3,019 research outputs found

    A generalized processor mapping technique for array redistribution

    Full text link

    ReSHAPE: A Framework for Dynamic Resizing and Scheduling of Homogeneous Applications in a Parallel Environment

    Get PDF
    Applications in science and engineering often require huge computational resources for solving problems within a reasonable time frame. Parallel supercomputers provide the computational infrastructure for solving such problems. A traditional application scheduler running on a parallel cluster only supports static scheduling where the number of processors allocated to an application remains fixed throughout the lifetime of execution of the job. Due to the unpredictability in job arrival times and varying resource requirements, static scheduling can result in idle system resources thereby decreasing the overall system throughput. In this paper we present a prototype framework called ReSHAPE, which supports dynamic resizing of parallel MPI applications executed on distributed memory platforms. The framework includes a scheduler that supports resizing of applications, an API to enable applications to interact with the scheduler, and a library that makes resizing viable. Applications executed using the ReSHAPE scheduler framework can expand to take advantage of additional free processors or can shrink to accommodate a high priority application, without getting suspended. In our research, we have mainly focused on structured applications that have two-dimensional data arrays distributed across a two-dimensional processor grid. The resize library includes algorithms for processor selection and processor mapping. Experimental results show that the ReSHAPE framework can improve individual job turn-around time and overall system throughput.Comment: 15 pages, 10 figures, 5 tables Submitted to International Conference on Parallel Processing (ICPP'07

    An area-efficient 2-D convolution implementation on FPGA for space applications

    Get PDF
    The 2-D Convolution is an algorithm widely used in image and video processing. Although its computation is simple, its implementation requires a high computational power and an intensive use of memory. Field Programmable Gate Arrays (FPGA) architectures were proposed to accelerate calculations of 2-D Convolution and the use of buffers implemented on FPGAs are used to avoid direct memory access. In this paper we present an implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications. This proposed solution dramatically decreases the area needed keeping good performance, making it appropriate for embedded systems in critical space application

    Beyond bathymetry: Mapping acoustic backscattering from the deep seafloor with Sea Beam

    Get PDF
    In its standard mode of operation, the multibeam echosounder Sea Beam produces high resolution bathymetric contour charts of the seafloor surveyed. However, additional information about the nature of the seafloor can be extracted from the structure of the echo signals received by the system. Such signals have been recorded digitally over a variety of seafloor environments for which independent observations from bottom photographs or sidescan sonars were available. An attempt is made to relate the statistical properties of the bottom‐backscattered sound field to the independently observed geologicalcharacteristics of the seafloor surveyed. Acoustic boundary mapping over flat areas is achieved by following trend changes in the acoustic data both along and across track. Such changes in the acoustics are found to correlate with changes in bottom type or roughness structure. The overall energy level of a partial angular‐dependence function of backscattering appears to depend strongly on bottom type, whereas the shape of the function does not. Clues to the roughness structure of the bottom are obtained by relating the shape of the probability density function of normal‐incidence echo envelopes to the degree of coherence in the backscattered acoustic field

    Dynamic Virtual Page-based Flash Translation Layer with Novel Hot Data Identification and Adaptive Parallelism Management

    Get PDF
    Solid-state disks (SSDs) tend to replace traditional motor-driven hard disks in high-end storage devices in past few decades. However, various inherent features, such as out-of-place update [resorting to garbage collection (GC)] and limited endurance (resorting to wear leveling), need to be reduced to a large extent before that day comes. Both the GC and wear leveling fundamentally depend on hot data identification (HDI). In this paper, we propose a hot data-aware flash translation layer architecture based on a dynamic virtual page (DVPFTL) so as to improve the performance and lifetime of NAND flash devices. First, we develop a generalized dual layer HDI (DL-HDI) framework, which is composed of a cold data pre-classifier and a hot data post-identifier. Those can efficiently follow the frequency and recency of information access. Then, we design an adaptive parallelism manager (APM) to assign the clustered data chunks to distinct resident blocks in the SSD so as to prolong its endurance. Finally, the experimental results from our realized SSD prototype indicate that the DVPFTL scheme has reliably improved the parallelizability and endurance of NAND flash devices with improved GC-costs, compared with related works.Peer reviewe

    Scaling non-regular shared-memory codes by reusing custom loop schedules

    Get PDF
    In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors. The paper presents practical examples from real applications and experiments showing the efficiency of the approach.Peer ReviewedPostprint (author's final draft

    Automatic Data and Computation Mapping for Distributed-Memory Machines.

    Get PDF
    Distributed memory parallel computers offer enormous computation power, scalability and flexibility. However, these machines are difficult to program and this limits their widespread use. An important characteristic of these machines is the difference in the access time for data in local versus non-local memory; non-local memory accesses are much slower than local memory accesses. This is also a characteristic of shared memory machines but to a less degree. Therefore it is essential that as far as possible, the data that needs to be accessed by a processor during the execution of the computation assigned to it reside in its local memory rather than in some other processor\u27s memory. Several research projects have concluded that proper mapping of data is key to realizing the performance potential of distributed memory machines. Current language design efforts such as Fortran D and High Performance Fortran (HPF) are based on this. It is our thesis that for many practical codes, it is possible to derive good mappings through a combination of algorithms and systematic procedures. We view mapping as consisting of wo phases, alignment followed by distribution. For the alignment phase we present three constraint-based methods--one based on a linear programming formulation of the problem; the second formulates the alignment problem as a constrained optimization problem using Lagrange multipliers; the third method uses a heuristic to decide which constraints to leave unsatisfied (based on the penalty of increased communication incurred in doing so) in order to find a mapping. In addressing the distribution phase, we have developed two methods that integrate the placement of computation--loop nests in our case--with the mapping of data. For one distributed dimension, our approach finds the best combination of data and computation mapping that results in low communication overhead; this is done by choosing a loop order that allows message vectorization. In the second method, we introduce the distribution preference graph and the operations on this graph allow us to integrate loop restructuring transformations and data mapping. These techniques produce mappings that have been used in efficient hand-coded implementations of several benchmark codes
    corecore