10,150 research outputs found

    A Generative Appearance Model for End-to-end Video Object Segmentation

    Full text link
    One of the fundamental challenges in video object segmentation is to find an effective representation of the target and background appearance. The best performing approaches resort to extensive fine-tuning of a convolutional neural network for this purpose. Besides being prohibitively expensive, this strategy cannot be truly trained end-to-end since the online fine-tuning procedure is not integrated into the offline training of the network. To address these issues, we propose a network architecture that learns a powerful representation of the target and background appearance in a single forward pass. The introduced appearance module learns a probabilistic generative model of target and background feature distributions. Given a new image, it predicts the posterior class probabilities, providing a highly discriminative cue, which is processed in later network modules. Both the learning and prediction stages of our appearance module are fully differentiable, enabling true end-to-end training of the entire segmentation pipeline. Comprehensive experiments demonstrate the effectiveness of the proposed approach on three video object segmentation benchmarks. We close the gap to approaches based on online fine-tuning on DAVIS17, while operating at 15 FPS on a single GPU. Furthermore, our method outperforms all published approaches on the large-scale YouTube-VOS dataset

    High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

    Full text link
    We present a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to low-resolution and still far from realistic. In this work, we generate 2048x1024 visually appealing results with a novel adversarial loss, as well as new multi-scale generator and discriminator architectures. Furthermore, we extend our framework to interactive visual manipulation with two additional features. First, we incorporate object instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object category. Second, we propose a method to generate diverse results given the same input, allowing users to edit the object appearance interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the quality and the resolution of deep image synthesis and editing.Comment: v2: CVPR camera ready, adding more results for edge-to-photo example

    Unsupervised Discovery of Parts, Structure, and Dynamics

    Full text link
    Humans easily recognize object parts and their hierarchical structure by watching how they move; they can then predict how each part moves in the future. In this paper, we propose a novel formulation that simultaneously learns a hierarchical, disentangled object representation and a dynamics model for object parts from unlabeled videos. Our Parts, Structure, and Dynamics (PSD) model learns to, first, recognize the object parts via a layered image representation; second, predict hierarchy via a structural descriptor that composes low-level concepts into a hierarchical structure; and third, model the system dynamics by predicting the future. Experiments on multiple real and synthetic datasets demonstrate that our PSD model works well on all three tasks: segmenting object parts, building their hierarchical structure, and capturing their motion distributions.Comment: ICLR 2019. The first two authors contributed equally to this wor

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201
    • …
    corecore