8,435 research outputs found

    Comparing the Efficiency of IP and ATM Telephony

    Get PDF
    Circuit switching, suited to providing real-time services due to the low and fixed switching delay, is not cost effective for building integrated services networks bursty data traffic because it is based on static allocation of resources which is not efficient with bursty data traffic. Moreover, since current circuit switching technologies handle flows at rates which are integer multiples of 64 kb/s, low bit rate voice encoding cannot be taken advantage of without aggregating multiple phone calls on a single channel. This work explores the real-time efficiency of IP telephony, i.e. the volume of voice traffic with deterministically guaranteed quality related to the amount of network resources used. IP and ATM are taken into consideration as packet switching technology for carrying compressed voice and it is compared to circuit switching carrying PCM (64 Kb/s) encoded voice. ADPCM32 is the voice encoding scheme used throughout most of the paper. The impact of several network parameters, among which the number of hops traversed by a call, on the real-time efficiency is studie

    A generalized processor sharing approach to flow control in integrated services networks : the single server case

    Get PDF
    Caption title.Includes bibliographical references (p. 47-48).Research supported by a Vinton Hayes Fellowship.Abhay K. Parekh and Robert G. Gallager

    On generalized processor sharing and objective functions: analytical framework

    Get PDF
    Today, telecommunication networks host a wide range of heterogeneous services. Some demand strict delay minima, while others only need a best-effort kind of service. To achieve service differentiation, network traffic is partitioned in several classes which is then transmitted according to a flexible and fair scheduling mechanism. Telecommunication networks can, for instance, use an implementation of Generalized Processor Sharing (GPS) in its internal nodes to supply an adequate Quality of Service to each class. GPS is flexible and fair, but also notoriously hard to study analytically. As a result, one has to resort to simulation or approximation techniques to optimize GPS for some given objective function. In this paper, we set up an analytical framework for two-class discrete-time probabilistic GPS which allows to optimize the scheduling for a generic objective function in terms of the mean unfinished work of both classes without the need for exact results or estimations/approximations for these performance characteristics. This framework is based on results of strict priority scheduling, which can be regarded as a special case of GPS, and some specific unfinished-work properties in two-class GPS. We also apply our framework on a popular type of objective functions, i.e., convex combinations of functions of the mean unfinished work. Lastly, we incorporate the framework in an algorithm to yield a faster and less computation-intensive result for the optimum of an objective function

    Generalized load sharing for packet-switching networks

    Get PDF
    In this paper, we propose a framework to study how to effectively perform load sharing in multipath communication networks. A generalized load sharing (GLS) model has been developed to conceptualize how traffic is split ideally on a set of active paths. A simple traffic splitting algorithm, called weighted fair routing (WFR), has been developed at two different granularity level, namely, the packet level, and the call level, to approximate GLS with the given routing weight vector. The packet-by-packet WFR (PWFR) mimics GLS by transmitting each packet as a whole, whereas the call-by-call WFR (CWFR) imitates GLS so that all packets belonging to a single flow are sent on the same path. We have developed some performance bounds for PWFR and found that PWFR is a deterministically fair traffic splitting algorithm. This attractive property is useful in the provision of service with guaranteed performance when multiple paths can be used simultaneously to transmit packets which belong to the same flow. Our simulation studies, based on a collection of Internet backbone traces, reveal that WFR outperforms two other traffic splitting algorithms, namely, generalized round robin routing (GRR), and probabilistic routing (PRR). These promising results form a basis for designing future adaptive constraint-based multipath routing protocols.published_or_final_versio

    Sample-path large deviations for tandem and priority queues with Gaussian inputs

    Get PDF
    This paper considers Gaussian flows multiplexed in a queueing network. A single node being a useful but often incomplete setting, we examine more advanced models. We focus on a (two-node) tandem queue, fed by a large number of Gaussian inputs. With service rates and buffer sizes at both nodes scaled appropriately, Schilder's sample-path large-deviations theorem can be applied to calculate the asymptotics of the overflow probability of the second queue. More specifically, we derive a lower bound on the exponential decay rate of this overflow probability and present an explicit condition for the lower bound to match the exact decay rate. Examples show that this condition holds for a broad range of frequently used Gaussian inputs. The last part of the paper concentrates on a model for a single node, equipped with a priority scheduling policy. We show that the analysis of the tandem queue directly carries over to this priority queueing system.Comment: Published at http://dx.doi.org/10.1214/105051605000000133 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore