294 research outputs found

    Generation and Suppression of Decoherence in Artificial Environment for Qubit System

    Get PDF
    It is known that a quantum system with finite degrees of freedom can simulate a composite of a system and an environment if the state of the hypothetical environment is randomized by external manipulation. We show theoretically that any phase decoherence phenomena of a single qubit can be simulated with a two-qubit system and demonstrate experimentally two examples: one is phase decoherence of a single qubit in a transmission line, and the other is that in a quantum memory. We perform NMR experiments employing a two-spin molecule and clearly measure decoherence for both cases. We also prove experimentally that the bang-bang control efficiently suppresses decoherence.Comment: 25 pages, 7 figures; added reference

    Four symmetry classes of plane partitions under one roof

    Get PDF
    In previous paper, the author applied the permanent-determinant method of Kasteleyn and its non-bipartite generalization, the Hafnian-Pfaffian method, to obtain a determinant or a Pfaffian that enumerates each of the ten symmetry classes of plane partitions. After a cosmetic generalization of the Kasteleyn method, we identify the matrices in the four determinantal cases (plain plane partitions, cyclically symmetric plane partitions, transpose-complement plane partitions, and the intersection of the last two types) in the representation theory of sl(2,C). The result is a unified proof of the four enumerations
    corecore