component of the vector obtained by the matrix mul-
tiplication T's,.

Next, consider the case when the vector s, is an eigenvec-
tor of the matrix 7". The eigenvector equation for the matrix
Tis Tz, = ):(,]g(,,, where /":(,, is the wth eigenvalue and z,, is
the corresponding eigenvector. Hence, when the vector of
cluster memberships s,, is an eigenvector of 7', then we can
write (T'sy)i = zw(i), where z,(7) is the ith component of
the vector z,,. If this is the case, then we can identify the
pairwise clusters with the eigenmodes of 7', and the update
equation becomes

ifﬁ’(i)
= 1Zw (i)’
ZiGV )””)

eXp[/:Lme(l')]
Z[E v exp[)thw(i)]

(29)

Sioy =

where A, =In /. This update process becomes particularly
simple when it is applied to the adjacency matrix obtained
by modal sharpening. Let the elements of matrix 7" be given
by T}, = In(4};/(1 — 4;;)). Since the logarithm of matrix
T is a polynomial in 7 (i.e. a primary matrix function)
[28] and matrix T is positive, definite and invertible, the
directions of the eigenvectors of the matrices 7" and In 7 are
identical [25]. Hence, we can compute the eigenvectors of
T* by the eigenvectors of T'. As a result, the updated cluster
membership variables can be computed directly from the
eigenvectors of the matrix 7™, i.e. the leading eigenvector
qi;w. Thus, we can write

J9ai)
Sio = 72 0 (30)

eV

In this way, by computing the eigenmodes of the matrix 7™,
we can update the individual cluster membership indicators.

3.4. Algorithm description

We use the update steps developed in Sections 3.3.1,3.3.2
and 3.3.3 to develop an iterative grouping algorithm. The
steps of the algorithm are as follows:

Step 0: The algorithm is initialised using the initial link
weight matrix 4. This is computed from raw image data and
is domain specific. Some examples of how this is done are
provided later on in Section 6 for line-segment grouping and
in Section 7 for motion segmentation.
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Step 1: The same-sign eigenvectors are extracted from the
current link-weight matrix 4. These are used to compute the
cluster-membership matrix S using Eq. (30). The number
of same-sign eigenvectors determines the number of clus-
ters for the current iteration. This number may vary from
iteration to iteration. In our experiments, the complexity of
computing the first eigenvector using the power method was
on average 5.8N2, where N is the order of matrix A4.

Step 2: For each cluster we compute the link-weight ma-
trix A, =sqs5. We perform an eigen-decomposition on each
cluster link-weight matrix to extract the non-zero eigenvalue
A and the corresponding eigenvector ¢;,. Since the ma-
trix A,, is rank one since it is defined as the product of two
vectors, the computation of the first eigenvector can be re-
garded for computational purposes as a normalisation of the
vectors s,,. Therefore, the complexity can be reduced to ap-
proximately 3N for each cluster.

Step 3: We perform modal sharpening by applying Eq.
(23) to the leading (i.e. sole non-zero) eigenvalues and the
corresponding eigenvectors of the cluster link-weight matri-
ces /iw. The resulting revised link-weight matrix is 4*. The
complexity of computing matrix 4* is N2.

Step 4: An updated matrix of cluster membership vari-
ables S is computed. This is done by applying Eq. (27) to
the revised link-weight matrix obtained by modal sharpen-
ing, i.e. A", and the current cluster membership matrix S.
Making use of the fact that the denominator of Eq. (26) is

UPDATED CLUSTER-MEMBERSHIP VARIABLES

MODALY SHARPENED LINK-WEIGHT MATRIX 1

INTIAL LINK-WEIGHT MATRIX

1395

the sum of the quantities in the numerator for every Si,, the
complexity of this step can be reduced to approximately SN.

Step 5: The updated cluster membership matrix S is used
to compute the updated link-weight matrix 4 = (1/|Q])SS™.
This revised link-weight matrix is passed to Step 1. The av-
erage complexity of this step in our experiments was 2.4N2.

Steps 1-5 are iterated in sequence until convergence is
reached. In our experiments, the algorithm converged in an
average of 3 iterations, where each iteration had in average
a complexity of 92N> + 8N.

With the algorithm description at hand, we illustrate the
behaviour of the method by showing the evolution of the
cluster-membership variables and the link-weight matrix
over the steps described above. To this end, we have gen-
erated a set of four point-patterns consisting of 190 points
corresponding to two clusters. The first cluster consists of 50
points distributed normally around a fixed centre point. The
second cluster is an annulus consisting of 150 normally dis-
tributed points. For both clusters, the variance of the Gaus-
sian kernel was set to 1.5.

We assign the linking probability between the point in-
dexed i and the point indexed j using the exponential distri-
bution 4;; = exp(—kD,-zj) where D,-zj is the squared Euclidean
distance on the x—y plane and & € (0, c0] is a constant.

We focus our attention on the evolution of the
link-weights and the cluster-membership variables cor-
responding to the first cluster. In the top row of Fig. 1

INITIAL CLUSTER-MEMBERSHIP VARIABLES

UPDATED LINK-WEIGHT MATRIX
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Fig. 1. (a) Example of the point-patterns under study; (b) Initial adjacency matrix (kK = 0.275); (c) Leading eigenvector; (d) The matrix
A*; (e) Updated cluster membership variables; (f) The matrix 4 (see text for details).
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Fig. 2. Clustering results with (a) £ = 0.3 and (b) & = 0.4; (c) fraction of mis-assigned points as a function of k.

we show an example of the point-patterns under study, the
initial affinity matrix 4 and the corresponding leading eigen-
vector. From the affinity matrix, it is clear that there are two
clusters. The strongest cluster is in the bottom right-hand
corner, and corresponds to the cluster of points in the cen-
tre. The weaker cluster is in the top left-hand corner and
corresponds to the annulus of surrounding points. In the
bottom row of Fig. 1 from left-to-right we show the ma-
trix 4™, the updated cluster-membership variables and the
matrix A. There are three important effects of the algo-
rithm steps on the cluster variables. First, the first eigen-
vector of the adjacency matrix 4 presents two well defined
groups of coefficient-values that correspond to the two clus-
ters in the point-pattern. Second, when the matrix 4™ is
computed a strong block structure is imposed by the modal
sharpening step. Finally, the soft-assign step nulls all the
cluster-membership variables that correspond to the ele-
ments in the second cluster (top left-hand corner of A).

Next, we study the effect of varying k in the output of
our clustering algorithm. To perform this study, we have
computed the adjacency matrices of our four point-patterns
varying k from 0.1 to 0.5. In Fig. 2 we show the clustering
results with £ = 0.3,0.4 and the fraction of points that are
mis-assigned by the clustering algorithm. From Fig. 2¢, we
can conclude that the output is stable and reliable over the
[0.25,0.35] interval, with £ = 0.3 as its optimum.

At this point, we pause to stress that although this iter-
ative process clearly has features which are reminiscent of
the EM algorithm, there are important differences. These
mainly stem from our use of the modal sharpening process
to improve the block and cluster structure of the link-weight
matrix. We have recently reported the use of an EM al-
gorithm based on mixtures of Bernoulli distributions. We
will compare the method described in this paper with this
EM algorithm in our experimental evaluation. The algorithm
commences from the initial set of cluster memberships de-
fined by the eigenmodes of the raw affinity matrix A. In the
E or expectation step we compute a matrix of a posteriori
cluster membership probabilities Q. This matrix is found by
taking the expectation of the cluster-membership matrix i.e.
O = E(S). In the M or maximisation step we perform two

updates. First, we compute the updated link-weight matrix
using the formula A=E(SS"). Second, we compute a revised
matrix of cluster-membership indicators S using a variant of
the soft-assign method outlined in Section 3.3. Hence, the
main differences are that the number of clusters is set at the
outset of the algorithm, and that there is no modal sharpen-
ing of the link-weight matrix.

4. Convergence analysis

In this section, we provide some analysis of the conver-
gence properties of the new clustering algorithm. We are
interested in the relationship between this modal analysis
and the updated cluster membership variables. Using the
shorthand in Eq. (18) and substituting in Eq. (14) the update
formulae for the link-weight matrix and the cluster mem-
bership indicators given in Egs. (15) and (29), it is a
straightforward matter to show that the corresponding
updated log-likelihood function is given by

2A4.85)=>" >

Ty . .
Tz (i) 720(J")
wesl(i,j)ep{ Zi’eV A Zﬂev 7%

/IZ;”([HZ‘”(‘/)

-Hn(l—A,-j)}. 31

We would like to understand the conditions under which
the likelihood is maximised by the update process. We hence
compute the partial derivative of Z(4,S) with respect to

Jo. After collecting terms and some algebra we find
0%(4,8)
T’_/_/":fg)(i)ﬂm(.i)

B Z Z S N\ (Zw(i) +zu(j) =2
weQ(i,)ed | Ay <Zi’ey ;i;u(z ))

X =
Z 2o (i)
irey o

Sier Zoli)ig" ’)

(32)
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Since the natural logarithm function is strictly increasing,
the maximum of the likelihood will occur at the same point
as the maximum of the log-likelihood function. Hence, we
set the partial derivative to zero. This condition is satisfied
when

Sver zoli)ig"
Tzo(i’)
Sier 4o
Unfortunately, this condition is not always guaranteed to

exist. However, from Eq. (32) we can conclude that the
following will always be the best approximation:

2
JroWtzo) £ 7 (Z ):Z;,,(z’)) ) (34)

i'ev

Zo(i) + 2u(j) =2 (33)

If 7™ is a non-negative irreducible symmetric matrix then
the coeflicients of the leading eigenvector z, associated with
the eigenvalue )A,(l, =In /”:,,, are each positive [29]. As a result,
the quantity >, ., 7200 will be maximised when A, is
maximum. Hence, #(4,S) will be maximised by the first
(maximum) eigenvalue of 7.

Further, since the matrix 7" is symmetric and non-
negative, the leading eigenvalue of every principal minor
of matrix 7" does not exceed the value of its maximal
eigenvalue [30]. From this monotonicity principle, we can
conclude that the maximal eigenvalue of matrix 7 can be
used for measuring the degree of convergence. To do this, it
is enough to compare the maximal eigenvalue of the matrix
T™ when it is passed on to Step 1 from Step 5 (see algorithm
description). If the leading eigenvalue starts increasing over
iteration number, then convergence has been reached.

5. Line grouping

In this section, we provide the first example application
of our new clustering method. This involves the grouping
or linking of line-segments.

5.1. Initial line-grouping field

We are interested in locating groups of line-segments that
exhibit strong geometric affinity to one-another. In this sec-
tion, we provide details of a probabilistic linking field that
can be used to gauge geometric affinity. This problem has
attracted considerable interest in the literature. For instance,
Heitger and von der Heydt [31] have shown how to model
the line extension field using directional filters whose shapes
are motivated by studies of the visual field of monkeys.
Parent and Zucker [23] use edge co-circularity compatibil-
ity. Williams et al. [32] have taken a different approach
using the stochastic completion field. Here the completion
field of curvilinear features is computed using Monte-Carlo
simulation of particle trajectories between the end-points of
contours.

Here we follow the former approach and to provide an
initial characterisation of the matrix of link-weights using a
grouping field. To be more formal suppose we have a set
of line-segments L = {A;; i =1,...,n}. Consider two lines
A; and A; drawn from this set. Their respective lengths are
l; and [;. Our model of the linking process commences by
constructing the line I';; which connects the closest pair of
endpoints for the two lines. The geometry of this connect-
ing line is represented using the polar angle 6;; of the line
I';; with respect to the base-line A; and its length p;;. We
measure the overall scale of the arrangement of lines using
the length of the shorter line p; ; = min[/;, /;].

The relative length of the gap between the two
line-segments is represented in a scale-invariant manner
using the dimensionless quantity & ; = pi;/pi, ;-

Following Heitger and Von der Heydt [31] we model the
linking process using an elongated polar grouping field. To
establish the degree of geometric affinity between the lines
we interpolate the end-points of the two lines using the polar
lemniscate & ; = k cos” 0.

The value of the constant £ is used to measure the degree
of affinity between the two lines. For each linking line, we
compute the value of the constant & which allows the polar
locus to pass through the pair of endpoints. The value of
this constant is

Pi,j
k= ﬁi,j cos? 6,',]'. (35)
The geometry of the lines and their relationship to the inter-
polating polar lemniscate is illustrated in Fig. 3a. It is impor-
tant to note that the polar angle is defined over the interval
0;; € (—n/2,m/2] and is rotation invariant.

We use the parameter & to model the linking probability
for the pair of line-segments. When the lemniscate envelope
is large, i.e. k is large, then the grouping probability is small.
On the other hand, when the envelope is compact, then the
grouping probability is large. To model this behaviour, we
assign the linking probability using the exponential distri-
bution

A,‘j = exp[ — ﬂk], (36)

where p is a positive constant whose best value has been
found empirically to be unity. As a result, the linking proba-
bility is large when either the relative separation of the end-
points is small i.e. p;; <p;; or the polar angle is close to
zero or 7, i.e. the two lines are colinear or parallel. The link-
ing probability is small when either the relative separation
of the end-points is large i.e. p;; > p;; or the polar angle is
close to m/2, i.e. the two lines are perpendicular.

5.2. Experiments

In this section, we provide some experiments to illustrate
the utility of our new perceptual grouping method when
applied to line-linking. There are two aspects to this study.
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Fig. 3. (a) Geometric meaning of the parameters used to obtain P;;; (b) Plot showing the level curves; (c¢) 3D plot showing P;; on the z-axis.

We commence by providing some examples for synthetic
images. Here we investigate the sensitivity of the method to
clutter and compare it with an eigendecomposition method.
The second aspect of our study focuses on real world images
with known ground-truth.

In our experiments, we provide comparison with three
different algorithms. The first of these is the EM algo-
rithm described in Ref. [24], which uses a mixture of
Bernoulli distributions. This algorithm does not however
use modal decomposition of the link-weight matrix. The
second method is that of Sarkar and Boyer [2], which we
have outlined briefly in Section 3. Thirdly, there is the
normalised cut (recursive bisection) method of Shi and
Malik [4].

5.2.1. Synthetic images

Our first experiment concerns a hexagonal arrangement of
lines to which increasing numbers of randomly distributed
distractors have been added. The positions, orientations and
lengths of the distractors have been drawn from uniform
distributions. The images used in this study are shown in the
first column of Fig. 4. The distractor density increases from
top to bottom in the first column of the figure. From the
arrangement of lines in each panel of the figure, we compute
the link-weight matrix using Eq. (36).

In the second column of the figure, we show the re-
sults obtained using the Sarkar and Boyer method. The
third column shows the result obtained using the standard

EM algorithm. In the fourth column, we show the results
obtained using the normalised cuts method. Finally, the
fifth column shows the results obtained using our new
method.

To display the results of our method we first label the
lines according to the cluster associated with the largest
membership variable. For the line indexed 7, the cluster-label
is 0; = argmax ., Siw. Next, we identify the cluster which
contains the largest number of lines from the hexagonal
pattern. Suppose that the index of this cluster is denoted
by w,. The lines displayed are those belonging to the set
@wp = {0,‘01 = Cl)p}.

There are a number of conclusions that can be drawn from
these examples. First, the quality of the results obtained in-
creases as we move from left-to-right across the figure. In
the case of the Boyer and Sarkar method, little of the dis-
tractor structure is removed. In the case of the EM algorithm
and the normalised cuts method, most of the background is
removed, but a few distractors remain attached to the hexag-
onal pattern of lines.

We have repeated the experiments described above for a
sequence of synthetic images in which the density of dis-
tractors increases. For each image in turn we have computed
the number of distractors merged with the foreground pat-
tern and the number of foreground line-segments which leak
into the background. Figs. 5a and b, respectively, show the
fraction of nodes merged with the foreground and the frac-
tion of nodes which leak into the background as a function



A. Robles-Kelly, E.R. Hancock | Pattern Recognition 37 (2004) 13871405 1399

/\ N
A u A e /
e k.{\(\.‘\\ = | AR qu L -
IS || A N
FEN RSN VRS

| — N f//’ =N ;
/ f / /
w /,/
71 N

Fig. 4. Left-hand column: patterns containing 250, 300 and 350 randomly positioned background lines; each subsequent column shows the
result obtained with the Sarkar and Boyer algorithm (second column), the results when a standard EM algorithm is used (third column),
the cluster memberships obtained using the normalized cut (fourth column) and the cluster-memberships obtained using our new method
(last column) for each of the images shown in the first column.
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Fig. 5. Comparison between the non-iterative eigendecomposition approach and the two variants of the EM-like algorithm.

of the number of distractors. The four curves shown in each Next, we turn our attention to the fraction of foreground
plot are for the non-iterative eigendecomposition method of lines which leak into the background (i.e. those which are
Sarkar and Boyer, the EM algorithm, the Shi and Malik nor- erroneously identified as distractors). From Fig. 5b a sim-
malised cuts method, and for the new method described in ilar pattern emerges to that in Figure 5a. In other words,

this paper. the worst performance is delivered by the Sarkar and Boyer
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Fig. 6. Real-world images: (a) raw image, (b) results of Canny edge detection and (c) the result of applying the eigendecomposition algorithm.

method [2], and the EM algorithm gives intermediate per-
formance. However, now the new method gives a margin
of improvement over the Shi and Malik normalised cuts
method.

Finally, we present results on a real-world image in
Fig. 6. The edges shown in Fig. 6b have been extracted from
the raw image using the Canny edge-detector. Straight-line
segments have been extracted using the method of Yin [33].
The resulting groupings obtained with our new method are
shown in Fig. 6c.

6. Motion segmentation

The second application of our pairwise clustering method
focuses on the segmentation of independently moving ob-
jects from image sequences. The motion vectors used in our
analysis have been computed using a single resolution block
matching algorithm [34]. The method measures the similar-
ity of motion blocks using spatial correlation and uses pre-
dictive search to efficiently compute block-correspondences
in different frames. The block matching algorithm assumes
that the translational motion from frame to frame is con-
stant. The current frame is divided into blocks that will be
compared with the next frame in order to find the displaced
coordinates of the corresponding block within the search
area of the reference frame. Since the computational com-
plexity is much lower than the optical flow equation and
the pel-recursive methods, block matching has been widely
adopted as a standard for video coding and hence it provides
a good starting point.

However, the drawback of the single resolution
block-matching scheme is that while the high resolution
field of motion vectors obtained with small block sizes cap-
tures fine detail, it is susceptible to noise. At low resolution,
i.e. for large block sizes, the field of motion vectors is less
noisy but the fine structure is lost. To strike a compromise
between low-resolution noise suppression and high resolu-
tion recovery of fine detail, there have been several attempts
to develop multi-resolution block matching algorithms.
These methods have provided good predictive performance
and also improvements in speed. However, one of the major

I Block Matching
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I 1 Resolution)
Segmented
Tterative Motion
T Eigendecomposition [
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Fig. 7. Motion segmentation system.

problems with the multi-resolution block matching method
is that random motions can have a significant degradational
effect on the estimated motion field. For these reasons, we
have used a single high-resolution block matching algo-
rithm to estimate the raw motion field. This potentially
noisy information is refined in the motion segmentation
step, where we exploit hierarchical information.

We pose the problem of grouping motion blocks into co-
herent moving objects as that of finding pairwise clusters.
The 2D velocity vectors for the extracted motion blocks
are characterised using a matrix of pairwise similarity
weights. Suppose that A; and A; are the unit motion vectors
for the blocks indexed i and j. The elements of the initial
link-weight matrix are given by

o s+ -n;)  if i #
A7 = ) (37)
0 otherwise.

6.1. Hierarchical motion segmentation

As mentioned earlier, we use a single-level high-
resolution block-matching method to estimate the motion
field. The resulting field of motion vectors is therefore
likely to be noisy. To control the effects of motion-vector
noise, we have developed a multi-resolution extension to
the clustering approach described above.



A. Robles-Kelly, E.R. Hancock | Pattern Recognition 37 (2004) 13871405 1401

)

~- ':

~ - !\‘;"
& < 4 - A8 "

H e © | &

Fig. 8. Top row: ground truth for the 1st, 4th, 8th, 12th and 16th frame of the “Hamburg Taxi” sequence; second row: original frames; third
and fourth rows: low and high resolution motion fields; fifth row: Final motion segmentation obtained using the normalised cut; bottom

row: motion segmentation using our new method.

The adopted approach is as follows:

e We obtain the a high resolution field of motion vectors Uy
using blocks of size k-pixels and a low-resolution motion
field U using blocks of size 2k pixels.

e We apply our clustering algorithm to the low resolution
motion field U;. We note the number of clusters N de-
tected.

e We make a second application of our clustering algorithm
to the high-resolution motion field Uy. Here we select
only the first N, eigenvalues of the motion-vector simi-
larity matrix as cluster centres.

In this way, we successively perform the motion esti-
mation at low and high resolution. The number of clusters
detected at low resolution is used to constrain the number
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Fig. 9. Top row: ground truth for the Ist, 4th, 8th, 12th and 16th frame of the “Trevor White” sequence; second row: original frames; third
and fourth rows: low and high resolution motion fields; fifth row: motion segmentation obtained using the normalised cut; bottom row:
motion segmentation obtained using our new method.
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of permissible high resolution clusters. This allows the
high-resolution clustering process to deal with fine detail
motion fields without succumbing to noise. There is scope
to extend the method and develop a pyramidal segmenta-
tion strategy. The structure of the hierarchical system can
be seen in Fig. 7.

6.2. Motion experiments

We have conducted experiments on motion sequences
with known ground truth. In Fig. 8, we show some re-
sults obtained with five frames of the well-known “Ham-
burg Taxi” sequence. The top row shows the hand-labelled
ground-truth segmentation for the motion sequence. The sec-
ond row shows the corresponding image frames from the
motion sequence. In the third and fourth rows we, respec-
tively, show the low and high resolution block motion vec-
tors. At low resolution we use 16 x 16 pixel blocks to perform
motion correspondence and compute the motion vectors; for
the high resolution motion field the block size is 8 x 8 pix-
els. The fifth row in the figure shows the moving objects
segmented from the motion field using the normalised cut
method. The sixth row shows the motion segmentation ob-
tained using the new method described in this paper. Turn-
ing our attention to the results delivered by our new method
(i.e. the sixth row of the figure) in each frame there are three
clusters which match closely to the ground truth data shown.
In fact, the three different clusters correspond to distinct
moving vehicles in the sequence. These clusters again match
closely to the ground-truth data. The results obtained using
the normalised cut are good, but some of regions are slightly
undersegmented.

Fig. 9 repeats these experiments for the “Trevor White”
sequence. The sequence of rows is the same as in Fig. 3.
Here the block sizes are, respectively, 24 x 24 and 12 x 12
pixels. There are three motion clusters which correspond
to the head, the right arm, and the chest plus left arm.
These clusters again match closely to the ground-truth
data. The normalised cuts method again under-segments
the motion regions when compared with our new
method.

In Table 1 we provide a more quantitative analysis of
these results. The table lists the fraction of the pixels in
each region of the ground truth data which are mis-assigned
by the clustering algorithm. There are different columns
in the table for the normalised cuts method and our new
method. Turning our attention to our new method, the best
results are obtained for the chest-region, the taxi and the
far-left car, where the error rate is a few percent. For the
far-right car and the head of “Trevor White”, the error
rates are about 10%. The problems with the far-right car
probably relate to the fact that it is close to the periph-
ery of the image. The normalised cuts method consistently
gives error rates which are about 2% worse than our new
method.

Table 1
Error percentage for the two image sequences

Sequence Cluster % Error % Error
(Normalised cut) (our approach)
(%) (%)

Trevor White Right arm 7.2 8

Trevor White Chest 7.4 6

Trevor White Head 13.6 12

Ham. Taxi Taxi 6

Ham. Taxi Far Left Car 4 3

Ham. Taxi Far Right Car 14 10

7. Conclusions

In this paper, we have developed a maximum likelihood
framework for pairwise clustering. The method commences
from a specification of the pairwise clustering problem in
terms of a matrix of link-weights and a set of cluster mem-
bership indicators. The likelihood function underpinning our
method is developed under the assumption that the cluster
membership indicators are random variables which are gen-
erated by Bernoulli trials. The parameter of the Bernoulli tri-
als are the link-weights. Based on this model, we develop an
iterative process for updating the link-weights and the cluster
membership indicators in interleaved steps, reminiscent of
the EM algorithm. We show that the log-likelihood function
is maximised by the leading eigenvector of the link-weight
matrix. We apply the resulting pairwise clustering process
to a number of image segmentation and grouping problems.

There are a number of ways in which the work presented
in this paper can be extended and improved. First, we in-
tend to investigate alternatives to the Bernoulli model of the
clustering process. For instance, a different choice of distri-
bution may provide us with a means of locating spanning
trees or relational skeletons in the raw data. Second, our
present method does not facilitate data-closeness between
the final arrangement of clusters and the raw data. In fact
it can be viewed as a type of relaxation process which ap-
plies contiguity constraints to the blacks of the link-weight
matrix. Our future work will therefore focus on developing
a clustering process which minimises the Kullback—Leibler
divergence between the initial matrix of link-weights and
the final arrangement of pairwise clusters.
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