
N88-16393

Application of Parallel Distributed Processing
to Space Based Systems

J.R. MacDonald, H.L. Heffeffinger

TRW, Huntsville Operations

213 Wynn Drive

Huntsville, Alabama 35807

Abstract

This paper explores the concept of using Parallel Distributed Processing (PDP) to en-

hance automated experiment monitoring and control. Recent VLSI advances have made

such applications an achievable goal. The PDP machine has demonstrated the ability to

automatically organize stored information, handle unfamiliar and contradictory input data

and perform the actions necessary. The PDP machine has demonstrated that it can per-

form inference and "knowledge operations" with greater speed and flexibility and at lower

cost than traditional architectures. Current automated process and control algorithms use

knowledge and inference mechanisms to solve problems which would ordinarily require the

expertise of the best human practitioners. In applications in which the rule set governing an

expert system's decisions is difficult to formulate, PDP can be used to extract rules by as-

sociating the information an expert receives with the actions taken. There are many

potential applications for very large scale hardware parallelism in the execution of space

based process monitor and control systems.

Introduction

The practical possibilities of large scale parallel machines have been significantly en-

hanced by recent technological advances in VI_SI research and production. Relatively low

cost and easy access to VLSI hardware has enabled researchers to more closely examine

parallel processing problems in general, and the application of neural nets to real world

problems. The application of knowledge based systems to on-line, real-time environments

such as automated experiment monitoring and control typically demands large complex sys-

tems reasoning. Control of these experiment systems stresses the current space based

PRECEDING PAGE BLANK NOT FILMED 171 % C-

https://ntrs.nasa.gov/search.jsp?R=19880007011 2020-03-20T07:46:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


computer environments well beyond current technology. Size, reliability, and response

time constraints of the space environment quickly overload conventional von-Neumann

machine knowledge applications. However, the fine grained parallelism made possible by

PDP technology has provided an alternative route to space based process monitor and con-
trol.

PDP networks are a concept of knowledge representation that consists of a number of
processing elements interconnected in a weighted, user-specified fashion. The interconnec-

tion weights between the processor nodes are analogous to the memory of a conventional

system. Each processing element calculates an output value based on the weighted sum of

its inputs. A training rule is used to correlate the input data with the output or desired out-
put (specified by an instructive agent) and adjust the interconnection weights. In this way

the network is able to learn patterns or imitate rules of behavior. It is this ability to define

and control decision making that would make this sort of system well suited to support

space based processing problems. The division of the processing demands among proces-

sors makes it possible to achieve linear performance improvements for space based

processing applications. This paper will explore PDP network techniques in the application
of massively parallel primitive processors to achieve very high speed, fault tolerant, low cost

support for the types of problems associated with controlling experiments in a space based
environment.

Space Based PDP Architecture

PDP network technology is a concept of computational processing based upon highly

interconnected low level processing units. PDP technology seeks to develop and enhance

processing capabilities in areas such as real-time high-performance pattern recognition,

knowledge processing for inexact knowledge domains, and fast, precise control of VLSI

simulation. The aims of this technology are, therefore, clearly related to those of Artificial

Intelligence (AI). Over 30 years of research has provided broad processing requirements

for pattern recognition, knowledge processing, and simulation of processes. PDP machine

research has been directed toward finding solutions to these difficult computing problems.

The PDP architecture is the formal specification of a particular network or bulk sys-
tem configuration (i.e., the equations of the dynamical system that defines the PDP). This

architecture is analogous to a mathematical algorithm or logical procedure being coded and
run on a wide variety of computer hardware. The word implementation is reserved for use

in describing the engineering process of developing an appropriate PDP architecture and

selecting suitable implementation hardware for the specific application.

172



The PDP conceptual processing abilities are based upon an array of highly intercon-

nected Processing Units (PU)[1,3]. Figure 1 shows a schematic diagram of a PDP network

and an individual PU. The network is make up of input units, hidden units, and output

units. The hidden units are used to extract progressively more complex features from the

input units. This allows more complex tasks to be learned. Note that each PU receives

several input signals and has a single output that fans out as input signals to other PUs.

Each PU assigns a weight to each input they receive. The sum of the weighted signals deter-

mine whether a receiving PU will itself output a signal. Thus this process continues through

the PDP machine. The processing cascades through many iterations and the output could

be a binary answer to a question or a complicated signal to be transmitted across an exter-

nal interface. The weights are determined by tuning the system until it consistently

produces the right output based upon the system inputs. A typical processing element
operation might be:

I inputs J._ Interconnection I_,_ TransferWeights Function

t l=
I

The PDP adjusts itself by way of feedback control systems that combine stimuli and

feedback from the responses to adjust the weights so as to get increasingly correct respon-

ses. It is these adaptable, programmable connections that makes the PDP machine special.

The PDP machine was initiated in the belief that coupling parallel processing and artificial

intelligence could accelerate the rate of progress toward machines that could "learn" and

make predictable, weighted decisions within the confines of their knowledge base. The

PDP machine encodes knowledge in the connection of its processing units. Each set of con-

nections represents a pattern of values for a few features. Together the features describe

environmental states, that is, values that occur in the system's environment. The strengths

of the connections encode the frequencies with which each of the different patterns occur

in the environment. Thus, the interconnections are used to represent events in the environ-

ment. The design goal of a PDP machine for a space based environment should be guided
by the following goals:

° Effective use of massively parallel processing.

° Flexibility of interaction with different sensors, actuators, and interfaces.

• Distributed parallel decision-making capabilities.

• Flexibility and ease of expansion of the system capabilities.

• Graceful integration of specific experiment control plans.

173



PDP Machine

Weights_
0 0 0

Inter-
connections

0 0 0 0
¼ ',t, ¼ ¼

Output

Input Units

HiddenUnits

Output
Units

UNIT

W = interconnection weight
= threshold

Transfer function - a sigmoid:

Output = 1/{1 + exp(threshold-Surn[w inputs])}

Learning rule:

W <= w + f'(output)[Desired output-output]

FIGURE 1. Schmatlc diagram of a PDP Network

A key approach in the PDP architecture is the use of an adaptive filter. The adaptive

filter can accept a real-world analog input and compare it to a stored pattern. The stored

pattern represents the desired input level which can then be modified as necessary so that

echo-free signals can be produced the correct results. A more abstract argument driving

the design of the PDP network is machine efficiency, that is, the optimal utilization of the

total computer circuitry. In the more familiar structure of a modern computer (the von

Neumann architecture) most of the computer's circuitry in the memory is not in active use

most of the time. This is very wasteful from a pure resource management standpoint. The

PDP machine addresses this problem by using many processors and memories, but does so

174



on a much grander scale than most. The parallelism in the PDP machine is extremely fine-

grained; it is essentially "data-level parallelism." The fine-grain division of labor and the

high speed allows the accomplishment of tasks traditionally outside the operation capacity

of conventional systems, among which are constraint search, pattern recognition, and so

forth. Even though it fits quite neatly into the definition of an parallel processor system

design, the PDP machine goes well beyond most machines in this category in the flexibility

of its structure and its amenability to various problem types.

Command and control of typical space based experiments involves both telemetry and

status monitoring and the generation of command messages. These tasks are typically car-

ried out in conventional (sequential) computer systems. As systems and environments

become more complex, distributed systems become increasingly attractive as well as neces-

sary to achieve higher throughput for a given level of computational power and higher

overall system availability. As knowledge-based systems grow in size and scope, they push

conventional computing systems to their limits of operation. For space-based experiment

control systems, response from a conventional implementation of an expert system may not

be practical. Significant performance increases in process monitor and control systems ap-

plications could be realized through distributed processing or the use of specialized

massively parallel hardware.

Typical space systems computer operations involve monitoring and control processes

such as system initialization and shutdown and power system control. Although the perfor-

mance of tasks such as sensor monitoring, particularly exception monitoring, is often

automated, the corrective action - the reaction to anomalies - is typically done by on-board

personnel. The exponential increase in system complexity and processing speeds in dis-

tributed processing systems pose a serious problem for meaningful, effective human

interface as well as timely, effective corrective action. When these factors are coupled with

non-linear increases in costs, safety considerations, and longer mission durations, they

provide a significant incentive for improved knowledge based system processing concepts

and applications. The demands of the space based environment, that is, the real time

processing of experiment feed-back and other sensor based data, suggest the necessity for

efficient handling of data and telemetry in the event of environment degradation, or sensor

failure. The process and control system will need to respond to anomalous events that will

be both instantaneous, non-specific, and dependent upon current machine state. The space

based processing system must be effective and reliable in its response to both nominal and
anomalous events.

A PDP network implementation of an expert system as shown in Figure 2 is well suited

for the space based environment. An expert system is designed to explore and symbolically

manipulate problems. Expert systems can be distinguished from other artificial intelligence

systems in that by design they bring large amounts of knowledge to bear in problem solving.

There are two general ways to define an expert systems. One way is by problem domain or

175



competency. An expert system is a computer system which uses domain-specific knowledge

as well as inference procedures to solve problems. The specific problems involved are suffi-

ciently difficult to require significant human expertise in the weighing and evaluation of

data. Restated, an expert system operates in a complex domain and is competent at the

level of a human expert.

Experiment Application

__._ El_tronicPreprocesssor

m

e-

E

v

l.U

0 0 0 0 0 0

0 0 0 0 0 0

0

3

Figure 2. Space Based PDP Expert System

Another way of defining an expert system is by its structure. An expert system consists

basically of a knowledge base and a control structure. The knowledge base contains facts

about the domain. It also employs heuristics and rules of behavior. The control structure

determines the direction of problem solving. In general, control structures provide for goal

directed problem solving (solving a problem to reach a certain goal) or data directed

problem solving (problem solving that makes use and sense of data available from the

domain environment). A related structural aspect of expert systems is a working memory in

which interim problem solving steps and other information may be temporarily stored while

they are being used in working toward a solution. This structural definition of an expert sys-

tem is clearly related to PDP networks functional capabilities.

Typical applications of expert modules are in the control and operation of sensors and

actuators, interpretation of sensory and feedback data, devising strategies to accomplish

proposed tasks and the execution of these strategies. A goal might be to operate complex

176



space based experiments independent of human intervention for significant periods of time.

If this be the case, the long term space based systems goal is to define control mechanisms

that will enable integrated experiments to detect error conditions in its working environ-

ment and either perform or provide corrective actions. Such systems must be able to

interpret and integrate qualitatively different, sometimes incomplete, and sometimes con-

flicting sensory information. In other words, it must construct an internal model of the real

world environment in which the experiment will operate. A general problem-solving tech-

nique must be employed. However, specific real-time information must also be integrated

in the execution of plans to solve a given task. It must be a control system which is respon-

sible for and capable of independent control execution through parallel and coordinated

control of multiple sensors and actuators.

The system must evaluate the outputs from sensors and update the state of the experi-

ment actuators according to the rules established by the principle investigator. Various

rules are said to "fire" based on input. An example of a rule for an Earth-bound experiment

environment might be" If temperature greater than 150 degrees then power up fan". The

integrated computer system is in a constant state of sensing and updating the state of an ex-

periment. A simple experiment environment might involve 1000 such rules. Because of

memory requirements and execution speed, even this relatively small knowledge base

would involve significant overhead in a conventional von-Neumann machine and could

quickly overload the system. The PDP machine offers another method of implementation

of constraint based rules. This alternative provides the speed necessary to respond to the

space based system needs.

PDP Knowledge Acquisition Paradigm

In the preceding sections we have discussed a parallel processing architecture and its

ability to build a knowledge base - to "learn." This learning process is, of course, a complex

and controversial problem. Learning algorithms have been proposed as a way to program

massively parallel processors [1,2,3,4,5]. Experiment control system programs using ap-

propriate learning algorithms can be automatically decomposed into small sub-tasks. It is

these sub-tasks that provide an opportunity to distribute processing across parallel process-

ing units, which translates into the connections of a PDP machine.

The PDP machine assigns a weight to each input it receives; the sum of the weighted

signals determines whether a receiving PU will itself fire a pulse, which in turn triggers

other PU's. This process cascades through many iterations, and the result, is the output.

The PDP machine consist of a number of PU's interconnected in a weighted, user-specified

fashion. Each PU calculates an output value based on the weighted sum of its inputs. To

program the PDP machine, the input data is correlated with the output or desired output

177



using a learning rule that will adjust the interconnection weights. In this way the machine

learns patterns or imitates rules of behavior and decision making the allows the PDP

machine to support space based processing. PDP model as presented in Figure 1 typically

consists of many simple processing units that interact using weighted connections. Each

unit has a "state" or "activity level", that is determined by the input received from other units

in the network. The threshold term can be eliminated by giving every unit an extra input

connection whose activity level is fixed. The weight on this special connection is the nega-

tive of the threshold, and it can be learned in just the same way as other weights.

The particular PDP machine architecture discussed here is a variation of the Rummel-

hart et. al. [3] multi-layer perceptron employing the generalized delta rule (GDR). The

GDR provides a method of modifying any weight in a network, based on locally available in-

formation, so as to implement a gradient descent process that searches for those weights

that minimize the error at the output units. The PDP system can learn to associate ar-

bitrary input/output pairs by use of the generalized delta rule. Using this the rule, neural

networks can learn to compute arbitrary input/output functions. The mathematics of this

learning approach can answer many questions about the weight, adjustment, and summa-

tion of the intercormection weights. It can also provide some insight into noise sensitivity,

feedback, and system layering. The GDR learning procedure is a generalization of the

delta rule procedure that works for networks which have layers of hidden units between the

input and output units. Multilayer networks can compute more complicated functions than

networks that lack hidden units. However the price that must be paid is a slower learning

process as the system explores the possible ways of using the hidden units.

The application of the generalized delta rule as presented in Figure 3 involves two

phases. First the input is presented and propagated forward through the network to com-

pute the output value for each unit. This output is then compared with the targets, resulting

in an error signal for each output unit. The second phase involves a backward pass through

the network during which the error signal is passed to each unit in the network and the ap-

propriate weight changes are made. This second, backward pass allows the recursive

computation of the error signal as indicated above. The first step is to compute the error

signal for the output units and all of the hidden units. Notice that computation performed

during the backward pass is very similar in form to the computation performed during the

forward pass (though it propagates error derivatives instead of activity levels, and it is en-

tirely linear in the error derivatives). The GDR generates a gradient descent method for

finding weights in any feed-forward network with semilinear units. The learning procedure

involves the presentation of a set of pairs of input and output patterns. The system first

uses the input vector to produce its own output vector. Then this is compared to the

desired output, or target vector. If there is no difference, no learning takes place. If any dif-

ference exists, the weights are changed to reduce the difference.

178



Generalized

Delta Rule

In }ut

Forward Propagation _1'To Calculate Output

7\
000000

Backward

Output

Propagation
To Correct Future Output

Correction = constant • (Desired Output-Output)

Figure 3. PDP Learning Procedure

When weight change increments are sufficiently small, this learning procedure is

guaranteed to find the set of weights that gives the least mean squared error, qlae delta rule

essentially implements gradient descent in sum-squared error for linear activation func-

tions. The central idea of the generalized delta rule is that these derivatives can be

computed efficiently by starting with the output layer and working backwards through the

layers. The weight on each line should be changed by an amount proportional to the

product of an error signal available to the unit receiving input along that line and the output

unit sending activation along that line.

From the above learning methodology we see that the PUs in a PDP machine are

trained by the cyclic input and output of data vectors. In this way a computer operating in

the batch mode can be very effective in training the system. However there is a clear need

to provide a real-time interface with a human in order to effect more particular training [5].

The iterative process through which a PDP machine learns is not suited for human interac-
tion. Therefore there is a clear need to both enhance the man-machine interface and

develop more efficient data/response patterns in a PDP architecture.

179



Conclusion

System designs based on the traditional von Neumann approach will be considerably
slower than a systems based on the PDP machine simply because of the limited bandwidth

of the memory-processor connection. These traditional systems cannot match the flexibility

in function that the software-programmable connections, which are the hallmark of the

PDP machine, allow. Networks of larger processors, the MIMD concept, can possibly out-

perform a PDP machine on computation-intensive problems; however, in

constraint-intensive applications, they suffer from the same problem as the von Neumann

designs. Traditional SIMD machines, such as systolic and pipeline machines, suffer from

the problem of requiring a particular structure to solve a problem. Again, this problem is

overcome by the flexibility of the PDP machine's communication network.

PDP machines employing fine grained parallelism consist of a number of processing

elements interconnected in a weighted, user specified fashion. The interconnection weights

act as memory for the system. Each processing element calculates an output value based on
the weighted sums of its inputs. In addition, the input data is correlated with the output (or

desired output) through use of a training rule that adjusts the interconnection weights. In

this way, the network learns patterns or imitates rules of behavior and decision making.

Process information is not obtained by passing through a normal process and control algo-

rithm, but is provided by the interconnection structure of the network itself. It is our belief

that PDP machines can in fact support high-speed execution of a very large class of space
based process monitor and control systems. The number of processing elements in the in-

terconnection network of a PDP machine makes overall network reliability and fault

tolerance a key consideration in space based systems. Computer systems employing fine

grained parallelism can provide an approach to a number of long standing problems involv-
ing space based experiment applications.

References

1) Hitton, G.E. (1987). Connectionist Learning Procedures. (Tech. Rep. No. CMU-CS-87-

155). Pittsburgh, PA: Carnegie-Mellon University, Department of Computer Science.

2) Hopfield, J.J., Tank, D.W. (1985) "Neural' computation of decisions in optimization

problems. Biological Cybernetics, 52, 141-152.

3) Rumelhart, D.E., McClelland, J.L., et. al. (1986). Parallel Distributed Processing.

Cambridge, MA: MIT Press/Bradford.

4) Sejnowski, T.J., Rosenberg, C.R. (1986). NETtalk.'A Parallel Network that learns to Read

Aloud. (Tech. Rep. No. JHU/EECS-86/01). Baltimore, MD: John Hopkins University.

5) Shepanski, J.F., Macy, S.A. (1986). Manual Training Techniques of Autonomous Systems

Based on Artificial Neural Networks. Redondo Beach, CA: TRW, Unpublished manuscript.

180




