27 research outputs found

    Algebraic Codes For Error Correction In Digital Communication Systems

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 29.11.2016 by CS (TIS).Metadata merged with duplicate record (http://hdl.handle.net/10026.1/899) on 20.12.2016 by CS (TIS).C. Shannon presented theoretical conditions under which communication was possible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was introduced by R. Hamming. Algebraic codes, codes described using powerful tools from algebra took to the fore early on in the search for good error correcting codes. Many classes of algebraic codes now exist and are known to have the best properties of any known classes of codes. An error correcting code can be described by three of its most important properties length, dimension and minimum distance. Given codes with the same length and dimension, one with the largest minimum distance will provide better error correction. As a result the research focuses on finding improved codes with better minimum distances than any known codes. Algebraic geometry codes are obtained from curves. They are a culmination of years of research into algebraic codes and generalise most known algebraic codes. Additionally they have exceptional distance properties as their lengths become arbitrarily large. Algebraic geometry codes are studied in great detail with special attention given to their construction and decoding. The practical performance of these codes is evaluated and compared with previously known codes in different communication channels. Furthermore many new codes that have better minimum distance to the best known codes with the same length and dimension are presented from a generalised construction of algebraic geometry codes. Goppa codes are also an important class of algebraic codes. A construction of binary extended Goppa codes is generalised to codes with nonbinary alphabets and as a result many new codes are found. This construction is shown as an efficient way to extend another well known class of algebraic codes, BCH codes. A generic method of shortening codes whilst increasing the minimum distance is generalised. An analysis of this method reveals a close relationship with methods of extending codes. Some new codes from Goppa codes are found by exploiting this relationship. Finally an extension method for BCH codes is presented and this method is shown be as good as a well known method of extension in certain cases

    Steane-Enlargement of Quantum Codes from the Hermitian Curve

    Get PDF
    In this paper, we study the construction of quantum codes by applying Steane-enlargement to codes from the Hermitian curve. We cover Steane-enlargement of both usual one-point Hermitian codes and of order bound improved Hermitian codes. In particular, the paper contains two constructions of quantum codes whose parameters are described by explicit formulae, and we show that these codes compare favourably to existing, comparable constructions in the literature.Comment: 11 page

    Quantum Codes and Multiparty Computation:A Coding Theoretic Approach

    Get PDF

    On nested code pairs from the Hermitian curve

    Full text link
    Nested code pairs play a crucial role in the construction of ramp secret sharing schemes [Kurihara et al. 2012] and in the CSS construction of quantum codes [Ketkar et al. 2006]. The important parameters are (1) the codimension, (2) the relative minimum distance of the codes, and (3) the relative minimum distance of the dual set of codes. Given values for two of them, one aims at finding a set of nested codes having parameters with these values and with the remaining parameter being as large as possible. In this work we study nested codes from the Hermitian curve. For not too small codimension, we present improved constructions and provide closed formula estimates on their performance. For small codimension we show how to choose pairs of one-point algebraic geometric codes in such a way that one of the relative minimum distances is larger than the corresponding non-relative minimum distance.Comment: 28 page

    The Extended Codes of Some Linear Codes

    Full text link
    The classical way of extending an [n,k,d][n, k, d] linear code \C is to add an overall parity-check coordinate to each codeword of the linear code \C. This extended code, denoted by \overline{\C}(-\bone) and called the standardly extended code of \C, is a linear code with parameters [n+1,k,dĖ‰][n+1, k, \bar{d}], where dĖ‰=d\bar{d}=d or dĖ‰=d+1\bar{d}=d+1. This is one of the two extending techniques for linear codes in the literature. The standardly extended codes of some families of binary linear codes have been studied to some extent. However, not much is known about the standardly extended codes of nonbinary codes. For example, the minimum distances of the standardly extended codes of the nonbinary Hamming codes remain open for over 70 years. The first objective of this paper is to introduce the nonstandardly extended codes of a linear code and develop some general theory for this type of extended linear codes. The second objective is to study this type of extended codes of a number of families of linear codes, including cyclic codes and nonbinary Hamming codes. Four families of distance-optimal or dimension-optimal linear codes are obtained with this extending technique. The parameters of certain extended codes of many families of linear codes are settled in this paper

    Polynomial time attack on high rate random alternant codes

    Full text link
    A long standing open question is whether the distinguisher of high rate alternant codes or Goppa codes \cite{FGOPT11} can be turned into an algorithm recovering the algebraic structure of such codes from the mere knowledge of an arbitrary generator matrix of it. This would allow to break the McEliece scheme as soon as the code rate is large enough and would break all instances of the CFS signature scheme. We give for the first time a positive answer for this problem when the code is {\em a generic alternant code} and when the code field size qq is small : qāˆˆ{2,3}q \in \{2,3\} and for {\em all} regime of other parameters for which the aforementioned distinguisher works. This breakthrough has been obtained by two different ingredients : (i) a way of using code shortening and the component-wise product of codes to derive from the original alternant code a sequence of alternant codes of decreasing degree up to getting an alternant code of degree 33 (with a multiplier and support related to those of the original alternant code); (ii) an original Gr\"obner basis approach which takes into account the non standard constraints on the multiplier and support of an alternant code which recovers in polynomial time the relevant algebraic structure of an alternant code of degree 33 from the mere knowledge of a basis for it

    Covering codes, perfect codes, and codes from algebraic curves

    Get PDF
    corecore