7 research outputs found

    Soundscape Analysis as a Tool for Movie Segmentation

    Get PDF

    CACA-UAN: a context-aware communication approach to efficient and reliable underwater acoustic sensor networks

    Get PDF
    Underwater Acoustic Sensor Networks (UANs) have emerged as a promising technology recently which can be applied in many areas such as military and civil, where the communication between devices is crucial and challenging due to the unique characteristics of underwater acoustic-based environment, such as high latency and low bandwidth. In this paper, context awareness is applied to the design of an underwater communication approach, called Context-Aware Communication Approach for a UAN (CACA-UAN), which aims to improve the overall performance of the underwater communication. According to the results, the proposed CACA-UAN can increase the efficiency and reliability of the underwater communication syste

    Learning Contextualized Music Semantics from Tags via a Siamese Network

    Full text link
    Music information retrieval faces a challenge in modeling contextualized musical concepts formulated by a set of co-occurring tags. In this paper, we investigate the suitability of our recently proposed approach based on a Siamese neural network in fighting off this challenge. By means of tag features and probabilistic topic models, the network captures contextualized semantics from tags via unsupervised learning. This leads to a distributed semantics space and a potential solution to the out of vocabulary problem which has yet to be sufficiently addressed. We explore the nature of the resultant music-based semantics and address computational needs. We conduct experiments on three public music tag collections -namely, CAL500, MagTag5K and Million Song Dataset- and compare our approach to a number of state-of-the-art semantics learning approaches. Comparative results suggest that this approach outperforms previous approaches in terms of semantic priming and music tag completion.Comment: 20 pages. To appear in ACM TIST: Intelligent Music Systems and Application

    Learning Contextualized Semantics from Co-occurring Terms via a Siamese Architecture

    Get PDF
    One of the biggest challenges in Multimedia information retrieval and understanding is to bridge the semantic gap by properly modeling concept semantics in context. The presence of out of vocabulary (OOV) concepts exacerbates this difficulty. To address the semantic gap issues, we formulate a problem on learning contextualized semantics from descriptive terms and propose a novel Siamese architecture to model the contextualized semantics from descriptive terms. By means of pattern aggregation and probabilistic topic models, our Siamese architecture captures contextualized semantics from the co-occurring descriptive terms via unsupervised learning, which leads to a concept embedding space of the terms in context. Furthermore, the co-occurring OOV concepts can be easily represented in the learnt concept embedding space. The main properties of the concept embedding space are demonstrated via visualization. Using various settings in semantic priming, we have carried out a thorough evaluation by comparing our approach to a number of state-of-the-art methods on six annotation corpora in different domains, i.e., MagTag5K, CAL500 and Million Song Dataset in the music domain as well as Corel5K, LabelMe and SUNDatabase in the image domain. Experimental results on semantic priming suggest that our approach outperforms those state-of-the-art methods considerably in various aspects
    corecore