45,663 research outputs found

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Neural Pattern Recognition on Multichannel Input Representation

    Full text link
    This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.Sharp Corporation, Information Techology Research Laboratories, Nara, Japa

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Birth of a Learning Law

    Full text link
    Defense Advanced Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657, N00014-92-J-1309

    Application of parallel distributed processing to space based systems

    Get PDF
    The concept of using Parallel Distributed Processing (PDP) to enhance automated experiment monitoring and control is explored. Recent very large scale integration (VLSI) advances have made such applications an achievable goal. The PDP machine has demonstrated the ability to automatically organize stored information, handle unfamiliar and contradictory input data and perform the actions necessary. The PDP machine has demonstrated that it can perform inference and knowledge operations with greater speed and flexibility and at lower cost than traditional architectures. In applications where the rule set governing an expert system's decisions is difficult to formulate, PDP can be used to extract rules by associating the information an expert receives with the actions taken

    Presynaptic modulation as fast synaptic switching: state-dependent modulation of task performance

    Full text link
    Neuromodulatory receptors in presynaptic position have the ability to suppress synaptic transmission for seconds to minutes when fully engaged. This effectively alters the synaptic strength of a connection. Much work on neuromodulation has rested on the assumption that these effects are uniform at every neuron. However, there is considerable evidence to suggest that presynaptic regulation may be in effect synapse-specific. This would define a second "weight modulation" matrix, which reflects presynaptic receptor efficacy at a given site. Here we explore functional consequences of this hypothesis. By analyzing and comparing the weight matrices of networks trained on different aspects of a task, we identify the potential for a low complexity "modulation matrix", which allows to switch between differently trained subtasks while retaining general performance characteristics for the task. This means that a given network can adapt itself to different task demands by regulating its release of neuromodulators. Specifically, we suggest that (a) a network can provide optimized responses for related classification tasks without the need to train entirely separate networks and (b) a network can blend a "memory mode" which aims at reproducing memorized patterns and a "novelty mode" which aims to facilitate classification of new patterns. We relate this work to the known effects of neuromodulators on brain-state dependent processing.Comment: 6 pages, 13 figure

    Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks

    Full text link
    The propagation of sound in a shallow water environment is characterized by boundary reflections from the sea surface and sea floor. These reflections result in multiple (indirect) sound propagation paths, which can degrade the performance of passive sound source localization methods. This paper proposes the use of convolutional neural networks (CNNs) for the localization of sources of broadband acoustic radiated noise (such as motor vessels) in shallow water multipath environments. It is shown that CNNs operating on cepstrogram and generalized cross-correlogram inputs are able to more reliably estimate the instantaneous range and bearing of transiting motor vessels when the source localization performance of conventional passive ranging methods is degraded. The ensuing improvement in source localization performance is demonstrated using real data collected during an at-sea experiment.Comment: 5 pages, 5 figures, Final draft of paper submitted to 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 15-20 April 2018 in Calgary, Alberta, Canada. arXiv admin note: text overlap with arXiv:1612.0350
    corecore