96 research outputs found

    Semidefinite Relaxations for Stochastic Optimal Control Policies

    Full text link
    Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation have led to the discovery of a formulation of the value function as a linear Partial Differential Equation (PDE) for stochastic nonlinear systems with a mild constraint on their disturbances. This has yielded promising directions for research in the planning and control of nonlinear systems. This work proposes a new method obtaining approximate solutions to these linear stochastic optimal control (SOC) problems. A candidate polynomial with variable coefficients is proposed as the solution to the SOC problem. A Sum of Squares (SOS) relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in Portland, Oregon. 7 pages, colo

    Abstraction in decision-makers with limited information processing capabilities

    Full text link
    A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.Comment: Presented at the NIPS 2013 Workshop on Planning with Information Constraint

    Deep Object-Centric Representations for Generalizable Robot Learning

    Full text link
    Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose a method where general purpose pretrained visual models serve as an object-centric prior for the perception system of a learned policy. We devise an object-level attentional mechanism that can be used to determine relevant objects from a few trajectories or demonstrations, and then immediately incorporate those objects into a learned policy. A task-independent meta-attention locates possible objects in the scene, and a task-specific attention identifies which objects are predictive of the trajectories. The scope of the task-specific attention is easily adjusted by showing demonstrations with distractor objects or with diverse relevant objects. Our results indicate that this approach exhibits good generalization across object instances using very few samples, and can be used to learn a variety of manipulation tasks using reinforcement learning

    Path integral policy improvement with differential dynamic programming

    Get PDF
    Path Integral Policy Improvement with Covariance Matrix Adaptation (PI2-CMA) is a step-based model free reinforcement learning approach that combines statistical estimation techniques with fundamental results from Stochastic Optimal Control. Basically, a policy distribution is improved iteratively using reward weighted averaging of the corresponding rollouts. It was assumed that PI2-CMA somehow exploited gradient information that was contained by the reward weighted statistics. To our knowledge we are the first to expose the principle of this gradient extraction rigorously. Our findings reveal that PI2-CMA essentially obtains gradient information similar to the forward and backward passes in the Differential Dynamic Programming (DDP) method. It is then straightforward to extend the analogy with DDP by introducing a feedback term in the policy update. This suggests a novel algorithm which we coin Path Integral Policy Improvement with Differential Dynamic Programming (PI2-DDP). The resulting algorithm is similar to the previously proposed Sampled Differential Dynamic Programming (SaDDP) but we derive the method independently as a generalization of the framework of PI2-CMA. Our derivations suggest to implement some small variations to SaDDP so to increase performance. We validated our claims on a robot trajectory learning task

    Universal Convexification via Risk-Aversion

    Full text link
    We develop a framework for convexifying a fairly general class of optimization problems. Under additional assumptions, we analyze the suboptimality of the solution to the convexified problem relative to the original nonconvex problem and prove additive approximation guarantees. We then develop algorithms based on stochastic gradient methods to solve the resulting optimization problems and show bounds on convergence rates. %We show a simple application of this framework to supervised learning, where one can perform integration explicitly and can use standard (non-stochastic) optimization algorithms with better convergence guarantees. We then extend this framework to apply to a general class of discrete-time dynamical systems. In this context, our convexification approach falls under the well-studied paradigm of risk-sensitive Markov Decision Processes. We derive the first known model-based and model-free policy gradient optimization algorithms with guaranteed convergence to the optimal solution. Finally, we present numerical results validating our formulation in different applications

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201
    • …
    corecore