101 research outputs found

    On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

    Get PDF
    With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other

    Embedding distortion analysis in wavelet-domain watermarking

    Get PDF
    Imperceptibility and robustness are two complementary fundamental requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility, but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host images. This article analyses the embedding distortion for wavelet-based watermarking schemes. We derive the relationship between distortion, measured in mean square error (MSE), and the watermark embedding modification and propose the linear proportionality between MSE and the sum of energy of the selected wavelet coefficients for watermark embedding modification. The initial proposition assumes the orthonormality of discrete wavelet transform. It is further extended for non-orthonormal wavelet kernels using a weighting parameter that follows the energy conservation theorems in wavelet frames. The proposed analysis is verified by experimental results for both non-blind and blind watermarking schemes. Such a model is useful to find the optimum input parameters, including the wavelet kernel, coefficient selection, and subband choices for wavelet domain image watermarking

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking

    Visual attention-based image watermarking

    Get PDF
    Imperceptibility and robustness are two complementary but fundamental requirements of any watermarking algorithm. Low strength watermarking yields high imperceptibility but exhibits poor robustness. High strength watermarking schemes achieve good robustness but often infuse distortions resulting in poor visual quality in host media. If distortion due to high strength watermarking can avoid visually attentive regions, such distortions are unlikely to be noticeable to any viewer. In this paper, we exploit this concept and propose a novel visual attention-based highly robust image watermarking methodology by embedding lower and higher strength watermarks in visually salient and non-salient regions, respectively. A new low complexity wavelet domain visual attention model is proposed that allows us to design new robust watermarking algorithms. The proposed new saliency model outperforms the state-of-the-art method in joint saliency detection and low computational complexity performances. In evaluating watermarking performances, the proposed blind and non-blind algorithms exhibit increased robustness to various natural image processing and filtering attacks with minimal or no effect on image quality, as verified by both subjective and objective visual quality evaluation. Up to 25% and 40% improvement against JPEG2000 compression and common filtering attacks, respectively, are reported against the existing algorithms that do not use a visual attention model

    Graph spectral domain blind watermarking

    Get PDF
    This paper proposes the first ever graph spectral domain blind watermarking algorithm. We explore the recently developed graph signal processing for spread-spectrum watermarking to authenticate the data recorded on non-Cartesian grids, such as sensor data, 3D point clouds, Lidar scans and mesh data. The choice of coefficients for embedding the watermark is driven by the model for minimisation embedding distortion and the robustness model. The distortion minimisation model is proposed to reduce the watermarking distortion by establishing the relationship between the error distortion using mean square error and the selected Graph Fourier coefficients to embed the watermark. The robustness model is proposed to improve the watermarking robustness against the attacks by establishing the relationship between the watermark extraction and the effect of the attacks, namely, additive noise and nodes data deletion. The proposed models were verified by the experimental results

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    Wavelet techniques for reversible data embedding into images

    Get PDF
    The proliferation of digital information in our society has enticed a lot of research into data embedding techniques that add information to digital content like images, audio and video. This additional information can be used for various purposes and different applications place different requirements on the embedding techniques. In this paper, we investigate high capacity lossless data embedding methods that allow one to embed large amounts of data into digital images (or video) in such a way that the original image can be reconstructed from the watermarked image. The paper starts by briefly reviewing three existing lossless data embedding techniques as described by Fridrich and co-authors, by Tian, and by Celik and co-workers. We then present two new techniques: one based on least significant bit prediction and Sweldens' lifting scheme and another that is an improvement of Tian's technique of difference expansion. The various embedding methods are then compared in terms of capacity-distortion behaviour, embedding speed, and capacity control

    Attention Driven Solutions for Robust Digital Watermarking Within Media

    Get PDF
    As digital technologies have dramatically expanded within the last decade, content recognition now plays a major role within the control of media. Of the current recent systems available, digital watermarking provides a robust maintainable solution to enhance media security. The two main properties of digital watermarking, imperceptibility and robustness, are complimentary to each other but by employing visual attention based mechanisms within the watermarking framework, highly robust watermarking solutions are obtainable while also maintaining high media quality. This thesis firstly provides suitable bottom-up saliency models for raw image and video. The image and video saliency algorithms are estimated directly from within the wavelet domain for enhanced compatibility with the watermarking framework. By combining colour, orientation and intensity contrasts for the image model and globally compensated object motion in the video model, novel wavelet-based visual saliency algorithms are provided. The work extends these saliency models into a unique visual attention-based watermarking scheme by increasing the watermark weighting parameter within visually uninteresting regions. An increased watermark robustness, up to 40%, against various filtering attacks, JPEG2000 and H.264/AVC compression is obtained while maintaining the media quality, verified by various objective and subjective evaluation tools. As most video sequences are stored in an encoded format, this thesis studies watermarking schemes within the compressed domain. Firstly, the work provides a compressed domain saliency model formulated directly within the HEVC codec, utilizing various coding decisions such as block partition size, residual magnitude, intra frame angular prediction mode and motion vector difference magnitude. Large computational savings, of 50% or greater, are obtained compared with existing methodologies, as the saliency maps are generated from partially decoded bitstreams. Finally, the saliency maps formulated within the compressed HEVC domain are studied within the watermarking framework. A joint encoder and a frame domain watermarking scheme are both proposed by embedding data into the quantised transform residual data or wavelet coefficients, respectively, which exhibit low visual salience
    corecore