5 research outputs found

    A Toolbox to Analyze Emergence in Multiagent Simulations

    Get PDF
    The field of complexity science often employs multiagent simulations to investigate complex and emergent behavior. Authors in complexity science have suggested that the discussion of complex systems could benefit from a more systematic approach and a more compact mathematical way to describe the behavior of such systems in addition to the common observations and interpretations taking place today. Regarding quantitative measures to capture emergent phenomena, several approaches have been published, but have not yet been put to wide systematic use in the research community. One reason for this could be the manual effort required to investigate multiagent systems in a quantitatively accurate form. Toward this end, there has so far been a lack of appropriate and easy-to-use IT-based tools. To eliminate this deficiency, we present a software library, which enables researchers to integrate emergence measurements into experiments with multiagent modeling tools such as Repast and NetLogo. The major benefit for researchers is that this toolbox enables them to make comparable, quantitatively well-grounded statements about the emergent behavior of the model at hand. The toolbox therefore provides researchers with a standardized artifact that can be employed in a systematic methodological approach to the analysis of multiagent systems

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    Foundations of Trusted Autonomy

    Get PDF
    Trusted Autonomy; Automation Technology; Autonomous Systems; Self-Governance; Trusted Autonomous Systems; Design of Algorithms and Methodologie

    A method for system of systems definition and modeling using patterns of collective behavior

    Get PDF
    The Department of Defense ship and aircraft acquisition process, with its capability-based assessments and fleet synthesis studies, relies heavily on the assumption that a functional decomposition of higher-level system of systems (SoS) capabilities into lower-level system and subsystem behaviors is both possible and practical. However, SoS typically exhibit “non-decomposable” behaviors (also known as emergent behaviors) for which no widely-accepted representation exists. The presence of unforeseen emergent behaviors, particularly undesirable ones, can make systems vulnerable to attacks, hacks, or other exploitation, or can cause delays in acquisition program schedules and cost overruns in order to mitigate them. The International Council on Systems Engineering has identified the development of methods for predicting and managing emergent behaviors as one of the top research priorities for the Systems Engineering profession. Therefore, this thesis develops a method for rendering quantifiable SoS emergent properties and behaviors traceable to patterns of interaction of their constitutive systems, so that exploitable patterns identified during the early stages of design can be accounted for. This method is designed to fill two gaps in the literature. First, the lack of an approach for mining data to derive a model (i.e. an equation) of the non-decomposable behavior. Second, the lack of an approach for qualitatively and quantitatively associating emergent behaviors with the components that cause the behavior. A definition for emergent behavior is synthesized from the literature, as well as necessary conditions for its identification. An ontology of emergence that enables studying the emergent behaviors exhibited by self-organized systems via numerical simulations is adapted for this thesis in order to develop the mathematical approach needed to satisfy the research objective. Within the confines of two carefully qualified assumptions (that the model is valid, and that the model is efficient), it is argued that simulated emergence is bona-fide emergence, and that simulations can be used for experimentation without sacrificing rigor. This thesis then puts forward three hypotheses: The first hypothesis is that self-organized structures imply the presence of a form of data compression, and this compression can be used to explicitly calculate an upper bound on the number of emergent behaviors that a system can possess. The second hypothesis is that the set of numerical criteria for detecting emergent behavior derived in this research constitutes sufficient conditions for identifying weak and functional emergent behaviors. The third hypothesis states that affecting the emergent properties of these systems will have a bigger impact on the system’s performance than affecting any single component of that system. Using the method developed in this thesis, exploitable properties are identified and component behaviors are modified to attempt the exploit. Changes in performance are evaluated using problem-specific measures of merit. The experiments find that Hypothesis 2 is false (the numerical criteria are not sufficient conditions) by identifying instances where the numerical criteria produce a false-positive. As a result, a set of sufficient conditions for emergent behavior identification remains to be found. Hypothesis 1 was also falsified based on a worst-case scenario where the largest possible number of obtainable emergent behaviors was compared against the upper bound computed from the smallest possible data compression of a self-organized system. Hypothesis 3, on the other hand, was supported, as it was found that new behavior rules based on component-level properties provided less improvement to performance against an adversary than rules based on system-level properties. Overall, the method is shown to be an effective, systematic approach to non-decomposable behavior exploitation, and an improvement over the modern, largely ad hoc approach.Ph.D
    corecore