1,094 research outputs found

    Simulation studies for surfaces and materials strength

    Get PDF
    A realistic potential energy function comprising angle dependent terms was employed to describe the potential surface of the N+O2 system. The potential energy parameters were obtained from high level ab-initio results using a nonlinear fitting procedure. It was shown that the potential function is able to reproduce a large number of points on the potential surface with a small rms deviation. A literature survey was conducted to analyze exclusively the status of current small cluster research. This survey turned out to be quite useful in understanding and finding out the existing relationship between theoretical as well as experimental investigative techniques employed by different researchers. Additionally, the importance of the role played by computer simulation in small cluster research, was documented

    A scanning gate microscope for cold atomic gases

    Full text link
    We present a scanning probe microscopy technique for spatially resolving transport in cold atomic gases, in close analogy with scanning gate microscopy in semiconductor physics. The conductance of a quantum point contact connected to two atomic reservoirs is measured in the presence of a tightly focused laser beam acting as a local perturbation that can be precisely positioned in space. By scanning its position and recording the subsequent variations of conductance, we retrieve a high-resolution map of transport through a quantum point contact. We demonstrate a spatial resolution comparable to the extent of the transverse wave function of the atoms inside the channel, and a position sensitivity below 10nm. Our measurements agree well with an analytical model and ab-initio numerical simulations, allowing us to identify a regime in transport where tunneling dominates over thermal effects. Our technique opens new perspectives for the high-resolution observation and manipulation of cold atomic gases.Comment: 5 + 6 pages, 4 + 5 figure

    Bifurcation scenarios, dynamical integrity and control of noncontact atomic force microscopes

    Get PDF
    The research focuses on the description of the global dynamical behavior of a reduced-order model of noncontact Atomic Force Microscope. Different numerical analyses and continuation techniques are carried out to investigate the evolution of the main system periodic solutions and relevant basins of attraction under variations of the most significant system parameters. Local bifurcations, stability boundaries and basin erosion processes around primary and subharmonic resonance regions are studied in presence of both the parametrical horizontal excitation and the external one, and the obtained behavior charts are used not only to compare the results with the literature ones, but also as practical instruments to characterize the operation ranges in terms of the selected parameters. With the same perspective, dynamical integrity concepts, such as detection of basins of attraction, and quantification of their erosion process via integrity measures, are applied to determine acceptable frequency-dependent thresholds associated with a priori safe design targets. Furthermore, an external feedback control is introduced with the aim to take the system response to a selected reference one, thus providing a simple and efficient method to avoid possible unstable motions. Upon checking the effectiveness of the procedure in the weakly nonlinear regime via a perturbation approach, several numerical analyses in the strongly nonlinear regime are accomplished to achieve a description of its dynamical behavior as a function of the newly inserted parameters, and to critically evaluate the effectiveness of the control actuation on the system dynamics, with also a view to the overall response scenario

    Electron Quantum Tunneling Sensors

    Full text link
    Quantum tunneling sensors are typically ultra-sensitive devices which have been specifically designed to convert a stimulus into an electronic signal using the wondrous principles of quantum mechanical tunneling. In the early 1990s, William Kaiser developed one of the first micromachined quantum tunneling sensors as part of his work with the Nasa Jet Propulsion Laboratory. Since then, there have been scattered attempts at utilizing this phenomenon for the development of a variety of physical and chemical sensors. Although these devices demonstrate unique characteristics such as high sensitivity, the principle of quantum tunneling often acts as a double-edged sword and is responsible for certain drawbacks of this sensor family. In this review, we briefly explain the underlying working principles of quantum tunneling and how they are used to design miniaturized quantum tunneling sensors. We then proceed to describe an overview of the various attempts at developing such sensors. Next, we discuss their current need and recent resurgence. Finally, we describe various advantages and shortcomings of these sensors and end this review with an insight into the potential of this technology and prospects.Comment: arXiv admin note: substantial text overlap with arXiv:2006.1279

    Quasi-symmetry-protected topology in a semi-metal

    Get PDF
    The crystal symmetry of a material dictates the type of topological band structure it may host, and therefore, symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call ‘quasi-symmetry’. This is the situation where a Hamiltonian has exact symmetry at a lower order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine tuning as they enforce that sources of large Berry curvature occur at arbitrary chemical potentials. We demonstrate that quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications

    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics

    Get PDF
    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics Masoud Kalantari, PhD Concordia University, 2013 This PhD work presents a new tactile and feedback systems for minimally invasive surgery (MIS)and robotics. The thesis is divided into two major sections: the tactile sensing system, and the graphical display system. In the tactile sensing system, piezoresistive materials are used as measuring elements. The first part of the thesis is focused on the theoretical modeling of piezoresistive sensing elements, which are semiconductive polymer composites. The model predicts the piezoresistive behavior in semiconductive polymer composites, including their creep effect and contact resistance. A single force sensing resistor (FSR) is, then, developed by using the semiconductive polymer composite materials. The developed FSR is used in the structure of a novel tactile sensor as the transduction element. The developed tactile sensor is designed to measure the difference in the hardness degree of soft tissues. This capability of the sensor helps surgeons to distinguish different types of tissues involved in the surgery. The tactile sensor is integrated on the extremity of a surgical tool to provide tactile feedback from the interaction between surgical instruments and the tissue during MIS. Mitral valve annuloplasty repair by MIS is of our particular interest to be considered as a potential target for the use of the developed tactile sensor. In the next step, the contact interaction of the tactile sensor with soft tissues is modelled, parametrically. Viscoelastic interaction is considered between the tactile sensor and atrial tissue in annuloplasty mitral valve repair; and a parametric solution for the viscoelastic contact is achieved. In addition to the developed sensor, a novel idea regarding measuring the indentation rate, in addition to measuring force and displacement is implemented in a new design of an array tactile sensor. It is shown that the indentation-rate measurement is an important factor in distinguishing the hardness degree of tissues with viscoelastic behaviour. The second part of the thesis is focused on the development of a three-dimensional graphical display that provides visual palpation display to any surgeon performing robotic assisted MIS. Two matrices of the developed piezoresistive force sensor are used to palpate the tissue and collect the tactile information. The collected data are processed with a new algorithm and graphically rendered in three dimensions. Consequently, the surgeon can determine the presence, location, and the size of any hidden superficial tumor/artery by grasping the target tissue in a quasi-dynamic way

    Doctor of Philosophy

    Get PDF
    dissertationMany algorithms have been developed for synthesizing shaded images of three dimensional objects modeled by computer. In spite of widely differing approaches the current state of the art algorithms are surprisingly similar with respect to the richness of the scenes they can process. One attribute these algorithms have in common is the use of a conventional passive data base to represent the objects being modeled. This paper postulates and explores the use of an alternative modeling technique which uses procedures to represent the objects being modeled. The properties and structure of such "procedure models" are investigated and an algorithm based on them is presented
    • …
    corecore