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SUMMARY 

The Department of Defense ship and aircraft acquisition process, with its 

capability-based assessments and fleet synthesis studies, relies heavily on the assumption 

that a functional decomposition of higher-level system of systems (SoS) capabilities into 

lower-level system and subsystem behaviors is both possible and practical. However, SoS 

typically exhibit “non-decomposable” behaviors (also known as emergent behaviors) for 

which no such representation exists. The presence of unforeseen emergent behaviors, 

particularly undesirable ones, can make systems vulnerable to attacks, hacks, or other 

exploitation, or can cause delays in acquisition program schedules and cost overruns in 

order to mitigate them. The International Council on Systems Engineering has identified 

the development of methods for predicting and managing non-decomposable behaviors as 

one of the top research priorities for the Systems Engineering profession. Therefore, this 

thesis develops a method for rendering non-decomposable, quantifiable SoS properties and 

behaviors traceable to patterns of interaction of their constitutive systems, so that 

exploitable patterns identified during the early stages of design can be accounted for. This 

method is designed to fill two gaps in the literature. First, the lack of an approach for mining 

data to derive a model (i.e. an equation) of the non-decomposable behavior. Second, the 

lack of an approach for qualitatively and quantitatively associating non-decomposable 

behaviors with the components that cause the behavior. 

 In order to facilitate the development of this method, this research relies on a model-

based framework. It adopts an existing model-based definition of the term “system,” and 

then sets out to reconcile portions of the literature on complex behaviors, emergent 
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behaviors, and systems of systems, in terms that are amenable to models and the modeling 

process. This research then studies the nature and limitations of modeling and simulation 

(with an emphasis on agent-based modeling). Within the confines of two carefully qualified 

assumptions (that the model is valid, and that the model is efficient), it is argued that 

simulated emergence is bona-fide emergence, and that simulations can be used for 

experimentation without sacrificing rigor. 

 Systems that self-organize are determined to have a physical structure that is non-

decomposable (this includes physical, chemical, and biological systems, as well as many 

military conflicts and some man-made systems). The first hypothesis proposed in this thesis 

is that self-organized structures imply the presence of data compression, and this 

compression can be used to explicitly calculate an upper bound on the number of non-

decomposable behaviors that a system can possess. 

Non-decomposable behaviors are referred to as emergent behaviors, while the term 

complexity is reserved for the measurable quantities associated with predicting a system’s 

capacity for and expression of emergence. Therefore, in this thesis, emergence is not a 

measurable quantity, but rather, it is the byproduct of the organization / structure of a 

collection of components, and is only observable when two systems interact. This thesis 

collects seven necessary conditions and presents a pragmatic definition for emergent 

behavior. The second hypothesis proposed in this thesis is that a set of numerical criteria 

for detecting emergent behavior constitute sufficient conditions for identifying weak and 

functional emergent behaviors. 



xvi 

  This thesis then applies the method to a simulated flock of birds, a notional aerial 

combat model, and simulation of swarms of unmanned quadcopter drones. A third 

hypothesis is proposed, which states that targeting the system-level properties of these self-

organized systems can be more effective than affecting any given component of the system, 

according to a problem-specific measure of merit.  Using the method developed in this 

thesis, exploitable properties are identified and component behaviors are modified to 

attempt the exploit. 

These tests results find that Hypothesis 2 is falsified, and that the numerical criteria 

are not sufficient conditions after finding instances that produces a false-positive. As a 

result, a set of sufficient conditions for emergent behavior identification remains to be 

found. Therefore, the test for Hypothesis 1 was conducted based on a worst-case scenario 

where the largest possible number of obtainable emergent behaviors was compared against 

the limit computed from the smallest possible data compression of a self-organized system. 

Based on this conservative test, Hypothesis 1 was also falsified. Hypothesis 3, on the other 

hand, was supported, as it was found that new behavior rules based on component-level 

properties provided less improvement to performance against an adversary than rules based 

on system-level properties. Overall, the method is shown to be an effective, systematic 

approach to non-decomposable behavior exploitation, and an improvement over the 

modern, largely ad hoc approach.  



 1 

CHAPTER 1. INTRODUCTION AND BACKGROUND 

1.1 Foreword 

The scope of this thesis lies at the intersection of studying collective dynamical 

behaviors of independent systems, systems science, Systems of Systems Engineering 

(SoSE), Modeling and Simulation (M&S),1 and the study of emergent behavior, all of 

which are extensively studied fields of fundamental importance to the fleet synthesis 

studies conducted by the United States Navy (USN). The study of emergent behavior, 

however, permeates nearly every field of modern science (depending on the definition one 

ascribes to). Therefore, the narrative of this document must be structured in a somewhat 

unorthodox way. Rather than begin with what could be a very abstract, meandering review 

of the literature associated with emergence, it will first introduce the practical, engineering 

application of this thesis. That is, it will begin with the most narrow, down-to-earth scope 

possible. By the end of Chapter 1, the subject matter will have already become more 

abstract, but still remain within the realm of practical engineering questions. Chapters 2-4 

gradually expand this scope starting from a notional, USN-specific case study, then 

transitioning into an abstract, canonical case study, and concluding with a purely abstract 

discussion of this author’s definition of emergent behavior. Those chapters introduce the 

hypotheses underlying this thesis. Chapter 5 will then describe the experiments that will be 

conducted to support or falsify the hypotheses. The remaining chapters characterizing the 

results will then explain the consequences of the experimental findings, beginning with the 

canonical case, and concluding with more practical cases. 

                                                 
1 See also Model-Based Systems Engineering [274] [275]. The term model will be rigorously defined in 

CHAPTER 2. For the current chapter the reader can safely assume that it is simply a set of mathematical 

equations implemented by a computer to predict the possible outcome of some scenario. 
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1.2 Department of Defense Acquisition 

The Department of Defense (DoD) defines acquisition as “the conceptualization, 

initiation, design, development, test, contracting, production, deployment, integrated 

product support (IPS), modification, and disposal of weapons and other systems, supplies, 

or services (including construction) to satisfy DoD needs, intended for use in, or in support 

of, military missions” [1]. As the definition suggests, the DoD acquisition process is a 

months-to-years long2 cascading interplay between decision-makers and the analysts that 

generate knowledge for the decision-maker3. Each procurement effort is often performed 

by distinct groups of individuals within the acquisition community [2], and the final 

product is part of a strategic portfolio [3] [4] of “means and ways”4 that satisfy some 

mission objective(s). Here, means is defined as “military resources (manpower, materiel12, 

money, forces, logistics, and so forth) required to accomplish the mission”, while ways is 

defined as “the various methods of applying military force… [and therefore] courses of 

action designed to achieve the military objective” [5]5. Therefore, although a materiel12 

procurement effort may concern itself with a single weapon or a single ship (a specific 

means), what the USN is ultimately assembling is a fleet. It will be shown (Sections 1.3-

1.5) that a fleet can be treated as a means in and of itself, which creates new ways of 

achieving objectives distinct from those enabled by its constitutive ships and weapon 

                                                 
2 To provide a sense of duration, consider that simpler, auxiliary ships can be built in less than two years 

[232] while the more complex ship designs require ten years to design and over five years for construction 

[229]. 
3 The interested reader is referred to Figure 10 of [30] to get a sense of how many parties are (in)directly 

involved in ship design, bearing in mind that design is just one component of acquisition. For a deeper 

discussion of the issues facing decision-makers, see the second chapter of [56]. 
4 The terms “means and ways” carry special significance in military documentation, as they comprise parts 

of the definition of the term strategy, which originated in [5]. Interested readers are referred to [237] [238] 

for further context and criticisms. 
5Lykke subsequently states “These courses of action are termed ‘military strategic concepts’,” [5] which 

bears the unfortunate consequence of rendering Lykke’s definition of strategy at least somewhat circular. 

Meiser clarifies, “In practice ways are simply the actions to be taken using the resources available to achieve 

a goal,” which he then argues is detrimental to strategic thinking [238]. 
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systems. While this may seem obvious, the study of these new ways is one of the biggest 

challenges currently facing analysts in the acquisition community (see Sections 1.5-1.7).  

In general, the procurement-driven portion6 of the modern acquisition process is 

punctuated by three major decision-making Milestones, where Milestone A is the decision 

to invest in new technology development, Milestone B is the decision to proceed with 

engineering / manufacturing, and Milestone C is the decision to end prototyping7 and begin 

full-scale production [6].8 The phases of the modern acquisition process9 (highlighting the 

Defense Acquisition System, DAS [7], and Joint Capabilities Integration and 

Development System, JCIDS [8] [9]) are depicted in Figure 110 (reproduced from [8]). 

 

Figure 1 –The Major Phases of the Defense Acquisition Process  

                                                 
6 As opposed to the operations and support phase, which includes the sustainment and ultimate disposal of 

procured equipment, and begins once full-scale production has been reached (see Figure 3 in [7]). 
7 One noteworthy exception is ship building, which traditionally has no distinct prototyping phase the way 

aircraft procurement does. That is, each ship prototype is also the final product [6] [231] [244]. Furthermore, 

each subsequent ship in a class is usually a modification of the previous prototype, meaning very few ships 

are actual copies [246]. Progressive modifications are sometimes termed evolutionary acquisition [245]. 
8 More detailed information on additional tasks and decision-making concerns in the lead up to Milestones 

A and B are discussed in [230] [13] [233] [248]. 
9 The three major components of modern DoD acquisition are the DAS, the Planning, Programming, 

Budgeting, and Execution Process (PPB&E), and the JCIDS [236] [7]. Although each is logistically 

significant, the JCIDS provides enough exposition to cover the concepts relevant to this thesis. 
10 The acquisition process depicted in Figure 1 can vary. As shown, the Initial Capabilities Document (ICD) 

and the Capability Development Document (CDD) are documents that inform subsequent stages of 

acquisition. However, some programs allow for waivers to this (or associated) documentation, while in other 

programs, a single ICD can result in multiple CDDs being generated. Readers interested learning more about 

canonical deviations from the standard process are referred to [8] [9] [235].  
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Prior to Milestone A are the Capabilities-Based Assessment (CBA) and the 

Analysis of Alternatives (AoA). Enclosure E of the Charter of the Joint Requirements 

Oversight Council (JROC) and the Implementation of the JCIDS defines a capability11 as 

“the ability to achieve a desired effect under specified standards and conditions through a 

combination of means and ways across Doctrine, Organization, Training, Leadership and 

Education, Material [sic],12 Personnel, Facilities, and Policy,”13 [9] while materiel12 is 

defined as “equipment, apparatus, and supplies used by an organization or institution” [1]. 

In short, the purpose of the CBA is to “assess the capabilities” the USN has or needs, 

“identify any gaps [in capabilities] that might exist and make recommendations for how 

those gaps can be closed” [10]. If the group conducting the CBA recommends a materiel 

solution to close a gap, an AoA is conducted.14 The purpose of the AoA is to “… identify, 

evaluate, and document the costs and mission effectiveness of alternative [materiel 

solutions] … help establish critical mission characteristics and … performance 

requirements, and then identify potential alternative [materiel solutions] that can satisfy 

those requirements” [11]. Furthermore, the AoA “considers the sensitivity of each 

alternative to possible changes to key assumptions or variables” [12]. Although it is 

anachronistic to apply the current procurement process to twentieth century USN 

acquisition, the acquisition community has always performed similar analyses in one form 

                                                 
11 This definition is close to the Oxford dictionary definition, “the power or ability to do something,” [239] 

which can also be used for the purposes of this thesis without loss of generality. Various authors of military 

literature use the term capability differently. Example 1: The phrase “amount of capability” appears to be 

common jargon [241] [242]. Example 2: Similar to Oxford include [243] [8] [1], and the glossary of [9]. 
12 The term “Material” in the definition of capability on page E-1 of the charter should be spelled “Materiel” 

as it is in other places [9]. Material generally refers to raw resources, while materiel refers to the completed 

equipment the acquisition community procures [1]. 
13 Doctrine, Organization, Training, Leadership and Education, Materiel, Personnel, Facilities, and 

Policy (DOTLmPF-P [9]; formerly DOTLMPF [240]) is essentially the list of options for ways and means 

that the acquisition community considers when deciding how to best achieve a particular goal. See Section 

3.11.5 of [36] for a discussion of the acronyms, and additional clarification. 
14 See [247] for examples of challenges faced in the transition from CBA to AoA. 
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or another. What has changed substantially, however, is the guiding philosophy of USN 

acquisition.15 

1.3 Paradigm Shifts in USN Ship Design, Acquisition, and Modeling 

During much of the twentieth century,16 DoD acquisition community set its 

requirements using a heavily threat-based approach, referred to as the Requirements 

Generation System (RGS) [13]. Relative to modern acquisition, this approach was reactive, 

being driven in part by enemy military capabilities17 [14]. The advantage of a reactive 

approach is that the perceived capability gap is restricted to a specific, unmet threat, 

enabling designs to be tailored for effectiveness (also reducing the likelihood of 

requirements creep).18 On the other hand, limited scopes and performance-driven design 

techniques often resulted in the creation of overly specialized designs that were very 

expensive but seldom used [15] [16] [17]. Thus, one of the major paradigm shifts in USN 

acquisitions was a pivot toward development of less specialized, multi-mission / multi-role 

ships, including a push for so-called modular ships19 that can support interchangeable 

systems [18] [19] [20] [21]. 

An important consequence of the modularity paradigm shift was the increased focus 

on system20 interoperability [22] [23]. The DoD defines a system very generally as “a 

                                                 
15 A useful observation, provided here for completeness, is that “[the] fundamental shift toward capability-

based acquisition and design is best described by a shift away from ‘things’ to ‘ways to do things’,” [273]. 
16 Readers interested in more detailed historical information about the DoD acquisition process are referred 

to the reviews provided in [56] [59], as well as the e-books [23] [227], and the paper [14]. 
17 For a nuanced discussion of the distinction between the two frameworks (particularly, the distinction 

between designing for required capabilities rather than hitting a specific system20 requirement) see Section 

1.2.1 of [56]. 
18 Requirements creep is defined as “the tendency of the user (or developer) to add to the original mission 

responsibilities and/or performance requirements for a system while it is still in development,” [1] and is a 

frequently-cited cause of acquisition cost overruns [248] [6] [2]. Note that in a 2002 memo reproduced in 

[10], then Secretary of Defense Donald Rumsfeld criticized the RGS for “[requiring] things that ought not to 

be required,” which highlights a misalignment of requirements, but not necessarily requirements creep. 
19 The notion of modularity has recently been superseded by “adaptability.” See [16] [249] [250]. 
20 For this section, system refers to the major components and equipment onboard a ship such a weapon, or 

the hull, as in [28] [22]. A subsystem usually refers to minor components that independently perform a very 

specific function [1]. 
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functionally, physically, and/or behaviorally related group of regularly interacting or 

interdependent elements; that group of elements forming a unified whole,” [24] and 

interoperability as “1. The ability to act together coherently, effectively, and efficiently to 

achieve tactical, operational, and strategic objectives” [24]. Although early publications 

regarding interoperability focus on communication [22] and software [25], the study of 

interoperability was ultimately generalized to accommodate any interaction between two 

systems [25] [26] [27]. Thus, it was recognized that the ability of systems (weapon systems, 

hull structures [28], etc.) to interact effectively could impact overall ship performance just 

as much as the performance of the individual systems in isolation [29]. Furthermore, multi-

mission ships must compete effectively in different operating environments (or, at least, 

against a broader set of adversaries), which increases the range of potential interactions 

systems can be exposed to. The topic of system interactions will be elaborated on in 

Sections 1.5-1.7, and Section 2.3. 

Another major paradigm shift (one that accompanied technological advances in 

computing) was the acquisition community’s increasing use of modeling and simulation 

(M&S) to inform each stage of acquisition,21 even going so far as to model the design [30] 

and acquisition processes themselves [23] [31]. Particularly within the design stages of 

acquisition, entire computational environments have been created where models of smaller 

components feed their results into models of ensembles, which feed into models of 

ensembles of ensembles.22 While this has substantially cut costs [23], these models are 

often developed independently, which may result in sets of models that have incompatible 

underlying assumptions and varying accuracy, thereby producing illogical/invalid results.23 

                                                 
21 Examples of models developed with applications in defense acquisition include: data gathering [156], 

requirements setting [151] [254], optimization [252], forecasting [258], and decision-making [150]. 
22 For example: AFSIM [251]; ASSET, LEAPS, and IHDE among others [253]; see also for the 

aforementioned and discussion of S3D [255] [256].  
23 See [257] for frameworks that verify the composition of model ensembles. See [259] [260] [261] for studies 

of combined models with varying accuracy. See [262] for pitfalls in simplifying one popular class of models. 
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If subsystem20 behaviors are incorrectly modeled, then quantitative and qualitative 

predictions of their interactions will suffer (or fail entirely), which diminishes the analyst’s 

ability to predict the overall behavior of the system (see Sections 1.5-1.7). These issues 

undermine both the ability to identify a capability gap (via M&S), as well as the ability to 

identify an appropriate set of materiel solutions.24 

As suggested earlier, the most recent and significant paradigm shift within the 

acquisition community was the transition to the capabilities-based, proactive approach [10] 

briefly introduced in Section 1.2. Chronologically, the implementation of JCIDS occurred 

decades after the world had effectively become militarily unipolar.25 Thus, a consequence 

of the shift, is that “proactive” took on the additional meaning of developing and 

maintaining military overmatch (i.e. superiority) [32] [33] [34] [35]. Doing so requires a 

rapid pace of adaptation,26 reliable forecasting of the enemy’s evolving capabilities 

(typically performed over 30-year windows), and the ability to consider multiple solutions 

of various types. One purpose of the CBA is precisely to examine candidate DOTLmPF-

P13 solutions. 

As a somewhat simplistic example, consider that a nation-state threat to national 

security creates a gap that can be filled through diplomatic negotiations with the potential 

adversary, or military deterrence (as is achieved via overmatch). Within the scope of 

diplomacy, relationships with other nations can be improved by strengthening economic 

ties, or via gestures of goodwill such as providing disaster relief. Search and rescue 

missions commonly occur during disaster relief. A destroyer capable of launching 

helicopters can aid in search and rescue missions as well as the power projection27 required 

                                                 
24 Even existing materiel solutions can require modeling during the CBA and AoA [56]. 
25 By some estimates, the USN currently dominates its closest competitor by a large margin [263] [264] [265], 

although concerns of future “near-peer” conflict have been voiced [267] [266] [268]. For timeline 

information, see [23] [56] [81]. 
26 See introduction section of [269] 
27 See [32] for use of the phrase “power projection” 
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for military deterrence. Thus, the destroyer and helicopters considered for acquisition can 

play a direct role in deterrence, or a supporting role in diplomatic missions, meaning that 

the performance of these vehicles must be taken into account when evaluating capabilities 

for either mission. As illustrated in this example, a second consequence of this shift is that 

the acquisition community is now encouraged to consider more information as a matter of 

practice. For example, the Air Force CBA Handbook states, “When developing solutions, 

the study team should consider system-of-systems28 and family-of-systems.28 One common 

error is fixating on one aspect of a system. Many times, complex28 problems are best solved 

by making moderate improvements to multiple systems rather than a single, large 

improvement to one system” [36].  

Both of the aforementioned consequences compound the need to fill a cascade of 

knowledge gaps. In a threat-based approach, the destroyer might only have to be modeled 

for two missions, which could possibly extend to include modeling the strike group the 

destroyer embarks on missions with. However, in a capabilities-based approach, this 

destroyer would have to be modeled in those two contexts, as those contexts evolve over 

the next 30 years. This includes possible new technologies and upgrades for the destroyer, 

technology/ship replacements for the strike groups, and changes to the operating 

environment. Thus, each acquisition now requires knowledge of the technologies / systems 

being developed (present and future), as well as the ship designs the systems will be placed 

into, as well as the fleets (present and future) that the ship operates in, in order to make an 

acquisition decision.29 As a result, the USN gradually expanded the scope of the analysis 

used in JCIDS. 

                                                 
28 The term system-of-systems will be formally introduced in Section 1.5. For the current narrative, it suffices 

to think of it as a collection of systems (e.g. a fleet of ships). The various definitions of the term complex 

will be discussed in Section 1.5 and CHAPTER 4. The term family of systems is defined in [8] [46], briefly 

discussed in [271], and is outside the scope of this thesis. 
29 A variety of concerns have been raised regarding this new acquisition process. For criticisms/limitations 

of the current approach, including calls to overhaul it, see [226] [228] [267] [247] [235] [234]. 
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1.4 Navy Fleet Synthesis Studies 

The CBA was first introduced with JCIDS in 2002. By 2010 there were calls for the 

CBA to accommodate fleet synthesis studies [37]. A fleet synthesis30 study, for the 

purposes of this thesis, will be defined as any study that “involves constructing alternative 

views of the future, then setting up and tracking the resulting course of [fleet composition] 

evolution from the present fleet to a long-run future state.” [38]. Although fleet synthesis 

studies were not new [39] [40], the first study of long-term fleet synthesis performed by 

ship designers at the Naval Sea Systems Command (NAVSEA) began in 2006 [41].31 

Unlike previous studies, the objective of this study “was not just to design ships, but to 

design the entire Navy and to program a ship-by-ship and year-by-year transition from the 

currently planned fleet to an alternative fleet… This integration of surface ship fleet mixes, 

ship designs, and long-range evolutionary planning, is new.” [41] This is the systems of 

systems perspective later adopted by the Air Force CBA Handbook (Section 1.3). Every 

fleet synthesis study requires modeling systems of systems (Section 1.5). 

As previously stated, system interactions (i.e. interoperability) play a critical role in 

ship and, ultimately, fleet performance. Some of the aforementioned studies incorporate 

quantifiable parameters that augment/diminish fleet performance as a mathematical 

representation of the impact of coordinated ship interactions (e.g. “presence multipliers” 

[38]). However, fleet synthesis studies explicitly incorporating quantifiable measures of 

interoperability do not seem to appear in the literature for at least another ten years after 

the NAVSEA study [29]. This suggests that many fleet synthesis studies have not 

                                                 
30 See [29] [38] for discussions of related terms including: fleet mix, force structure, and naval architecture. 
31 The report of the original “Affordable Future Fleet Study” does not appear to be publicly available. 
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accounted for ship-interaction-dependent capabilities in a readily traceable way, which can 

result in subsequent fleet-level capabilities being excluded or misrepresented. At least one 

fleet synthesis study altogether assumed “capabilities of a fleet are decoupled from [ships 

and aircraft].”32 While disconnecting fleet-level capabilities from ship-level capabilities is 

valid for exposition purposes33 and useful for exploratory studies, it would be erroneous to 

treat the two capability sets as totally independent. 

A famous example of this is the Thach Weave maneuver developed during World 

War II [42] [43]. Well into 1942, Japanese fighter aircraft were aerodynamically superior 

to those of the USN [43]. This difference in performance meant US pilots were at a 

significant disadvantage against Japanese fighter pilots in one-on-one dogfights. This 

capability gap left ships vulnerable to torpedo bombers, which then impacted fleet-level 

capabilities. Supposing, anachronistically, the USN acquisition community had then 

performed a CBA, it would have evaluated at least two options: (1) fill the capability gap 

with better means in the form of more advanced fighter aircraft (which, over time, it did) 

or (2) develop better ways of using its current fighters. Had LCDR John S. Thach 

participated in the CBA, he would have proposed the combat maneuver34 now named after 

him, one that dramatically increased USN fighter aircraft lethality and survivability35 (even 

against overwhelming odds) and also rendered them capable of defending other ships and 

aircraft. Since Japanese aircraft were lighter and more maneuverable (neglecting armor for 

                                                 
32 See [38] and its references. 
33 By analogy: The parts of an airplane cannot fly, but an airplane can fly. Here, “being thrown” is not 

considered flying. 
34 The new maneuver was a ways solution equivalent to new training and doctrine. 
35 Lethality and survivability are sometimes considered apart from other capabilities (for example [270]). 

Clearly, all military capabilities depend on these two, which is a simple example of how a fleet-level 

capability can be impacted (enabled/disabled) by a ship/aircraft-level capability. Deeper discussions begin in 

Sections 1.5-1.7. 
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critical regions such as the cockpit [44] [45]), the Thach Weave exploited weaknesses 

whose significance Japanese designers may have underestimated. The fact that both ways 

and means contribute to capabilities implies that as adversaries adapt to one-another, one 

side’s unforeseen vulnerabilities (in ways or means) can inspire the other side’s capability 

development. Therefore, it is paramount for the acquisition community to have a traceable 

approach for defining and modeling capabilities as well as a rigorous approach to mining 

modeling and simulation data for exploitable patterns of ship and aircraft interactions.36 

Current system decomposition methods routinely capture intended/anticipated 

system interactions [46] [47]. These methods generally fall into two categories: those that 

decompose capabilities37 into smaller tasks / system behaviors into subsystem behaviors 

and interactions, are generally known as functional decomposition, while those that 

decompose systems based on their physical assembly are referred to as a physical 

decomposition.38 Examples of such methods include Rapid Architecture Alternative 

Modeling (RAAM) [48], the Interactive Reconfigurable Matrix of Alternatives (IRMA) 

[46], and several other approaches characterized using a Design Structure Matrix (DSM) 

[49]. Most assume a hierarchical structure39 in which one ‘higher level’ behavior (i.e. 

system) is a consequence of ‘lower level’ behaviors (i.e. subsystem), and many can be 

partially or completely represented using a matrix, and, therefore, a graph [50].  

                                                 
36 An experiment based on the Thach Weave (incorporating ideas by John R. Boyd) were added to this thesis 

in response to feedback received during the proposal. See CHAPTER 5 and CHAPTER 7. 
37 A civilian analogy to “capabilities” is the objective tree which decomposes goals into objectives, and then 

uses objectives as the basis for a functional decomposition. See Sections 3.5 and 3.7 of [47]. 
38 Physical decomposition is just one of many terms that can be found in literature including component-

based decomposition [49], or system architecture [46]. 
39 Heterarchical structures are well known in biology, and are often discussed in the literature on emergence 

(Section 1.7).  The interested reader can also refer to Section 4.2 of [272] for a brief, classic example of a 

heterarchical structure. 
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 (A-phy) (A-fun) 
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(B-phy) 
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(B-fun)40 

Figure 2 –A notional system decomposition for an Arleigh-Burke Class Flight IIA 

destroyer performing a Search and Rescue (SAR) mission. 

                                                 
40 Terms specific to Figure 2 and Figure 3 provided for clarity, but not otherwise covered: (1) “Log.” = 

logistics; (2) “Comm.” = communication; (3) “Loc.” = locate; (4) “X-port” = transport. 
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Consider, then, the graphical representation of the system decomposition for a 

notional search and rescue capability depicted in Figure 2-Figure 3. The figures contain a 

notional physical decomposition (phys), and functional decomposition (fun) for an 

Arleigh-Burke Class Flight IIA (ABC FIIA) destroyer performing a Search and Rescue 

(SAR) mission to rescue the crew of a boat that is adrift. The figures show the three possible 

levels of abstraction, where A is the ‘highest’ level (least detailed), and C is the ‘lowest’ 

level (most detailed). Physical systems and functions are depicted as nodes in their 

respective graphs, connected by edges (solid lines) that represent (phys) interactions, or 

(fun) dependencies. A gray node ‘supplies’ the function that is ‘requested’ by a clear node. 

Although information-sharing behaviors (locate, communicate) are shown, their 

corresponding physical (sub)systems are omitted from the (phys) graphs. The first 

observation to make is that the adrift crew (Adrift) does not require further physical 

decomposition to convey its essential interactions, but its functional composition certainly 

requires more detail since merely stating “SAR” says nothing about the tasks required to 

adequately represent the ‘ABC FIIA – Adrift’ interaction.41 However, in order to provide 

a more detailed description of the tasks ‘requested’ by the Adrift node (the need to be 

located, the need to be lifted out of the water or disabled boat, and the time-sensitive need 

for shelter), the ABC FIIA must be decomposed both physically and functionally since its 

SAR capability is a composite of the capabilities of its constituent subsystems. For 

example, we see at Level B that although the destroyer can help search for the Adrift, it is 

                                                 
41 Since the ‘Adrift’ node is meaningful at multiple levels of abstraction/detail, this is an example of one type 

of heterarchical structure. See Footnote 39. 
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not equipped to physically rescue them, and relies on a helicopter or rigid-hull inflatable 

boat (RHIB) to perform those tasks. 

C 

 
(C-phy) 

C 

 
(C-fun) 

Figure 3 – Continuation of the notional system decomposition from Figure 2. 
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Level C then depicts the various ways systems rely on each other (communicating location 

information, providing fuel or crew to pilot the systems, etc.), thereby showing that the 

nodes of each graph at each level of abstraction can be decomposed into collections of 

interconnected nodes, which are graphs themselves.42 That is, a ‘single interaction’ at one 

level of abstraction may in fact represent myriad interactions at some lower level of 

abstraction, all of which have individual requirements that must be met in order for the 

‘higher level behavior’ to be observed. 

The critical reader will note that “search and rescue” is a compound phrase. This 

‘capability’ was deliberately selected as a convenient and hopefully anodyne rhetorical 

device to illustrate that a ‘single’ fleet-level capability can be the consequence of multiple 

ship- and aircraft-level capabilities somehow combined. This immediately raises three 

questions. First, “Are system decompositions like those shown in Figure 2 - Figure 3 

unique?” to which the answer is generally “no,” particularly since the mapping from 

physical form to function is not one-to-one.43,44 The second, stronger question is, “What 

about cases where a higher-level capability is not a simple combination of two or more 

lower-level capabilities?” Finally, the third, and strongest, question becomes, “How can 

one discover an unknown higher-level capability by building relationships up from some 

                                                 
42 In addition nodes of nodes, and graphs of graphs (called hypergraphs), the edges become multi-edges, and 

in more sophisticated representations, would result in directed, multi-edge hypergraphs. Similar observations 

have been made in works on interoperability such as the oft-cited work by Major Thomas C. Ford [26]. 
43 Borrowing a concept from Mathematical analysis, two objects are one-to-one if and only if they uniquely 

correspond to one another.  Thus, a function and a physical form are one-to-one if only that one physical 

object can perform that function, and vice-versa.  For example, ‘flying’ is a function that is not one-to-one 

with form (bats, birds, airplanes, helicopters, etc.). 
44 Some authors capitalize on this when studying the ability of architectures to perform capabilities using 

interchangeable systems/functions. For example, the Engagement Generation Matrix in Figure 20 of [81], 

and the Capabilities and Requirements section of [67]. This claim can also be inferred from the fact that SoS 

requirements generally fail to have a one-to-one correspondence with system requirements [67]. 
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initial lower level?” Alternatively, the third question could be phrased, “Is it possible to 

decompose a high-level observed behavior that is not a simple aggregate of two or more 

lower-level behaviors?” The next two sections will show that although one can ‘readily’ 

reduce a system to its physical parts [51], one cannot easily reconstruct the behaviors of 

those systems from the behavior of their parts, particularly when that ‘system’ is a system 

of systems (SoS). 

1.5 System of Systems 

Much of the literature on SoS is rather emphatic that the profession of SoSE should 

not be equated with Systems Engineering (SE). For example,45 Pratt and Cook state, “SoSE 

is inherently a socio-technical activity and to succeed substantial effort needs to be 

dedicated to the social, cultural, political and enterprise aspects of the SoS and its 

engineering” [52]. While these distinctions play a role in the practice of engineering, they 

do not all extend to the study of systems science, which focuses on concepts that apply to 

any system implementation.46 For example, consider the author’s use of the terms social, 

cultural, political, and enterprise. Each of these terms denote different levels of abstraction, 

relevant to different hierarchies created from compositions of elements defined within the 

context of different fields of expertise.47,48 Clearly, the study of hierarchies applies whether 

the hierarchy is political, social, etc. Furthermore, in each case, the argument stands that 

the behavior of the group cannot be easily reconstructed from the behavior of their parts. 

                                                 
45 The remaining arguments raised in [52] concern how the professions ought to be structured, which is 

outside the scope of this work. For more information see also [64]. 
46 See Figure 2.8 of [53] for a graphical depiction of systems science and its scope. 
47 Consider an explicit argument from sociology [277], which begins by quoting Emile Durkheim: “There 

can be no sociology unless societies exist… societies cannot exist if there are only individuals.” A similar 

argument could be made for International Relations, Religious Studies, Darwinian Evolution, Political 

Science, Set Theory, Chemistry, etc. 
48 This is reminiscent of the way in which the distinctions between Chemistry, Electrical Engineering, 

Mechanical Engineering, and Medicine ultimately led to the creation of Biomedical Engineering as a field in 

its own right. 
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In order to focus on that reconstruction, this research requires a systems science-style 

definition of SoS that holds for any hierarchy, any composition of elements, and any level 

of abstraction.49 

One solution to this is a “model-based” definition [46] of the term system: “A system 

is a combination of interacting elements integrated to realize properties, behaviors, and 

capabilities that achieve one or more stated purpose(s)” [46]. This definition has the 

advantage of being broad enough to capture any combination of elements at any level of 

abstraction within the discipline of engineering.50 The hierarchical nature of the system 

(i.e. the fact that it contains two simultaneously coexisting levels of abstraction) is inferred 

from the fact that the elements are “integrated to realize properties...” that would not 

otherwise exist. Therefore, the properties, etc., of the elements are distinct from those of 

the system. The model-based definition is also intuitive. In Section 2.1 of the 2015 

International Council on Systems Engineering (INCOSE) SE Handbook51 (the section 

devoted to defining the term system) it reiterates that its various terminology essentially 

elaborates on “the fundamental idea that a system is a purposeful whole that consists of 

interacting parts” [53].50 Finally, the model-based definition can be applied recursively, 

enabling a hierarchy of abstraction that extends beyond two levels. Therefore, applying the 

model-based definition once again, a system of systems can be defined as “a combination 

of interacting systems [i.e., elements of the SoS] integrated to realize properties, 

behaviors,52 and capabilities that achieve one or more stated purpose(s)” [46].  

Recently published primary literature uses definitions very similar to the model-

based definition when introducing SoS. For example, compare the graphical representation 

                                                 
49 Something of an echo of General System Theory [279]. 
50 Outside of engineering, one might prefer a minimalistic concept of system achieved by dropping the 

“purpose” qualification. For example, the formation of molecules by atoms is coupled to an energy exchange, 

and occurs whether or not the resulting molecule, or energy exchange, serves any particular purpose.  
51 Going forward, this will simply be referred to as the SE Handbook. 
52 The terms properties and behaviors will properly defined in Section 2.3. 
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of a system provided by the SE Handbook (see Figure 4) to the definition of SoS in the 

2018 INCOSE SoS Primer:53 “a collection of independent systems, integrated into a larger 

system that delivers unique capabilities. The independent constituent systems collaborate 

to produce global behavior that they cannot produce alone.” [54] In this sense, one can say, 

for example, that a spark plug is to electrical current, as an internal combustion engine is 

to torque, as a car is to locomotion. As simple as it may seem to extend the model-based 

definition, it must be noted that even as recently as 2011 there was no broad consensus on 

how a SoS ought to be defined [55] [56],54 largely due to the various professional 

considerations required for SoSE.  

 

Figure 4 – Graphical depiction of the term system reproduced from [53].55 

                                                 
53 Going forward, this will simply be referred to as the SoS Primer. 
54 What appears now to be the trend was characterized in 2009 as “an opinion among many systems engineers 

and other stakeholders.” See page 37 of [46]. 
55 Notice that systems can interact with other systems and system elements at various levels of hierarchical 

abstraction. This is another example of a heterarchical structure discussed in Footnotes 38, and 41. Here a 

system is a collection, and can also be part of another collection, and can interact with the elements of a 

collection. The element/system hierarchy is not strictly vertical. 
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The simplicity and convenience of the model-based definitions, particularly when taken 

out of context, belie the challenge inherent in distinguishing between a system and a SoS. 

This distinction must be clear in order to meaningfully attribute behavior to the SoS. 

Previous attempts at distinguishing between the systems and SoS tend to emphasize 

concerns relevant to the organizations they operate in. The SE Handbook references 

Maier’s five characteristic that distinguish a system from a SoS: (1) operational 

independence of constituent systems, (2) managerial independence of constituent systems, 

(3) geographical distribution, (4) emergent behavior, and (5) evolutionary development 

processes [53]. Three of the five are clearly organizational, and therefore, beyond the scope 

of this work. In this context, “geographical distribution” is a logistical concern relevant to 

many organizations (for an example, see [57]).  

 

Figure 5 – Various distinctions between systems and SoS, reproduced from [54] 
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However, it also conveys the sense that a SoS operates over a larger scale than a system, a 

concept that will be revisited in later sections.56 The term “emergent behavior”56 suggests 

a new kind of behavior not present in ordinary systems. The SoS Primer provides a table 

of distinctions, depicted in Figure 5. One point that stands out in Figure 5 (2nd row) is the 

assertion that, broadly speaking, a system’s properties, behaviors, and capabilities are 

precisely what they were designed to be due, in part, to there being more specific design 

objectives and far fewer decision makers relative to SoS. Thus, somewhat vaguely 

speaking, systems are expected to be simpler. The guarded qualification “tends to” reveals 

that this is not always the case in practice.  

SoS, themselves, are categorized by their organizational structure. There are four 

canonical types [54]. Directed SoS are centrally managed/operated, and although their 

constituent systems operate independently, the central authority dictates their normal 

operation. Acknowledged SoS have a central authority, but changes to operation are 

decided collaboratively. Collaborative SoS have no central authority, and changes are 

decided collaboratively. Virtual SoS have no central organization or goal. Of the four, only 

the Directed SoS is defined as being “built and managed to fulfill a specific purposes”57 

[54]. This category of SoS explicitly blurs the distinction between a system and a SoS (the 

others rely on organizational/operational distinctions). Nevertheless, on the whole, 

engineers expect there to be a significant distinction between the simplicity and behavior 

of a system and a SoS. 

                                                 
56 See Section 1.7 and CHAPTER 4. Nearly every reference on SoS in this thesis notes that they display 

emergent behavior.  
57 Using this terminology, Navy Fleet Synthesis studies are studies of a Directed SoS. 
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Using a synthesis / definition reconciliation approach in her PhD Thesis, Dr. 

Griendling writes, “commonalities between the definition of complex system and SoS 

implies that while a complex system is not necessarily an SoS, an SoS is almost always a 

complex system” [56]. Once again, a SoS bears a strong resemblance to a system; 

specifically, a “complex system.” It follows that one common approach to distinguishing 

between a system and SoS relies on defining and quantifying a property called complexity. 

Unfortunately, complexity has multiple definitions in many fields. This thesis requires 

borrowing the definition from Computer Science (CS) rather than SE in order to associate 

the model-based definition of system with the mathematical/computational calculation of 

model complexity (see Sections 2.2 and 5.1.3).58 The remainder of this discussion will 

utilize complexity in the SE sense. For the purposes of this thesis, a complicated system is 

an incredibly intricate system whose behavior is nevertheless well-understood (such as an 

automobile) [53]. Readers interested in extensive reviews of the SE definitions as well as 

a rigorous disambiguation of the terms complex and complicated are referred to [56] [53] 

[58] [59] [60] and their references. 

1.6 Complex Behavior 

Like the term SoS, there has been extensive discussion (and disagreement) on how 

the term complexity ought to be defined.59 As recently as 2015, the Chair of the INCOSE 

Complex Systems Working Group, Dr. Jimmie McEver, stated that there is no “easy, 

agreed-upon definition” for complexity [61], a point reiterated in 2018 by Computer 

                                                 
58 As will be seen in the following sections, SE uses complexity in a manner often interchangeable with 

emergence, whereas CS uses it solely to quantify the difficulty of evaluating an expression or executing an 

algorithm. This thesis will use the term emergence to refer to a quality that is modeled (and a behavior that 

can be modeled), while complexity will be used for a quantity that is measured, which is closer to CS. 
59 Thirty-three different types of complexity are listed in [278], some from different branches of science. 
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Scientist Dr. Russ Abbott [62]. Despite this disagreement, a variety of sources contain 

useful, and largely compatible, lists of generally well-defined characteristics that contribute 

to system complexity [63] [64]. Since most of these factors are easily relatable, it suffices 

here to briefly highlight these factors. One list by McEver relates system complexity factors 

to the challenges faced by decision-makers and system engineers (Figure 6): 

 

Figure 6 – The impact of system complexity factors on decision making, reproduced 

from [61]. 

A key distinction between a standard system and a complex system60 (i.e. a system 

exhibiting complex behavior) is that its behavior cannot be fully understood by examining 

the system’s parts in isolation [53], meaning that it cannot be unambiguously characterized 

using standard decomposition (Figure 6). As McEver puts it, “The opposite of ‘complex’ 

is ‘decomposable’, not ‘simple’” [61]. The same distinction is frequently made for 

                                                 
60 Dr. Balestrini-Robinson presents a straightforward taxonomy (see Figure 10 of [81]) wherein a system’s 

complexity can be designated using the combined complexities of its physical and functional decompositions, 

provided that those complexities can be adequately determined. He also provides an extensive list of 

complexity characteristics in Section 2.1 of his thesis. McEver presents another straightforward taxonomy, 

associating systems of varying complexity with Cynefin domains [60]. 
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emergent behavior (see also [65] [66] and Section 1.7). Referring again to the 2015 SE 

Handbook, “The SoS usually exhibits complex behaviors, often created by the existence of 

the aforementioned Maier’s characteristics… In complex systems… interactions between 

the parts exhibit self-organization where local interactions give rise to novel, nonlocal, 

emergent patterns...” [53]. As before, this complex behavior (this time referred to as novel 

behavior associated with emergent patterns56) is one that is assigned to the system level of 

abstraction, and cannot be generated by any one system element. That is, element 

interactions can somehow generate complex system behavior, system interactions 

somehow generate complex SoS behavior.61 This is the “multi-scalarity” of complexity 

referred to in Figure 6, wherein information that is relevant at one level of abstraction is 

either obscured or irrelevant at another level [67].62 Although it is possible to create a 

hierarchy of behaviors, NASA administrator Michael Griffin acknowledged63 that 

“complex systems are no longer strictly decomposable, and systems engineering has to 

adapt” [60]. McEver further states that this adaptation cannot be achieved by merely 

extending standard SE techniques [61]. Entirely new approaches are needed for associating 

lower-level interactions with higher-level behaviors because it is not always obvious which 

interactions cause which behavior (“opaqueness” in Figure 6). A 2014 survey of INCOSE 

SoSEs designed to help inform changes to SE relevant to SoS studies similarly concluded, 

“The inability to predict SoS behavior, especially when the constituent systems themselves 

are complex systems, is an area of risk for SoS” [68], and cites an unnamed respondent that 

                                                 
61 Once more for clarity: system interactions generate SoS behavior, which must not be confused with saying 

that a system’s independent behavior generates SoS behavior (as though a SoS directly appropriates SoS 

behavior from systems). 
62 Note that Figure 6 is McEver’s summary of the long-form discussion in [66]. 
63 The citation is dated 2010. The quote itself may be older. 
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said, “well-structured approaches for 'design for emergence' are not generally available” 

[68]. Despite some attempts to the contrary (e.g. [69]), the 2016 INCOSE Complexity 

Primer64 calls for abandoning the notion that a complex system can be designed or 

controlled, and instead encourages thinking in terms of “‘influence’ and ‘intervention’” 

[70], adding that “designing or evolving a complex system requires recognition that the 

designer may not ever be able to control or even understand the system completely” [70]. 

Consider the straight-forward example of a stair-climbing machine presented in 

Figure 7. 

 

Figure 7 – Stair-Climbing Machine Concepts in [71] 

A standard functional decomposition is one where the systems engineer can draw a graph 

showing how independent, lower-level functions contribute to a higher-level function.65 

As the original caption in Figure 7 states, the lift and move functions are independent 

because no interaction between the wheels and elevator is needed to perform those 

functions. A coupled system, on the other hand, requires a graph containing cycles (as 

shown in Figure 8), and thus is not decomposable in the traditional sense. Before 

elaborating on the meaning of decomposition in the “traditional sense,” note that the 

                                                 
64 Going forward, simply the Complexity Primer. 
65 See Chapter 3 of Kitto’s thesis for an extensive discussion on hierarchies and decompositions [73]. 



 25 

convention of the diagram used in [71] is analogous to the hypergraph discussed in Section 

1.4 (see Figure 2-Figure 3). 

 

Figure 8 – Suggested Functional Decomposition for Coupled Stair-Climber 

The vertical distribution of nodes in Figure 7-Figure 8 corresponds to the level of 

abstraction of the function they represent (higher up is a higher level). These types of 

graphs are called layered graphs. One could argue that cycles will appear in any graph 

where the structural-functional mapping is not one-to-one,66 but the key here is that certain 

interactions create functions that could not otherwise exist (the motion of the track 

connected to the rigid bar creates the push/pull that ultimately enables the climbing 

behavior). The cycles of the layered graph, or multiple levels of the hypergraph suggest 

why standard decompositions break down, and why SoS primer speaks of influencing 

behavior rather than controlling it. The underlying logic of the functional decomposition is 

that the outermost nodes are the independent functions that can be directly manipulated to 

achieve the higher-level function, and that this can be done recursively as the system 

becomes more complicated (every independent node can be further subdivided into more 

independent nodes). However, in the case of complexity, it is the intermediate, coupled 

functions that most directly cause higher level behavior. Unfortunately, those intermediate 

                                                 
66 Examples of structure-function mappings that are not one-to-one are shown in Figure 6 of [83]. 
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functions cannot be directly controlled,67 and the more cycles there are in the graph, the 

harder it becomes to simultaneously balance low level functions in order to achieve the 

higher level function.  

Gap: Standard functional decomposition methods do not extend to complex behaviors in 

the sense that independent functions at the extremes of the graph (those that can be directly 

controlled) no longer correspond to the coupled functions that directly cause the desired 

(complex) behavior.68 

 Readers familiar with graphs will immediately note that layered graphs are, in fact, 

directed graphs, and that the cycles discussed above do not satisfy the definition of a cycle 

in a directed graph. In the layered graph provided above, all edges can be redrawn as arrows 

pointing up. In order for a directed graph to have a cycle, there must be some kind of 

feedback loop (the higher level node must have an arrow pointing back down at a lower 

level node). Feedback loops will be briefly discussed in Section 1.7, but are largely outside 

the scope of this thesis. This thesis will only go so far as to say that a complex system can 

be represented using a functional decomposition who’s layered, undirected graph contains 

cycles (i.e. coupled functions). This will be treated as a necessary condition (see again 

Section 1.7), but will remain a topic for future study. 

Although these factors do not create a hard distinction between system and SoS, it 

is clear that an element/system/SoS hierarchy compatible with a model-based definition 

                                                 
67 This is where an engineer might be tempted to insert a simplifying assumption that would enable them to 

draw a graph where the complex function is represented by a single node at the bottom, and the coupled 

functions are hidden from view. This simplified graph would give the illusion that the system is not complex. 
68 A hopefully useful aphorism: you no longer have direct control over the direct cause because the true cause 

is indirect. 
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can be created, in principle, by identifying those behaviors that can only be attributed to 

the higher level of abstraction. There are at least four reasons a generalizable approach to 

this kind of hypergraph or layered graph creation has proven so elusive: First, the basic 

premise that properties can/ought-to be assigned to an object is “more a matter of 

describing how we think… than a matter of characterizing nature” [72]. Our brains are 

generally thought to be built for pattern recognition and possess the ability to associate 

abstract entities with one-another. Therefore, we naturally seek to categorize the entities 

we perceive despite the fact that those entities persist and interact without regard for such 

categorizations. Furthermore, we can only successfully create hierarchies of objects for 

whom our way of thinking is compatible with nature. Entities that cannot be somehow 

associated with stable patterns are difficult to understand. Second, utility is subjective, and 

complexity is creative. Without a complete, perfect understanding of the environment in 

which the complex system will operate, it is impossible to conceive of every way the 

properties and behaviors of the complex system and its parts will be observed or capitalized 

on by some other entity and vice versa. In other words, there is no way to predict every 

possible higher level interaction without some knowledge of what other objects exist at 

that higher level. If that were not the case, modeling the evolutionary tree of life on Earth 

backward or forward in time would be trivial. Similar observations appear throughout the 

SoS literature (e.g. see discussion of contextual systems in Section 1.3 of [73]). Thirdly, 

systems science can only ever classify an object, in general, as an “…of systems of systems 

of …”69 Every gadget can be decomposed into parts, and then into materials, and then into 

molecules, and so forth. What lies at the origin of the sequence? Atoms gave way to quarks, 

                                                 
69 Similar to the cursory “matter of perspective” observation made in Section 1.4.1 of [56].  
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and then possibly to strings (atoms are ‘obviously’ the consequence of interacting quarks 

and some argue that quarks are the consequence of interacting strings).70,71 For the systems 

scientist the question becomes, how does the sequence end, if it ends? Worse still, even if 

such an end could be reached, a complete, exact model of nearly any system would be 

impractical. Therefore, system engineers never directly control (i.e. interact with) every 

individual basic element of the system in question, nor do they operate with a complete 

picture of the context in which the system exists. Fourthly, many scientists and engineers 

tend to over rely on philosophical Reductionism (not to be confused with Reductive 

Analysis [73]) in their research and analyses (for arguments see [74] [75] [76] [77]72). 

Greedy Reductionism [73], in particular, presents the engineer with a fundamentally self-

defeating paradox (it is inherently dehumanizing). By claiming that an object is no more 

than a collection of parts, this philosophy essentially argues that one can best practice 

Systems Engineering by first assuming that the ‘systems engineer’ does not exist.73 More 

importantly, it creates a bias in the minds of scientists and engineers, which then further 

impedes their ability to create hierarchies of complex behaviors. See [78] [79] for an 

examples of this in medicine. Readers interested in long-form arguments are encouraged 

to review the aforementioned references. 

Acknowledging these challenges, various studies have proposed metrics for 

quantifying the complexity of a system/SoS, based on carefully selected SE definitions of 

                                                 
70 Some physicists argue there can be no particle more fundamental than quarks. See Section 2.5 of [108]. 

This argument is just for illustration. 
71 Philosopher and smart person Emily Levine interweaves this subject into her TED talk in a way that adds 

richer perspective to this discussion [296]. Thank you Emily. 
72 Explicit examples of the enduring appeal of Reductionism (including the hope of identifying the “Theory 

of Everything” argued against by Laughlin [75]) are available in Chapters 2 and 8 of [108]. 
73 Rowan’s paper on “reductive logic” traces this line of reasoning back to Descartes. He argues one major 

problem of this kind of logic is a “self-referencing paradox” summarized by the aphorism: “I think 

reductively, therefore I am not” [74]. 
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complexity. In an extensive review of complexity measures, Dr. Witold Kinsner, former 

President of IEEE Canada, states, “Complexity appears to be context sensitive, and cannot 

be defined universally, once and for all” [80]. Although there is truth to this statement, 

Kinsner’s review covers multiple scientific disciplines, which makes it impossible to define 

complexity universally. Within SE and SoSE, there is no reason to think some useful 

consensus on complexity is unobtainable. One common approach to measuring complexity 

is to use metrics derived from the graphs of the system/SoS physical or functional 

decomposition [56] [81] [60] [82] [83] [76] [58]. Metrics calculated from standard 

(decoupled) functional decompositions do not apply here. Metrics calculated from physical 

decompositions will confound complexity with complicatedness, making them unreliable. 

This leaves metrics calculated from graphs of layered, cyclic functional decompositions or 

hypergraphs. Of the aforementioned references that implement these metrics, none of them 

perform calculations on hypergraphs. Again within that subset, only Flanigan utilizes a 

cyclical, directed graph of a functional decomposition (see Figure 16 of [83]), but that 

graph depicts a single level of abstraction and no complexity measurements are taken using 

that graph (Flanigan’s graph-theoretic complexity measures are performed on structural 

decompositions, as in Figure 19 of [83]). A rigorous study of graph-theoretic measures of 

complexity on functional decompositions represented using layered graphs or hypergraphs 

appears to be an open topic in the literature, and is outside the scope of this work. The 

approach to functional decomposition provided by Brimhall et al. [84], combined with the 

aforementioned metrics appears to be a good starting point for such a study. 

Other methods are derived from Information Theory [85], such as calculating the 

information entropy [86] [87] [88] [86] [89] of a system to directly or indirectly measure 

complexity. There are also measures relying on thermodynamic entropy [90]. Many of 

these metrics are not one-to-one (e.g. the ratio measurement scale used in [60]). In such 

cases a SoS of several, decomposable systems can have complexity on par with a single, 
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complicated-and-complex system, or with a SoS of few, complex systems. Therefore, it 

can be a leap to make an ontological/categorical argument from any particular value of a 

metric [76].  

Still other methods are listed in the extensive, thoroughly referenced reviews by 

Kinsner [80] and Shalizi [91]. Most of the metrics reviewed by Kinsner are designed to 

measure forms of complexity outside the scope of this thesis (including structural, 

dynamic, synergetic, and design complexities [80]). However, Kinsner’s “functional 

complexity” is precisely a discussion of complex behavior. Unfortunately, it is also the 

topic Kinsner writes about the least (devoting to the topic roughly 7 sentences and 2 

references by the same author, within a 31 page paper). Kinsner mentions in passing that 

multiscale metrics can be used to measure functional complexity. Ay et al. created what 

they call a unifying framework for complexity measures, which covers multiple 

information entropy measures and is designed for hierarchies of interacting levels, would 

be directly applicable to several examples of finite systems [92]. Both Ay and Kinsner’s 

multiscalar measure do appear to be applicable, since layered graphs and hypergraphs 

capture this multiscalarity, but are only unambiguous after the graph is drawn, which is to 

say after the behavior has been identified and named. Prior to that (for example, using a 

data set that contains undetected complex behavior), the metrics may show interesting 

mathematical features when the complex behavior is exhibited, but there is no obvious way 

to determine what that behavior is given the value of the metric. Shalizi’s methods are 

closer in spirit to the ideas that will be adopted here, but they suffer the same drawbacks 

of those covered by Kinsner. In the absence of a rigorous method for functional 

decomposition (tied directly to mathematical models that predict the associated quantities), 

there is no clear cause-effect relationship between these metrics and qualitatively identified 

complex behaviors [67].345 These metrics suggest the possible existence of complex 
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behavior, without specifically identifying what that behavior is, how it is derived from 

system interactions, or how it should be modeled at the SoS level. 

In his PhD Thesis, Dr. Domerçant discussed Kinsner’s observations and concludes 

that “many of the existing complexity measures developed by complexity scientists tend 

to be very domain specific or too theoretically abstract to usefully apply to real world 

systems.” He subsequently argues that “the overarching reason for this is that the diversity 

that exists among both natural and engineered systems makes it difficult at best to define 

an absolute measure of complexity that is applicable to any and all systems…” [60]. One 

benefit of the model-based definition of a system is that it does not make the distinction 

between engineered and natural systems (or, at least, it need not74). Furthermore, Kinsner 

appears to argue that complexity definitions are discipline-specific. Two excellent 

examples are the complexity of a graph in mathematics and the complexity of an algorithm 

in computer science, the latter of which will be explored in this thesis. Whatever challenges 

a system engineer may encounter in defining complexity for all systems, it appears that a 

lack of theory connecting quantifiable data to the qualitative identification of complexity 

leads to poor problem formulation methods that undermine the engineer’s ability to clearly 

identify complex behavior. 

Taking a decidedly practical tone, former director of the Research School of 

Systems Engineering at Loughborough University, Dr. R. Kalawsky describes the problem 

this way: “The inevitable complexity of today’s products makes it difficult for a single 

individual to understand where the peaks in the product’s performance lie against a 

landscape of different and often subtle design solutions where undesirable emergent 

behavior appears…” [93]. Dr. Kalawsky then goes on to list “Development of reliable early 

detection of undesirable emergent behaviour… especially for Systems of Systems” as one 

                                                 
74 Reconciliation between natural and engineered systems can be achieved by adopting a non-

anthropomorphic definition of “purposeful.” 
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of the Grand Challenges in the Verification, Validation and Assurance of extremely 

complex systems [93]. The INCOSE “Systems Engineering Vision 2025,” which 

communicates the top ambitions for the profession as a whole, also speaks to the need for 

“identifying emergent behaviors and dealing with unanticipated behaviors” [94]. INCOSE 

envisions a future where, by 2025, “standard measures of complexity will be established, 

and methods for tracking and handling complex system behaviors and mitigating undesired 

behaviors will be commonplace” [94]. Achieving this will require, “a shift in emphasis 

from reductionism to holism,” adding that “Systems Science seeks to provide a common 

vocabulary (ontology), and general principles explaining the nature of complex systems”  

[94]. Clearly, the practical problems faced by engineers have their roots in the knowledge 

gaps confronting systems science. With these priorities in mind, the overarching problem 

for this thesis can be stated as follows, 

Research Problem: The traditional SE approaches to defining the properties and 

behaviors of a SoS that are distinct from those of its constituent systems lacks 

generality and traceability, and results in designs whose behaviors are only partially 

understood, the remainder of which can be exploited for some unintended purpose. 

In his paper on complexity and emergence, Philosopher of Science, Dr. Miguel 

Fuentes, observed, “There is somehow a strong connection, at least in a huge part of the 

community discussing emergent phenomena and emergent properties, between complex 

systems and emergence” [95]. Nevertheless, Dr. Vadim Kim observes in his PhD Thesis 

that, “There does not seem to be a clear connection between complexity measures and 

emergence. There is neither a ‘critical’ level of complexity that yields emergence nor is 

there a problem-independent case to be made that higher measures of complexity yield 

emergence” (emphasis added) [59]. Since SE currently lacks methods for decomposing 
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complex behavior, it is plausible that the lack of correlation between emergence and the 

measures studied by Kim is the result of researchers unknowingly measuring 

complicatedness rather than complexity, or taking measurements that confound 

complicatedness with complexity.75 Furthermore, most references on complex systems or 

SoS within the SE/SoSE literature cited in this thesis explicitly associate complex systems 

with emergent behavior (including Kim). 

1.7 Emergent Behavior 

Supposing that ‘search and rescue’ is a behavior unto itself, it would be a perfect 

example of what an emergent behavior is not: a simple series of vaguely contemporaneous 

behaviors [96]. Defining what an emergent behavior is, on the other hand, is much more 

controversial. As with SoS, and complexity, “there is no formal, universally agreed 

definition of emergence” [97]. This section aims to show the “strong connection” [95] 

between concepts that underlie complex behavior, emergent behavior, and SoS before 

stating the Research Objective of this thesis. 

In the philosophical literature, the concept of emergence exists, in part, to explain 

causation. This thesis will study causation within the context of mathematical models and 

computer algorithms, wherein causality is unambiguously described (in principle). Readers 

interested in the broader philosophical discussion on causation are referred to [98] [99].76 

Two important types of causation discussed in the emergence literature are upward and 

downward causation. Upward causation is the anodyne, loosely defined idea that the 

                                                 
75 At the end of Section 5.4.1 in [58], Kim states “These complexity measures only measure how much work 

it takes to describe or explain a process but does not actually capture the aspect we are most interested in: the 

system behavior.” This is similar to the hyper-graph argument made earlier. See also CHAPTER 4. 
76 See the Appendices. 
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elements of a system contribute to, and thereby cause, the properties and behaviors of the 

system [100] [96] [101]. Downward causation is the much more contentious idea that the 

system causes changes in the properties of its elements directly, somehow, [96] [102] or 

by constraining them [101], or that a system interacts with other elements/systems 

directly77 [100]. Both types of causation use the semantics of different levels, as in standard 

SE decomposition techniques. If downward causation were graphed using standard 

techniques, it might resemble a functional decomposition with feedback loops.78 For 

example, see Figure 3 in [97]. It is not at all unreasonable to speak of feedback loops within 

a SoS given that, for system X contained in the SoS, the other systems within the SoS form 

part of the local environment of system X. The challenge arises when one endeavors to say 

that there is a feedback loop between a property of a SoS and a property of one of its 

systems. Nevertheless, if the number of systems is large enough, the interactions between 

system X and the other systems far outnumber interactions between system X and 

components of the environment external to the SoS, which would make the SoS the 

predominant influence (see similar arguments in [103]).  

These forms of causation are also consistent with the model-based definition of SoS. 

That definition assumes that a SoS ‘exists’ with ‘properties’ and ‘behaviors’ that are 

distinct from, and generated by the behaviors/interactions of its constitutive systems. 

Relating this to causation, any SE can casually observe that ‘governments collect taxes’ 

and ‘tax collection reduces individual short-term financial liquidity’ as though government 

                                                 
77 As opposed to saying the elements of system X interact with the elements of system Y, thereby making the 

interaction of X with Y somehow indirect or secondary. For example, the statement ‘two people hug’ can be 

thought of as an indirect cause-effect relationship, while ‘atoms press against atoms’ is the true, underlying, 

direct cause-effect statement (never mind the quarks, etc.). 
78 See [143] for discussion of feedback loops. 
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exists (a SoS with properties and behaviors upwardly caused by the citizenry) and is 

capable of directly affecting an individual citizen (downward causation) in a sense 

equivalent with physical object interaction.79 These are examples of both the ‘multi-

scalarity’ and ‘causal & influence networks’ inherent in complex systems (Figure 6). This 

leads to natural extensions, such as the hyperstructures presented by Baas [104], which are 

directly analogous to Systems of SoS, and hypergraphs (see Appendix). 

The challenge in philosophy, as in SE [94], is to develop a logical approach for 

constructing a hierarchy that illustrates the direction of causation across/among levels as 

well as a foundation for assertions that some object exists.72 In philosophy, this is referred 

to as the development of an ontology [105]. As will be shown later in the document, 

multiple scientists and engineers have endeavored to create an ontology for complex 

systems and emergent behaviors but did not refer to their work as such (it is an uncommon 

term in engineering). Since the scope of this thesis remains within the ‘comfortable’ 

limitations of mathematical and computational models, it is worth briefly revisiting the role 

reductionism has played within physics, where the identification of elements and levels is 

fairly uncontroversial and the predictive power of the current mathematical models is well 

established. In that field, bridging atomic-level properties or theories up to macroscopic 

properties of engineering materials is often achieved by80 (1) assuming idealized particles 

with few or no interactions,81 and/or (2) eliminating inhomogeneity by assuming intervals 

of time or space large enough for stability to be achieved, usually in the form of taking 

                                                 
79 Readers accustomed to perceiving a hard distinction between the existence of objects like quarks, atoms, 

solar systems, a child tethering a kite, a government, or a culture are encouraged to read [51], as well as the 

various arguments attributed to Albert Einstein in [108] (see also Footnote 72). 
80 A similar argument is made in [115]. 
81 For example, relating Kinetic Theory to the Navier-Stokes Equations [292]. 
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limits,82 and/or (3) using a patchwork of empirical, semi-empirical and/or theoretical 

models whose prediction range overlaps,83 and then mathematically smoothing the often 

conflicting results of these coupled/interwoven models using a combination of 

mathematically plausible functions and expert judgment.84 Although these methods are 

general, none of the resulting solutions generalize: (1) all simplifying assumptions are case-

specific by definition, (2) what was once believed to be a micro/macro dichotomy has 

become a list of several levels complete with mathematical models for each level,85 and a 

hierarchy of mechanical, electrical, thermal properties, etc., that operate at overlapping 

scales (3) all (semi)empirical models are specific to some controlled, laboratory or 

manufacturing setting, and all expert judgment is shaped by limited experience, at best, 

and cognitive bias at worst [106] [107]. When struck by the difficulties in traversing levels, 

some physicists operating from a reductionist philosophy explain that the difficulties are 

merely due to the sheer number of calculations required to predict higher level properties 

from lower-level data, and/or a mere lack of initial data ( [108], for example, see the caption 

of Figure 2.1 in [109]). However, physicist and Nobel Laureate, Dr. Philip Anderson 

counters that this is a misuse of reductionism: 

The main fallacy in this kind of thinking is that the reductionist hypothesis 

does not by any means imply a “constructionist” one: The ability to reduce 

everything to simple fundamental laws does not imply the ability to start 

from those laws and reconstruct the universe… The behavior of large and 

complex aggregates of elementary particles, it turns out, is not to be 

understood in terms of a simple extrapolation of the properties of a few 

particles. Instead, at each level of complexity entirely new properties 

appear… at each stage entirely new laws, concepts and generalizations are 

                                                 
82 As is the case for classical thermodynamics and continuum mechanics (see also discussion in [107]). 
83 See Figure 1.1 of [108]. See also [294] 
84 For example, see the discussion of “law of the wall” for turbulent flows [293]. Nonlinear perturbations of 

simpler models are also commonly used. 
85 In materials science, the length scales are electronic, atomistic, microscopic, mesoscopic, and continuum 

[108], never mind engineering, geology, or astrophysics. 
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necessary, requiring inspiration and creativity to just as great a degree as 

in the previous one. Psychology is not applied biology, nor is biology 

applied chemistry. [110] 

He later goes on to give the example of determining the shape of the atomic nucleus 

(loosely speaking), saying “Starting with the fundamental laws and a computer, we would 

have to do two impossible things – solve a problem with infinitely many bodies, and then 

apply the result to a finite system – before we synthesized the behavior.” [110] Although 

physicists do not often use the terminology of emergence,86 Anderson then uses the 

example of a crystal to highlight that, as the number of atoms increase, their organization 

forces new kinds of behavior to dominate the atoms in system that would not be obvious 

given the laws that govern their behavior individually.87 He ultimately says, “…the whole 

becomes not only more than but very different from the sum of its parts” [110]. Within 

physics, these abstractions are closely associated with length or time scales, and thus, to a 

physicist, bridging levels of abstraction is equivalent to traversing length or time scales. 

However, as Philosopher Robert Batterman argues from the history behind the derivation 

of the Navier-Stokes Equations, “It seems that here may very well be a case where a 

continuum point of view is actually required: Bottom up derivation from atomistic 

hypotheses about the nature of elastic solid bodies fails to yield correct equations governing 

the macroscopic behavior of those bodies” [108]. The challenges faced by practitioners in 

a field as old and successful as physics make it clear that having a set of empirically 

                                                 
86 Physicists prefer terms like ‘multiscale,’ [295] ‘states,’ or ‘phases’ to distinguish between abstractions. For 

example, one U.S. Department of Energy report on multi-scale physics [282] uses ‘emergent behavior’ and 

‘emergence’ in a more layman sense. 
87 In the literature on emergence, this phenomenon would fall under the general category of self-organization, 

which is discussed in CHAPTER 3. 
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validated equations that characterize the behavior of the elements of a system is only one 

step toward characterizing the behavior of a system. 

Returning to the literature on emergence, several authors have discussed the basis of 

the relationships between the concepts of scales, scopes, and levels. Ryan, in particular, 

has pointed out that the notion of abstract hierarchical levels has contributed to a 

misunderstanding of the cause-effect relationships within emergent behaviors, sometimes 

even leading to circular arguments [111]. Defining scope as the ‘spatial’88 and temporal 

boundary of a system, “A property is a novel emergent property [if and only if] it is present 

in a macrostate but it is not present in any microstate, where the microstates differ from the 

macrostate only in scope.” He further explains, “This class of emergent property arises 

from structure that is extended over the scope of the system… There is a difference between 

the local and global structure in any system that exhibits emergent novelty. This explains 

why emergent novelty cannot be understood or predicted by an observer whose scope is 

limited to only one component of a system.” With that argument in mind, a behavioral 

hierarchy with abstract levels would be something overlaid onto some identified emergent 

behavior after the fact. Whatever one chooses to label as macro/microstate can only be 

rigorously justified after the appropriate scopes have been identified somehow. Ryan also 

defines and discusses the terms resolution, and scale. Unlike the sense commonly 

                                                 
88 He seems to argue such that any metric space is suitable for scope/boundary definition, thereby generalizing 

beyond the length/time scales common in physics. Recall that ‘the energy cascade’ in fluid flow turbulence 

has scales in wave number space. Therefore, although it is uncommon to generalize as Ryan does, this 

concept is not totally foreign to physics. Also, the ‘boundary’ of a system, in SE, has to do with determining 

the set of functions, interactions, and structural components uniquely, or most closely associated with the 

system in question. Thus, setting a boundary has as much to do with conceptually isolating a system from its 

environment as it does ‘zooming in or out’ (changing scope). The difference with emergent behaviors is that 

one stops zooming out once the behavior has been identified. That said, some causal phenomena appear to 

be scale-free. The interested reader is referred to Dr. Sapolsky’s discussion of fractals [134]. 
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employed by physicists, scale seems to refer to multiplicatively magnifying/diminishing 

the magnitude of some property so that it becomes easier to distinguish from other 

properties at some given resolution. Resolution, for the purposes of this thesis, is simply 

the observer’s ability to distinguish between the behaviors of the components of a system, 

thereby contributing to the epistemological challenges of emergent behavior identification 

(but not ontological challenges). Febres associates scale, scope, and resolution with the 

length of the description required to communicate an observation of a process, and in so 

doing, argues against Ryan’s definition of ‘scale’ [112]. Ryan’s usage of scale falls outside 

the scope of this thesis, as do Febres’ arguments.89 However, there is a sense analogous to 

scale in which quantities associated with emergent properties, as will be defined in this 

thesis, can be multiplied (or more appropriately, exponentiated) and directly tied to their 

resolution, according to Ryan’s use of the term (see Section 3.2). 

There is a consensus in the literature that emergent behavior ought to refer to 

behavior that cannot be described by simply aggregating two or more independent system 

behaviors [113] [111] [114]. Szabo & Teo make this argument along semantic and set-

theoretic lines [96]. In arguing that emergent properties do not refine (referring to a 

discontinuity of language compatible with Szabo & Teo’s argument), Polak & Stepney 

essentially argue that emergent properties, and hence behaviors, cannot be decomposed 

[115]. In each case, using terminology unique to their discipline, “non-aggregative” 

behavior is simply non-SE terminology for behavior that cannot be decomposed using 

                                                 
89 Febres’ arguments and metrics rely heavily on the length of information description, which will not be 

used in this thesis in that same way. Note that Ford’s thesis [26] also relies on length of information 

description, but does not extend to emergent behavior, remaining instead within the context of decomposable 

behavior. This thesis will use dimension in a manner analogous to length of information description. 
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standard techniques.90 Philosopher of Science, Dr. Wimsatt, however, elaborates further 

on what makes a system property non-aggregative, outlining four requirements for 

aggregativity [116]: (1) Inter Substitution: the property remains invariant as the system’s 

components are rearranged (2) Qualitative Similarity: the property must be qualitatively 

the same after the addition or removal of components (3) Decomposition and 

Reaggregation: the property remains invariant under decomposition and re-aggregation of 

components, (4) Linearity: there are no cooperative or inhibitory interactions between 

system components. Although these conditions appear to be readily compatible with 

decomposable systems, Wimsatt argues that the only truly non-emergent property in 

existence is mass.91 Some authors resist the idea that the overwhelming majority of the 

universe is comprised of emergent objects (e.g. [117]). However, this author considers 

Wimsatt’s argument perfectly reasonable (at a philosophical level) given that the majority 

of object types in this universe are not-quarks, the majority of organism types on Earth are 

not-single-celled, and the majority of mathematics is not-linear, and so on. Ryan also 

discusses the significance of non-aggregativity, saying, “a Gaussian distribution is not 

organized, nor is it an emergent property of [independent, identically distributed] 

components,” concluding that “… nonlinearity is a necessary condition for emergent 

properties” [111] illustrating once again that most of the concepts underlying behavior 

hierarchy/heterarchy, functional decomposition, complex behavior, emergent behavior are 

                                                 
90 Anticipating an objection: this applies exclusively to non-axiomatic properties/behaviors. Axiomatic 

properties cannot be decomposed by definition. The decision of what element/property to treat as axiomatic 

is outside the scope of this thesis, as will be explained in the subsequent chapters. 
91 To his knowledge, of course. There may be others that fit his criteria. 
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interchangeable (see Figure 6).92,93 The intersection of this terminology represents the 

extent to which the usage of these terms in the SE, SoSE, and philosophical literature is 

relevant to this thesis. To eliminate confusion among the technical terms used in this work, 

the SE use of “complexity” can be subsumed into “emergence” and “complex behavior” 

into “emergent behavior” for the remainder of this thesis.94 

One important note on the subject of aggregating behaviors is that although several 

authors repeat the phrase “the whole is greater than the sum of its parts,” Kubík points out 

that many authors fail to define what they mean by “sum of the behaviors of individual 

parts” [114]. Szabo and Teo, as well as Kubík, treat the term “sum” as a union of behaviors 

in order to apply set theoretic operations to their grammar-based approach [96]. However, 

“sum” is most commonly associated with addition and linearity. Ryan provides one of the 

clearest explanations, stating that “superpositionality, averaging and other linear operations 

cannot be the source of emergent properties… because a linear operator evaluates equally 

for any arrangement of the components… so the global structure is always exactly the sum 

of its parts” (emphasis added) [111]. This does not mean an emergent object cannot have 

a linearly computed property. It simply means that some linear property of a set cannot be 

the source of emergence. For example, a block of ice can be said to have a center of gravity 

and its macroscopic dynamic behavior can be predicted using classical mechanics, but it is 

                                                 
92 Anticipating another objection: this is the steady convergence of ideas, and not the trivial consequence of 

different authors gradually co-authoring work. See similar remarks by Phelan [172]. 
93 This is meant in the general sense. If an engineer is handed two sets of properties, it may be an association 

fallacy to equate the non-aggregative properties with the non-decomposable properties. For example, 

consider a set of atomic properties and molecular properties. There may be a non-decomposable molecular 

property in that list, as well as a set of non-aggregative atomic properties. The mere fact that they possess 

these attributes is not enough to prove that the former is caused by the latter. 
94 This is a statement on terminology and scope of research, not a formal definition of either term. A definition 

will be proposed in CHAPTER 4. 
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the interatomic forces that generate the block of ice, not the mere averaging of atomic 

positions. 

Despite the challenges in emergent behavior decomposition, Kubík argues “there is 

no reason (at least at present) to think that there are phenomena not reducible to micro-

macro relationships” [114]. This thesis agrees, so long as “reducible” is not construed to 

mean decomposable in the traditional sense. Thus, a gap in the SE, physics, and 

philosophical literature is: 

Gap: There is no method by which component interactions can be used to predict the 

existence of an emergent system-level property or behavior and traceably attribute a 

quantifiable, system-level property or behavior to that system.95 

Here, the existence of a system is contingent on the interaction of its components, not 

merely the collection of its components (as suggested by the model-based definition). This 

gap leads to the overarching objective of this research. 

Research Objective: To develop a method for rendering non-decomposable, 

quantifiable SoS properties and behaviors traceable to the patterns of interaction of 

their constitutive systems, so that exploitable patterns identified during the early stages 

of design can be accounted for. 

In order to achieve this objective in a manner conforming to standard engineering 

practices, a mathematical approach is needed for identifying non-decomposable behaviors, 

                                                 
95 In the time since this thesis was proposed, two studies were found that outlined methods for associating 

emergent behaviors with a system’s components (to some extent): [352] [353]. Discussions of these studies 

have been added throughout the thesis. The study in [208] was known prior to the proposal, and is discussed 

in CHAPTER 3. 
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identifying components engaged in relevant patterns of interactions, and tracing the 

aforementioned behaviors to those components. 

Gap: There currently exists no single mathematical method that performs all the steps 

needed to satisfy the research objective. 

While a variety of tools and techniques exist, the research presented thus far indicates that 

the primary reason no such method has been developed yet is due to the scientific 

preference for reductionist explanations of phenomena, built on reductionist ontologies. 

Gap: An ontology that accommodates emergent behavior and enables falsifiable claims of 

system “existence” is needed as a philosophical foundation for a mathematical method. 

It is also clear from the broader literature that there is substantial disagreement over the 

definition of terms such as “complex behavior” and “emergent behavior.” This makes it 

harder to develop an ontology since it confuses the discussion of various topics. 

Gap: Some acceptable baseline set of definitions for emergent behavior is needed in order 

to build a useful ontology. 

These gaps lead to the first question that this thesis must answer: 

Research Question 1: Which essential features of emergent behavior constitute 

necessary conditions that can be implemented in a mathematical/computational model? 
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So many definitions and types of emergence have been proposed and debated over 

its 2,300 years as a concept in Western literature96 that Abbott has recently called for 

avoiding the term altogether saying, “given its burden of intellectual baggage there is little 

reason to continue to use it” [62].97 Philosopher of Science Laurent Jodoin remarks on the 

sheer number of definitions and volume of literature, saying that it is easy to get lost or 

inadvertently confined within an incomplete or biased framework [118].98 The conceptual 

stance taken by this thesis will generally align with the ideas, criticisms, and analyses of 

Mitchell, Baas, Ryan, Kubík, Wimsatt, Crutchfield, Abbott, and Minati. This work 

distinguishes itself from those authors largely via its methodology and hypotheses. Readers 

interested in summaries and reviews of various types of emergence are referred to [114] 

[97] [118] [59] [119]. Of the categories frequently discussed in the literature, the term 

closest to a behavior that is not decomposable but is traceable would be Weak 

Emergence,99 which is defined as any system-level behavior generated by component-

level behaviors that can only be observed by simulation (or direct empirical observation) 

[120] [121]. In other words, there is no obvious way to predict weak emergence simply by 

knowing the rules that govern the behavior of a system’s parts, just as one cannot predict 

the center of gravity of a water molecule simply by knowing the properties of hydrogen 

and oxygen. 

                                                 
96 Many papers on Emergence trace the concept back to Aristotle [72], and draw a line through Western 

literature [58]. Readers interested in how complexity/emergence played a role in Eastern thought are 

encouraged to read “Chinese Medicine and Complex Systems Dynamics” [78]. 
97 Readers interested in a review of the term’s history are referred to Appendix A in Kim’s thesis [58], and 

[283]. Standford Professor and Neuroendocrinologist Dr. Robert Saposlky has also published a relatable and 

very insightful series of lectures/talks on Reductionism, Complexity and Emergence [280] [134] [281]. 

Neither researcher discusses Post-Modernism or Reductive Analysis despite their overlap [73]. 
98 His thesis utilized 633 references to analyze the relationship between emergence and entropy. 
99 See also an interesting discussion of strong and weak emergence by Lawhead [396]. Not only do the 

concepts in his paper somewhat resemble this thesis, his exploration of constraints to dynamical systems can 

be extended to the work done here. 
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One noteworthy study by Kokar, Singh, and Lu used Formal Concept Analysis [122] 

on a subset of the literature to identify eight concepts often associated with emergence [97]. 

The listed concepts not already explicitly discussed include: radical novelty, 

unpredictability, irreducibility, dynamical, coherence, decentralized. Radical novelty is 

described in terms of the organization of components such as “new structures, patterns of 

behavior of properties” [97]. The authors appear to at least partially conflate 

unpredictability with irreducibility. When some writers refer to unpredictability, they are 

generally referring to the epistemological challenges of emergence identification 

(including arguments against treating the subjective experience of surprise as a necessary 

condition) [123] [101] [124]. This thesis will focus more on ontological questions of 

emergence identification, and strive to expect the unexpected. Irreducibility is presented in 

a manner synonymous with non-decomposability, wherein an emergent property “is 

irreducible if [it] cannot be deduced from the properties of its constituent parts” [97]. 

Dynamical means that emergence is the result of changes over time, and so the models 

used here will include time. Decentralized means that no single entity is controlling the 

behavior of all components. Unfortunately, in cases where every entity follows the same 

rule set (e.g. atoms obeying laws of physics), or every entity follows a different rule set 

(e.g. toddlers doing anything at all) this concept does not provide a mechanism for 

distinguishing emergent from non-emergent behavior. Cases between these extremes are 

an interesting area of research, but systematically studying these possibilities falls outside 

the scope of this research. Finally, coherence is simply referred to as “logical consistency 

or quantitative continuation” [97]. On the surface, this appears to be a departure from the 

statistical correlation sense of the term used by Goldstein (their reference), “emergents 
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appear as integrated wholes that tend to maintain some sense of identity over time. This 

coherence spans and correlates the separate lower-level components into a higher-level 

unity” [119]. Although Goldstein’s reference to correlation is inspiring (see Sections 3.1-

3.2), neither work develops the notion of coherence further. 

Supervenience can be considered another necessary condition of emergence [118], 

but has become something of a problematic term. Although it remains popular in the 

literature on emergence, its use in the larger philosophical literature has changed over time 

[125]. Philosophers often discuss whether a property ought to be classified as emergent, 

supervenient, or causal100 using various nuanced definitions [100] [126] [127] [128] [129] 

[130].101 Its original use is largely equivalent to the current use of emergent behavior if that 

behavior is attributed to a SoS: a property is supervenient if it exists in addition to the 

properties of the constitutive systems that generate it [125]. In this sense of the term, using 

supervenience as a N.C. would create a circular argument. 

Grammar-based methods for emergence identification, most of which have a set-

theoretic component to them, are only suitable for use after emergence has been identified 

and named by a subject-matter expert (Szabo & Teo refer to this as “post-mortem” 

identification [131]) [114] [132] [111]. They are post-mortem because the determination 

must first be made that something is emergent before it can be named and assigned to a set. 

Implementing these approaches would amount to reverse-engineering or validating an 

emergent behavior [111] [131], unlike a N.C., which is an a priori criterion used to 

                                                 
100 This ties directly back to the discussion on downward causation. To say that “the property of a SoS 

supervenes on the property of a system” does not necessarily imply it can affect that property (see references).  
101 See also discussion in Section 1.2.1 of [133]. 
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facilitate prediction. Another method compatible with grammar-based approaches is the 

classification scheme by Chen and Clack, which borrows the scope and resolution 

definitions from Ryan and adds the qualification that “emergent properties are those not 

explicitly defined in the component specifications” [133]. In the context of their approach, 

this means that an emergent behavior can be characterized by tracking the change of some 

property over time, subject to a rule (a conditional statement that triggers the code to change 

the property). Although they do not go into details on specific implementations, they 

suggest that those rules are associated with the organization of the components being 

modeled. The behavior is called complex if the cause-effect relationships are unclear. 

While this is consistent with the previous discussion on complexity, this approach is also 

post-mortem and cannot be a necessary condition here. 

Some authors use the changes to the length of the description of an event as indicators 

of emergence (see Kolmogorov complexity later in this section). Although these authors 

rarely refer to mathematical syntax (which can sometimes appear to use deceptively 

compact notation), it is reasonable to think that replacing one set of equations for low-level 

behavior with a suitable set of equations for high-level behavior could result in a change in 

description length.102 Febres [112] also explores the notion of two-dimensional description 

lengths in a context tangential to emergent behavior. Although the work by Febres does 

not have direct application here, a notion of model description changes will be used in this 

thesis (see Sections 3.1–3.2 and CHAPTER 4). 

                                                 
102 Since computers implement mathematical models, there are two direct analogies in computer science: (1) 

replacing one machine-code computer program with a shorter program, (2) replacing a high complexity 

algorithm with a low complexity algorithm. 
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As with complexity, a variety of quantifiable measures of emergence have been 

proposed. Before proceeding to metrics aiming to predict emergence, it is worth noting that 

various nonlinear behaviors have been associated with emergence and thus, in some sense, 

are considered to indicate it (these appear in the complexity literature as well). They include 

chaos, fractals, bifurcations, and Turing instabilities (see reviews in [134] [135] [59] 

[118]). Although bifurcation is a feature of certain classes of differential equations, 

physicists associate bifurcation with physical structures of atoms undergoing some form of 

symmetry breaking (see [110] [136], and the discussion on self-organization in [118]). 

Thus, again, the mere fact that components have one or more arrangements that persist over 

some time interval is a N.C.103 Applying this to some scenario would require observing a 

change in arrangement over time, which, when performed spontaneously, is referred to as 

self-organization.87 Recall that these nonlinearities only indicate emergent behavior when 

they occur in the context of some form of interaction, as is the case with self-organization 

since there must be some underlying mechanism that generates and perpetuates the 

structure. 

As with complexity, there are several information-theoretic measures of emergence. 

Some measures compute the so-called statistical complexity of the information in the 

model (see references in [133]), which can potentially indicate that emergence has occurred 

although it might be difficult to single out the emergence-causing interaction in a model 

depicting multiple simultaneously occurring interactions.104 Fuentes defines the total 

information of a model [134] as the sum of a measure of system complexity and a measure 

                                                 
103 Whether that structure is symmetric is case-specific, and thus not a N.C. considered here. 
104 Most statistics discard or mask sample-specific information by definition. 
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of system disorder. Fuentes calculates the system complexity using a function that takes 

the value of the control parameter of a differential equation (e.g. a coefficient from an 

equation characterizing bifurcation) and computes the Kolmogorov complexity, while the 

measure of system disorder is a function of its information entropy. The Kolmogorov 

complexity is defined as the length of the shortest description of an object in binary (e.g. 

the number “13” has the 4-digit description “1101”) [137]. However, the Kolmogorov 

complexity is generally not a computable function, nor can it be approximated in a practical 

way, making Fuentes’ metric intractable [137] [138]. Nevertheless, the notion of measuring 

the complexity of a model (loosely speaking, similar to Fuentes) is not often found in the 

literature and will be used in this thesis. Information entropy measures, such as the Shannon 

information entropy, are often associated with emergence [66] [118]. Since information 

entropy has an analogy with thermodynamic entropy,105 and thus energy, authors have also 

considered computing the energy of system components in order to identify emergence. 

However, such energy and entropy metrics discard substantial amounts of information 

(energy in particular discards structural information [80], and entropy is not one-to-one),106 

making them post-mortem techniques. 

 Still other metrics have been considered. Chan proposes measures based on 

counting the number of interactions (the measures themselves are statistics) occurring 

within an Agent Based Model [139].107 Although it is interesting to observe the relationship 

                                                 
105 As stated earlier, some citations use the term “complexity” rather than emergence. See Section 1.5 for 

additional references computing some form of entropy. 
106 For example, the Shannon entropy is closely related to the expected value of the Kolmogorov complexity, 

meaning that behaviors (via their signals) are analyzed collectively, not individually. Thus, as the number of 

system component interactions increase (each potentially increasing or decreasing entropy), the ability to 

single out the relevant emergent behavior diminishes. 
107 Still more methods applied to (social) networks are listed in Chan’s references [138]. 
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between interaction distribution shapes and the patterns of interaction they correspond to, 

Chan does not argue that this process can be reversed (that knowing a distribution implies 

knowing the pattern that will take place). Rather, Chan observes that the distributions 

deviate from normal when emergent behavior is present, and appear normally distributed 

in the absence of emergent behavior. Fisch et al. use measures of divergence [140], which 

detect a shift in the distribution of information entropy as the behaviors of a set of systems 

changes over time, and then measure the dissimilarity between the two distributions. These 

metrics are later adopted by Kim to perform design space exploration [59]. Kim argues that 

one can avoid or encourage the generation of emergent behavior by identifying regions of 

the design space that contain sharp changes in divergence measures. Kim’s approach, 

however, does not go so far as to say what those emergent behaviors will be. Hovda 

measures the “amount of simulation” required to generate weak emergence [141]. 

However, Hovda’s method identifies propositions about the system, rather than emergent 

properties of the system. Finally, Seth proposes using a nonlinear adaptation of Granger 

causality to identify weak emergence (he refers to this as G-emergence) [142]. Granger 

causality is named after the mathematician that first introduced a linear regression 

technique for statistically determining whether a variable X, for example, has a larger 

influence on the time-evolution of variable Y, than, past values of Y itself. As proposed by 

Seth, this technique will be revisited in Section 5.1.1 as a means for identifying causal 

relationships between low-level and high-level properties. However, the calculation of G-

emergence, itself, is only meaningful after some property has been determined to be 

emergent. Since (in the abstract) the number of higher-level properties is potentially 
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infinite, there remains a methodological gap in the literature, which this thesis will strive 

to fill: 

Gap: There is no method in the literature for determining the number of emergent 

properties a system can have. 

 To the extent that complexity and emergence are interchangeable, the 

aforementioned argument against complexity measures (which have the potential to 

conflate complexity with complicatedness) can be used against these measures of 

emergence. Like the grammar-based approaches, many of these metrics can only be applied 

post-mortem. It does not appear that any metric has gained wide acceptance (some are too 

recent to have gained traction). Although a thorough comparative analysis of these metrics 

on some canonical case would be an excellent contribution to the literature, it is outside the 

scope of this thesis. This is due, in part, to the fact that it is unclear just how many of these 

metrics could be applied to the same canonical test case. For example, it is unclear that the 

transient length, clustering coefficient, or exponential growth proposed by Dogaru [143] 

will extend beyond cellular automata in an unambiguous manner.108 For example, a 

clustering coefficient is not one-to-one for clusters of objects that have different shapes (a 

collection of squares versus circles), and that becomes worse when those shapes are 

allowed to vary in size. Furthermore, to be considered canonical, the test case would require 

a consensus on the emergent behavior it exhibits. Such consensus only appears in the 

literature for the simplest cases. For example, there is some qualitative consensus on the 

                                                 
108 Of the three, the transient length is the easiest to generalize, but not only is the equilibrium condition it 

depends on case-specific, it may not be unique in other applications. 
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emergent behaviors demonstrated in the Boids model, but little agreement on what 

quantities to associate with that emergence (see Section 3.3). 

The collection of candidate conditions reviewed thus far is insufficient for 

application to SoS modeling as required by the Research Objective. For example, there is 

no mechanism/justification for making the ontological leap from a collection of quantities 

to the declaration of the existence of a thing.109 Then, there is no method for determining 

the number of properties the SoS has, which translates to an inability to predict/model its 

behaviors or interactions. Finally, there exists no decision procedure (or even analysis 

procedure) for selecting one or more properties to assign to the SoS (these gaps will be 

formally restated in CHAPTER 4). To restate the problem in layman terms, 

Any six-year-old can give you a dozen examples of physical objects, and 

most people with at least an undergraduate course in philosophy can also 

give examples of non-physical objects. But if asked to produce a definition 

of ‘physical object’ that adequately captures the distinction between the 

physical and the non-physical, the average person can offer little more than 

hand-waving. [51] 

A point perhaps missed by many reductionists is that a collection of interacting atoms 

forming a molecule (or at least our description of it) is just as abstract as a collection of 

interacting quarks forming a proton, which is just as abstract as a fleet of ships, or 

continuous materials. In this sense, the problem in the emergence literature is the same 

problem faced by systems engineers, or physicists, or ship designers performing fleet 

synthesis studies. It is relatively easy to informally identify an object, but it can be very 

challenging to rigorously define and model that object.  

                                                 
109 This statement is deliberately broad since, again, the model-based definition permits a SoS (the “thing”) 

to be anything from a collection of atoms to a collection of military ships. 
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One of the more influential objections to the concept of emergent behavior was 

written by Philosopher Dr. Jaegwon Kim. An accessible review of his arguments, 

particularly his causal exclusion argument, is presented in [126]. Essentially, Dr. J. Kim’s 

causal exclusion argument states that any explanation of physical cause/effect attributed to 

an emergent property is redundant (and therefore unnecessary) because it implies the 

existence of another explanation in terms of the lower-level components engaged in the 

complex behavior (the lower-level components presumably being those that are truly real). 

While this is perhaps compelling at a philosophical level, engineers take for granted that 

real pipes are actually built to transport real water.110 With this perspective in mind, 

Philosopher of Science Dr. Mitchell writes, “The standard philosophical notion of 

emergence posits the wrong dichotomies, confuses compositional physicalism with 

explanatory physicalism, and is unable to represent the types of dynamic processes… that 

both generate emergent properties and express downward causation” [144]. Referring to 

Dr. J. Kim’s arguments against explanations of the natural world in terms of emergent 

behavior [145], Mitchell criticizes the assumptions on which his argument is founded 

(referring to one of humanity’s, and thus science’s, glaring limitations), 

All descriptions are abstractions or idealizations. They do not stand in a 

one-to-one mapping relationship with the entirety of the undescribed world. 

To think that our language [including mathematics] captures the physical 

world exactly is simply misconceived. Descriptions are always partial… If 

there is something in the world that can be isolated by the functional 

description (caused by X and causing Y), there is no reason to think that a 

physical description of that piece of the world, partial as it is, will be 

identical with a higher-level description of that piece of the world, partial 

as it is… [144] 

                                                 
110 As opposed to designing systems of quarks to move systems of quarks. 
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In other words, there are multiple, partial, equally valid ways of representing phenomena 

from different levels of abstraction, each capable of describing some aspect of nature in a 

manner not possible at the alternate level. It is unreasonable to conclude that the behavior 

of a collection can always be explained in terms of the behaviors of it parts. More 

counterarguments to Dr. J. Kim can be found in [146].  

In an effort to move past the apparent paradox of trying to decompose the non-

decomposable, CHAPTER 2 - CHAPTER 3 will develop additional, supporting theory and 

present some hitherto unstated definitions. CHAPTER 4 will present the research questions 

required to address these gaps, as well as the hypotheses that attempt to answer those 

research questions.  
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CHAPTER 2. MODELING CHALLENGES AND DEFINITIONS 

By definition, a Search and Rescue mission is not an emergent behavior. It is 

immediately decomposable into two sequential behaviors. However, SAR missions 

involve using a Directed SoS, and often operate within a Collaborative SoS, both of which 

can exhibit emergent behaviors not directly associated with the SAR, but which have an 

impact on their performance. SAR missions are a natural fit for a Fleet CBA as well as a 

Fleet Synthesis Study. To the acquisition community conducting a CBA, this raises two 

immediate questions: (1) what are the emergent behaviors exhibited during the mission, 

and (2) how can the impact of these behaviors on mission performance be measured? A 

third question would naturally be, how can the emergent behavior be exploited? The 

answer to the first question will follow from the discussion in CHAPTER 4. The second 

and third question are the subject of this chapter. Since the subject of this thesis is emergent 

behavior, however, this thesis will rely on a notional combat model rather than a SAR 

model. Notional combat models have the advantage of exhibiting self-organization since 

all combat involves self-organization, and there exist many well-documented battles in 

history to compare to. The combat model used here will be based on WWII-style 

dogfighting, and will be discussed in Section 2.4. 

2.1 Measures of Merit 

The acquisition community has a now well-established practice of measuring ship 

performance using Measures of Effectiveness [10], or, more generally, Measures of Merit. 

Borrowing the taxonomy synthesized by Hootman and Whitcomb, a Measure of Merit 

(MOM) is any metric “that characterizes a system under analysis” [147]. MOM’s are 
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hierarchically arranged from the specific design parameters that characterize the physical 

structure and capabilities of a weapon system or ship (i.e. component and system level), up 

to the metrics that measure the performance of a fleet (SoS level), as depicted in Figure 9. 

 

Figure 9 –Measure of Merit Hierarchy, reproduced from [147] 

A Dimensional Parameter (DP)111 is usually a physical subsystem specification (e.g. radar 

aperture size), while a Measure of Performance (MOP) represents subsystem performance 

(e.g. radar gain), and a Measure of Effectiveness (MOE) corresponds to the system’s 

ability to execute a task (e.g. probability of detection) [147].112 A Measure of Force 

Effectiveness (MOFE) would correspond to the SoS113 ability to execute a certain task (e.g. 

search). Within a level of abstraction, each metric ought to be as independent as possible.114 

                                                 
111 Some engineering design parameters can be non-dimensional. To avoid confusion, the reader can 

substitute design parameter for dimensional parameter without loss of generality. 
112 All examples listed in this sentence are reproduced from Table 1 of [150]. 
113 Hootman and Whitcomb use the term “supersystem” to refer to a SoS [150]. They suggest that the ship as 

well as the strike group the ship operates in be treated as the SoS. The radar system appears to be considered 

system-level in their work. 
114 That is, decoupled and statistically independent where applicable. 
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Once the relevant MOMs have been enumerated, the goal, according to Hootman and 

Whitcomb, is to combine these MOMs for design and acquisition using a set of models that 

can calculate the various levels of performance relevant to a designer or decision-maker 

(including the fleet-level), as in the framework developed by Koleser [148].115 Hootman 

and Whitcomb argue that a ship’s performance cannot be properly understood in isolation, 

writing “we must look beyond the total ship system to the battleforce; engineers must 

consider how the system that they are designing interacts with the environment it operates 

in and the other systems it operates with” [147]. Not only is the SoS performance important 

for understanding ship performance, but the mission itself also plays a central role. 

 The next step to determining what impact an emergent behavior may have on 

mission performance is to develop a procedure for selecting adequate MOMs. Hootman 

and Whitcomb refer to the goal-question-metric (GQM) method.116 As the name suggests, 

this method begins with: (1) listing the goals to be achieved by a system, which in this case 

are equivalent to the goals of the mission, (2) reframing the mission objectives as questions 

that characterize the manner in which the objectives will be achieved (while simultaneously 

ensuring the accompanying mission model can quantitatively represent that 

characterization [149]), and finally (3) identifying the quantitative metrics that answer the 

aforementioned questions. Hootman and Whitcomb use the mission of a submarine as an 

example, raising the question “What is the probability of the [submarine] avoiding 

detection?” to which the answer is a metric that computes that probability [147]. Another 

approach for MOE generation was proposed independently by Sproles [150], 

                                                 
115 In practice, large collections of interdependent computational models can require large amounts of 

computing power to execute. Surrogate models and response surface techniques are used to accelerate this 

process [150]. Although these practices are ubiquitous in modern computer-aided design, the details of this 

practice are largely outside the scope of this thesis. 
116 Hootman and Whitcomb attribute this method to Kowalski et al. but provide no citation. It appears to 

originate in a 1994 paper by Basili, Caldiera, and Rombach [152], based on Basili’s earlier work [286].  
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Figure 10 – MOE development method by Sproles, reproduced from [150] 

The method by Sproles defers substantially from GQM. First, the initiation of MOE 

development precedes the mission definition. To Sproles, a MOE specifically answers the 

question “Does this meet my need?” [150] Second, the priorities of the stakeholder must 

be taken into consideration (the viewpoint step) before mission selection. He illustrates this 

with an example from WWII where the Allies could have considered “the number of U-

boats sunk” as a priority, versus “the number of merchant ships saved.” In this case, the 

two priorities guided the design solution in either an offensive or defensive direction. From 

a CBA standpoint, this difference would impact the portfolio of missions considered 

relevant to the acquisition program, which can result in wildly different designs. One would 

then expect that with different designs come different (emergent) behaviors. In Section 3.2 

of her PhD thesis, Dr. Griendling reviews a third metric derivation approach [56], the 
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Practical Systems/Software Measurement (PSM) method (see also [151]), and incorporates 

it into the Relational-Oriented Systems Engineering Technology Tradeoff Analysis 

(ROSETTA) method for metrics derivation. However, her approach is intended for 

capabilities and behaviors that are decomposable, which does not apply here. Furthermore, 

both GQM and PSM rely on the idea that a particular property or behavior is directly 

measurable. Although taking measurements is fundamental to any experiment, Section 1.7 

discusses why direct emergence measurement techniques also fall outside the scope of this 

thesis. Thus, GQM and PSM could only be applied indirectly, if at all. Finally, for the 

purposes of this thesis, the mission will be taken as given, acknowledging the risk that one 

mission type, with one parameter set, may exhibit many more emergent behaviors than 

another, which will either facilitate or frustrate this effort. 

The remaining step for determining what impact an emergent behavior may have 

on mission performance is to select a model with which to compute the relevant metrics. 

Here, however, SoS exhibiting emergent behaviors are faced with two mutually reinforcing 

problems. First, since measures associated with complex behavior tend to be strongly 

nonlinear, they do not necessarily correlate with the success of a mission in the way a 

straightforward application of GQM or PSM might suggest. In real applications this can 

mislead decision-makers, thereby contributing to tragic losses of life, as occurred during 

the Vietnam War [152]. Second, as research by RAND Corporation pointed out, combat 

models can be very inaccurate in part due to incorrect assumptions on the part of the 

developer [153]. Although it may be tempting to think that SAR mission models will 

somehow fare better, the problem of unrealistic models is actually universal. 

2.2 The Limitations of Modeling & Simulation 

As with acquisition, SE, SoSE, complex systems, and emergence, modeling and 

simulation is a very broad field that extends into multiple disciplines. Citing that “no single, 
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strict and widely accepted taxonomy of modeling techniques exists,” [81] Balestrini-

Robinson devotes Section 2.3 of his PhD Thesis to thoroughly reviewing a number of 

modeling taxonomies, their various subcategories, and various practical concerns 

surrounding their use.117 In order to maintain focus on emergent behavior detection, 

however, this thesis will take a largely philosophical approach to the discussion on 

modeling, and introduce only the categories that would be relevant to a computer 

programmer: a model, an algorithm, and a computer program.118 

Sayama informally defines a model as “a simplified representation of a system. It 

can be conceptual, verbal, diagrammatic, physical, or formal (mathematical)” [154]. For 

the purposes of this thesis, the term will be reserved for mathematical models only (i.e. 

systems of mathematical equations that characterize the properties and behaviors of a 

system)119. Sayama also defines a dynamical system, again informally, as “a system whose 

state is uniquely specified by a set of variables and whose behavior is described by 

predefined rules” [154]. To avoid confusion, recall that the lowest-level objects considered 

in a model are the components. For reasons that will be explained in Section 2.2.2, the 

components of a system being represented by the model can be thought of as dynamical 

systems, while the higher-level objects (system, and SoS) may exhibit emergent behaviors 

for which no rules have been written. Suppose, now, that there existed a data set 

(measurements of some behavior) that a scientist wished to characterize using a model.120 

Richardson writes,121 

                                                 
117 Section 2.3.2.1 of his discussion focuses the DoD taxonomy, MOMs, the models that calculate them, and 

the acquisition stage during which those models are utilized. 
118 Going forward, a computer program will be simply referred as a program or simulation. 
119 Properties are often referred to as state variables in the literature (for example, page 30 in [157]). 
120 This extends to the laws of physics themselves. 
121 This is a summary provided, in part, for narrative purposes; not as an appeal to authority. See Section 1.5-

1.7, and CHAPTER 4 for the detailed argument. 
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“[There] are an enormous number of qualitatively different ways to model 

the same phenomena… [Given] any amount of evidence, there are mutually 

incompatible models which equally fit with the evidence … [and] when a 

prediction from a model contradicts the observation, there are various 

mutually incompatible ways for making the model compatible with the 

evidence… [A result] is that even if our models can be used to develop 

causal explanations… we cannot be sure that those explanations bear any 

relationship to reality whatsoever.” 122 [155] 

Even at the level of physics, this is an inescapable limitation brought on by complexity. 

Again, Laughlin writes regarding behaviors “governed by emergent rules… in practice, if 

you are locked in a room with [a low-level model], you can’t figure the rules out in the 

absence of experiment, and hand-shaking between theory and experiment” [75]. Military 

mission modeling is only made worse by the inclusion of human decision-making, for 

which there are no widely accepted “laws” as there are in physics. Thus, the skepticism 

surrounding combat models should not be surprising. Richardson quotes mathematician 

John Maynard Smith, who said,  

“[I have a] general feeling of unease when contemplating complex systems 

dynamics. Its devotees are practicing fact-free science. A fact for them is, 

at best, the outcome of a computer simulation; it is rarely a fact about the 

world.” [155] 

For this reason that the SE Handbook warns, “The systems engineer must continually 

distinguish between systems in the real world and system representations” [53]. 

An experimentalist might ask, “Why not rely on experimentation instead of 

modeling?” Clearly, experimentation in a military context is subject to severe moral, 

societal, financial, and practical constraints. Setting the obvious aside, complexity spares 

no one. Thus, the epistemological and ontological counter-argument to experimentation is: 

instability. Discussing the far-reaching effects of static, dynamic, and structural 

                                                 
122 There is always hope. 
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instabilities, Schmidt notes that complexity creates challenges for the four methodological 

prerequisites of modern science, “reproducibility / repeatability, predictability, testability, 

and describability / explainability” [156]. Regarding reproducibility Schmidt writes, 

“Instabilities convey unobservable small effects to the empirically accessibly scales… and 

by this, instabilities induce problems regarding experimentation… the lack of control is not 

just a pragmatic or epistemic boundary that could be overcome by improvement of methods 

and more advanced technology… it is inherent in physical objects.” [156]. Regarding 

predictability Schmidt then goes on to write how approximations as basic as truncating real 

numbers (since computers cannot store infinitely many digits) can make predicting certain 

phenomena impossible due to instabilities that are extremely sensitive to small 

perturbations. Prediction is also limited by the fact that computers are physical machines 

governed by thermodynamic laws (such as the generation of entropy) that place a limit on 

what can be computed. Thus, these limitations are objective. Regarding testability, Schmidt 

writes, “for any unstable model that refers to an unstable object ‘details of the dynamics, 

which do not persist in perturbations, may not correspond to testable […] properties.’” 

[156] In other words, the phenomenon must be stable enough to be repeated during an 

experiment, or it will be impossible to test. Finally, regarding explainability, Schmidt 

writes “Unstable processes cannot be reductively condensed into a simple law… According 

to von Neumann’s idea on complexity, a complex process is defined as one for which the 

simplest model is the process itself. The only way to determine the future of the system is 

to run it” [156].123 These are reiterations of the reasons why emergent behavior cannot be 

predicted from the properties and rules of component systems. Emergent behavior can only 

be observed once those components are placed into an environment (physical or digital, 

hopefully with some compatibility between their results) and permitted to interact over 

some time period. Unfortunately, the problem with experimentation is that the scientist has 

                                                 
123 This is the unpredictability referred to by Kokar et al. [97] 
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little to no control over the environment nor control over the most fundamental system 

components. The more constraint and isolation one imposes on a physical system, the fewer 

emergent behaviors can occur.124 

Having removed any potential for naïve idealism, it is now necessary to impose one 

of two key assumptions required for this work: 

Assumption 1: The model is valid. 

This assumption means that model accurately represents every behavior the lower level 

components could possibly exhibit. Alternatively, this assumption means that the only 

behaviors of interest will be those exhibited by the low level components and collections 

thereof as permitted by the model. The issue of how to select the lower level rules in order 

to observe a desired behavior in reality (i.e. issues of selecting relevant information, and 

compatibility with experiment) are outside the scope of this thesis.125 

 Of course, it is not enough to suppose that an assumption will enable meaningful 

research. Given the challenges to modeling that emergence and instabilities present, 

Schmidt provide suggestions. The first is to avoid the error made by scientists in the past: 

“In order to counteract the problems raised and to reject the methodological crisis, the very 

first attempt is always to re-introduce dogmatically what seems to have been lost” [156]. 

Although Schmidt is referring to instabilities, one might argue this thesis has already 

committed this error at least once in Assumption 1. However, Assumption 1 is justified in 

the sense that it is a necessary condition. If the concepts and mathematics presented here 

                                                 
124 The interested reader is referred to Elif Shafak’s tangentially related discussion of circles [298]. 
125 Readers interested in methods for validating observations of emergent behavior are referred to Patrick 

Meyer’s thesis [303], or the methods by Szabo, Teo, and Birdsey [131] [276]. 
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cannot work in the most ideal case, they certainly will not work on experimental data except 

by sheer misfortune. Returning to instabilities, Schmidt encourages the implementation of 

unstable models in computer simulations. Rather than imposing stability on the 

mathematical equations, as past scientists have, one can simulate the equations and look 

for qualitative features that persist over time. “The qualitative still remains mathematical, 

but with a different meaning… These qualitative characteristics refer to the appearance of 

the phenomenon and geometry of the pattern after the process of time evolution – and not 

solely in the bare equation…” (i.e. emergent patterns / objects can appear while executing 

a simulation of equations that demonstrate instability) adding that “… Persistence is a 

necessary requirement for any empirical test and for physical relevance” [156].  

Like Schmidt’s work, Richardson’s paper is intended to encourage a culture of 

thinking in terms of nonlinear modeling. Although it is not a paper of guidelines for 

building nonlinear models of complex behaviors, per se, he cites work by Allen regarding 

two fundamental modeling assumptions one can make, which are, (a) “no macroscopic 

adaptation allowed,” and (b) “no microscopic adaptation allowed” [155]. Relaxing 

assumption (a) leads to a model that can exhibit self-organization, while relaxing both leads 

to a fully evolutionary model. This thesis will only relax the first of Allen’s assumptions 

in a search for persistent patterns (see discussion on self-organization in Section 3.2). 

An algorithm can be defined as “a specific set of instructions for carrying out a 

procedure or solving a problem, usually with the requirement that the procedure terminate 

at some point” [157]. Here, the algorithms of interest are the algorithms designed to 

calculate the solution to a model. For the behaviors of dynamical systems (particularly 

those exhibiting complex or unstable behavior), this means obtaining the values of each 
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component’s properties and behaviors over some pre-determined period of time (usually 

divided into a finite number of time steps). In other words, the algorithms in consideration 

here are approximations of the continuous solution to a set of mathematical equations 

(possibly differential equations) that cannot be solved analytically. A program can be 

defined as “a plan of action that is to be executed by an executor, usually an automatic 

device, most often a computer; instructions for an algorithm” [158]. For the purposes of 

this thesis, a program is an algorithm implemented on a computer. Since measuring the 

impact of an emergent behavior requires executing a computer program, the computational 

resources required to execute the program and availability of computational power place a 

practical constraint on how much data can be gathered, thereby limiting the volume and/or 

accuracy of measurements that can be taken.126 

 The mathematical representation of the relationship between the properties and 

behaviors of a set of systems, whether using a model, algorithm, or program, requires 

identifying a set of variables that store the data (the literal values of the property or behavior 

at a given moment in the simulation), and performing a series of operations in order to 

calculate the value of each variable at each moment in time. It is common to measure the 

difficulty of obtaining a solution to a mathematical problem in terms of the complexity of 

the algorithm or program computing the solution. Therefore, complexity can now be 

defined in two ways. First, the time complexity “of an algorithm A is defined to be the 

number f(n) of atomic instructions or operations that must be executed when applying A to 

any input set of measure n [159]”.127 An atomic operation is defined as an operation that 

“has a fixed constant number of operands” [159]. For example, adding two real numbers 

is an atomic operation. Adding two matrices of real numbers, however, has a complexity 

                                                 
126 “Accuracy” can be used here because of Assumption 1. 
127 Leiss points out that, technically, this is the “worst-case” time complexity. 
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that depends on the size of the matrices, and thus is not atomic [159].128 Second, the space 

complexity “of algorithm A is the amount of space, again as a function of the measure of 

the input set, that A requires to carry out its computations, over and above the space that is 

needed to store the given input (and possibly output…)” [159].129 Since an algorithm can 

arrange any number of operations is more or less efficient ways, algorithm complexity can 

often be stochastic rather than deterministic (this will be revisited in CHAPTER 4-

CHAPTER 5). The key distinction between algorithm complexity and typical measures of 

performance used in engineering is that complexity is based on the asymptotic behavior of 

the algorithm. That is, complexity measures the growth in the resources required to 

complete the algorithm as the number of input parameters, n, increases. This enables a 

machine-independent assessment of algorithm efficiency that captures the essential 

difficulty of the mathematical problem. The complexity of programs, on the other hand, is 

not only machine dependent, but often also compiler optimization dependent (never mind 

issues due to bugs, exception handling, rounding errors, passing parameters, etc. as 

discussed in Chapter 4 of [159]).  

 A subject this author has not seen covered in the literature, however, is a definition 

of model complexity that is analogous to the algorithm and program complexities 

mentioned here. This is probably due, in large part, to the relative infrequency with which 

models are called into question. For example, it is taken for granted that “F = ma.” 

Engineering is largely focused on applying it. Mathematics is largely focused on solving it 

(given initial conditions, etc.). In general, however, it is tacitly assumed that the model “is 

what it is.” Of course, it is true that one differential equation can characterize an enormous 

diversity of behavior (e.g. bifurcation). It is also true that one differential equation can 

                                                 
128 Unless otherwise stated, this thesis uses word complexity, not bit complexity. A “word” is taken to refer 

to a real number. 
129 Programs (the implementation s of algorithms) can have a complexity different from the algorithm it is 

implementing due to a variety of reasons including: compiler optimizations, machine performance constraints 

(memory limitations, processor cooling limitations), choice of programming language, etc. 
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characterize all behavior relevant to some level of abstraction (e.g. no one is suggesting the 

Navier-Stokes Equations be discarded). However, if emergent behaviors can be 

qualitatively distinguished from other behaviors using a set of quantitative data, this 

implies there exists some way of qualitatively distinguishing one region of the solution to 

a differential equation from another. A qualitative distinction between two regions of the 

same data set can be represented using two different functions. For simulation purposes, 

this could take the form of some system components exhibiting stable behavior for one 

time interval, transitioning into unstable behavior, then re-stabilizing. In each case, a 

different function can be used to approximately represent the behavior (the domain of the 

function can be dictated by the desired accuracy of the regression). This is not new. In fact, 

it is quite common to simplify equations, obtain solutions to “special cases,” and then stitch 

the solutions together (as in [160]). Referring back to the discussion in Section 1.7, if the 

space complexity of the model were to change, that would suggest either an increase or 

decrease in the amount of information required to describe a phenomenon, which, under 

the right circumstances, could indicate emergence. The thesis will argue that emergent 

behavior can be distinguished from other behavior based on stable patterns of interactions. 

Thus, let the space complexity of a model be defined as the number of dependent variables 

required to accurately represent the properties and behaviors of the components of a system 

(this permits the model complexity to scale with respect to the number of components). Let 

the time complexity of a model be defined as the number of operations required to express 

the relationship between the dependent and independent variables, scaled according to the 

type of operation. Calculating model time complexity requires much more nuance since 

one must be able to unambiguously determine the complexity of operations such as 

addition and multiplication, as well as non-elementary operations such as differentiation, 

or the evaluation of transcendental functions (see CHAPTER 4-CHAPTER 5, and Section 

5.1.3 in particular). For calculations of model complexity to be meaningful, a second 

assumption is required. This leads to a second necessary assumption: 
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Assumption 2: The model is efficient. 

To say the model is efficient means that there are no missing, excess, redundant, or 

otherwise unnecessary variables or constants.130 In other words, the equations have been 

simplified without sacrificing solutions or singularities (provided singularities ought to be 

present). Assumption 2 should be interpreted as a combination of Assumption 1 and 

Ockham’s razor. Due to the current ambiguity in calculating the time complexity of a 

model, it is impossible to guarantee that a model has minimum time complexity in the naïve 

sense. A stronger argument will be attempted in CHAPTER 4. 

Having addressed issues of incompatibility between the model and reality, it is now 

possible to discuss the distinction between a system and SoS, along with the challenges of 

predicting SoS behavior, within the context of a program (a simulation). 

2.2.1 Complexity-Appropriate Simulation and Tool Choices 

The Complexity Primer (borrowing from Cook) provides a collection of tools and 

simulation techniques that are applicable to the study of emergence (see Figure 11). In 

order to avoid confusion with mathematical models, the term simulation will be used in 

place of model when referring to techniques such as Agent-Based Modeling. 

                                                 
130 This is equivalent to saying that there is no coordinate system transformation that reduces the number of 

variables (e.g. writing the equation of a circle in polar coordinates rather than Cartesian). 
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Figure 11 – List of “complexity-appropriate” tools and approaches [70] 

The list is divided into four categories. Methods for synthesis are outside the scope of this 

thesis.131 Analysis tools serve to extract information from a set of data in order to draw 

qualitative conclusions. Data mining, in particular, is the umbrella term for techniques that 

aim to “make sense of large amounts of … data, in some domain” [161]. Of the analysis 

tools and techniques listed, only nonlinear time series analysis (in a loose sense of the term) 

will be used in this work. Despite being omitted, Artificial Neural Networks (ANN) present 

an opportunity for discussing two key issues. First, it is known that an ANN provided with 

compact inputs can fit any continuous, bounded function up to an arbitrary accuracy [162] 

[161]. In other words, for most engineering applications, an ANN can map any set of input 

data to any set of output data regardless of whether or not those two datasets are actually 

related. Thus, a challenge in emergent behavior identification is to somehow avoid making 

spurious causal inferences. Second, a special class of ANN called autoencoders are 

                                                 
131 For a reviews of DSM and other architecture methods such as RAAM, IRMA, and ARCHITECT see 

Section 1.4 and its references. 
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routinely used to for data compression and dimensionality reduction [163] [164]. In this 

process, a data set is provided that relates a set of input variables to one or more outputs. 

If the variables are not independent (i.e. there is some kind of regularity or straightforward 

dependence between variables), it is possible for the autoencoder to represent the initial 

data set using a smaller data set constructed with fewer variables (i.e. the space complexity 

of the data will decrease). Thus, data compression, dimensionality reduction (model space 

complexity reduction), and changing description length are all analogous operations, which 

explains why complexity is so prevalent under the Diagnosis category. However, what an 

autoencoder (or any other method) cannot do is interpret data compression to signify 

emergence. In fact, such an association ought to be impossible because doing so merely 

identifies the presence of patterns, rather than the formation of new classes of objects (see 

CHAPTER 4). Nevertheless, reducing model space complexity forms part of the basis for 

the arguments in this thesis. 

 Figure 11 also lists multiple simulation techniques (under Model). Few of these 

techniques apply to the case studies that will be presented in this thesis. Uncertainty 

modeling is unnecessary because the simulation will not contain any pseudo-random 

numbers and this thesis will not study the propagation of uncertainty in simulation outputs. 

Virtual immersive modeling and feedback control models do not apply to this work, which 

will passively observe the evolution of a simulation. Functional / Behavioral models can 

be ruled out for reasons discussed in Sections 1.5-1.7. Game Theory [165] studies 

phenomena in terms of goals and the way entities achieve those goals. In general, however, 

emergence need not be goal oriented. Multi-scale models (e.g. [109] [166]) and Network 

models [154] cannot be used in this thesis a priori without begging the question. Cellular 
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Automata [167] only apply to grids of regularly spaced objects, which cannot be used for 

SAR simulation.132 Dissipative systems [168] tend to refer to systems governed by 

thermodynamic equations, which will not be of use here. This leaves System Dynamics 

and Agent Based Modeling as possible candidates. Ventana Systems Inc., a leading SD 

software development company, defines System Dynamics (SD) as “the study and analysis 

of dynamic feedback systems using computer simulation” [169]. Sayama defines Agent 

Based Models (ABM) as simply “computational simulation models that involve many 

discrete agents” (here, an agent is equivalent to a system component) [154]. An argument 

can be made that, with the right coding and selection of time step size, both SD and ABM 

can simulate many of the same kinds of systems. However, Systems Dynamics tends to 

emphasize graphical representations of properties119 and their causal links (the objects are 

abstracted out [170]), while ABM simulations tend to emphasize graphical representations 

of the objects themselves (the properties are hidden from view). ABM will be selected 

because (1) it is typically easier to vary the number of components, (2) it facilitates human 

verification of spatiotemporal patterns of component behavior and organization. 

2.2.2 Emergent Behavior within the Scope of Simulated SoS 

The studies cited in CHAPTER 1 typically defined system and SoS from a 

traditional SE or SoSE standpoint. However, Navy Fleet Synthesis studies are, first and 

foremost, models and simulations. Thus, the challenges of system definition and 

system/SoS distinction must now be explained within the context of M&S. M&S 

introduces five idealizations that generally cannot be provided by real systems. The first 

                                                 
132 One noteworthy example of emergence was the implementation of a Turing Machine using the Game of 

Life [299] (see discussion in [295], and the Appendices). 
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four idealizations are that the components of the system can be (1) simple, (2) indivisible, 

(3) persistent, and (4) predictable. The fifth idealization (5) is that the environment the 

components interact with is as well understood as the system components. Most questions 

of model or simulation validity can be traced back to these five idealizations.133 These 

idealizations stem from the fact that, within the context of the simulation itself, the only 

properties and rules that exist are the ones provided by the simulation’s author,134 and so, 

the simulation becomes a microcosm wherein every behavior of interest that could possibly 

exist can be observed.135 Since every component of the system is coded into the simulation 

by design, it follows that every behavior of every component of the system can be attributed 

to the system (even if that behavior is deemed to be a failure mode, trivial inactivity, etc.). 

As the remainder of this subsection will show, the first four idealizations are properties of 

the simulated components only. Since the system does not (necessarily) inherit these five 

idealizations, the emergent behavior of a simulated SoS136 possesses the same intrinsic 

types of uncertainty as the emergent behavior of a real SoS. The sources of the uncertainty 

are fewer and different than those in nature. The sources of instability are different than 

those in nature. However, there do exist instabilities (just like physical experiments) and 

sources of aleatory and epistemic uncertainty (just like physical experiments). Figure 12 

shows that as the levels of organization increase, the simulation becomes realistic because 

real systems lack all idealizations and possess all forms of instability/uncertainty. This 

argument is important both to the ontology presented in this thesis, as well as to the utility 

of numerical simulations for studying emergent behavior. The goal of this section is to 

                                                 
133 The other instability/complexity related issues were discussed at the beginning of this section. 
134 As well as those of the physical machine implementing the simulation. 
135 Of course, exceedingly rare behaviors may never be observed. Nevertheless, they can be. 
136 Made up of systems, as per the model-based definition. 
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explain why the method developed in this thesis can be extended to real SoS despite the 

constraints imposed by Assumptions 1 and 2. 

 

Figure 12 – Progression of realism: As interactions (white arrows) lead to self-

organized systems and SoS, the systems either (+) possess, (?) may possess, or (×) do 

not possess idealizations and forms of uncertainty. 

Most authors associate the term simplicity137 with systems. The qualities attributed 

to simple systems include:138 (1) every individual effect has a unique cause; weak causes 

have small effects; predictability (see [59] and its references), (2) linearity; 

predictability;139 decomposable properties; clear cause-effect relationships (see [171]), (3) 

straightforward physical and functional decompositions containing few elements [81], and 

finally, (4) a small number of components with negligible interactions; easily isolated from 

its observational process and environment [80]. These definitions contributed to the 

                                                 
137 Keep in mind McEver’s statement (cited in Section 1.5) that the opposite of complex is not simple, it is 

decomposable. 
138 These are enumerated by source in order to present disagreements as well as nuanced variations on a 

theme. Repetition is intentional. 
139 The paper reads “behavior can be predicated,” [173] which appears to be a typographic error. 
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definition of Simple System in Balestrini-Robinson’s Complexity Matrix [81], which is a 

straightforward and useful classification scheme for real-world systems. In the context of 

this thesis, however, the definition of complex behavior and emergent behavior already 

account for these characteristics. Thus, simple must take on a different meaning that 

facilitates the discussion of emergent behavior in a simulation. In this thesis, simple is taken 

to mean that all the component’s properties are known in advance and are mathematically 

well defined. No new properties appear, and no properties disappear, during the simulation. 

The system can only inherit the property of simplicity if it never exhibits emergent 

behavior. Indivisible simply means that the component in the simulation cannot be 

structurally decomposed into smaller parts. Persistent means that the component is present 

throughout the simulation and cannot be deleted or destroyed. Predictable means that the 

causes of component behaviors are readily traced to their effects (at the lowest level of the 

simulation, this is trivial). 

Recall that aleatory uncertainty is the inescapable uncertainty caused by random 

processes and can be “reduced to a stationary random distribution” [172]. Numerical 

simulations require that numerical values be approximated up to single or double precision. 

Two obvious sources of aleatory uncertainty in simulations are the round-off error of 

irrational numbers, and the truncation of certain rational numbers. The interested reader is 

referred to [173] and Chapter 4 of [159] for more information. These sources of error are 

intrinsic to simulations, just as randomness is intrinsic to quantum mechanics, and thus 

serve as a genuine form of aleatory uncertainty in simulations. Epistemic uncertainty can 

take on several nuanced meanings, but here is simply an error in the model due to 

simplifying assumptions used in forming the mathematical equation, or the omission of 
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important terms from the mathematical equation due to modeling difficulties [174] [172]. 

Systems Engineer Matthew Squair, writing about uncertainty in the context of decision 

making and risk management, argues that, “Complexity in and of itself is not a direct cause 

of accidents but what complexity does do is breed epistemic and ontological uncertainty” 

[174]. Within the context of simulations, there is no epistemic uncertainty at the level of 

the components in the simulation (due to Assumption 1 and the above simplifications). 

However, components will self-organize into systems, and systems will self-organize into 

SoS. Since the SoS no longer possesses the idealizations available at the lowest level of the 

simulation, any attempt to model the SoS using a set of mathematical equations will face 

all the usual challenges one faces in reality. For example, if the SoS exhibits emergent 

behavior, is it not predictable, and a model that does not account for that behavior is over-

simplified, which is a source of epistemic uncertainty.140 If the SoS is divisible, which it is 

by definition, then the model must account for every possible configuration of parts or it 

will fail to accurately predict behaviors. This source of epistemic uncertainty is particularly 

bad for fleets of ships, and modular ships. If the SoS contains complex systems, it is not 

simple, which is another source of epistemic uncertainty on par with unpredictability. If 

the SoS is not persistent, then there are time intervals during the simulation where the SoS 

model is completely invalid, which is another source of epistemic uncertainty. In her PhD 

thesis, Dr. Diana Talley wrote extensively on the quantification of uncertainty in SoS 

models. One of the gaps addressed in her thesis is that “Existing SoS Design Methods are 

incapable of modeling all of the different types of relevant uncertainty” [175]. It is 

                                                 
140 Squair [176] and Beven [174] leave room for debate as to whether this falls under the category of 

ontological uncertainty. The scope of this thesis does not require the distinction to be clarified, and can 

proceed without loss of generality. Those that associate “surprise” with emergence will find an opportunity 

for research here. 
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important to note that the uncertainty she addressed is caused, in part, by the fact that 

models of real SoS must over-simplify their components (e.g. a model of a county-wide 

transportation system cannot possibly account for the alertness of every driver, the wear-

and-tear on every car, the precise location of debris on the expressway, etc.). Therefore, 

there is a point where SoS models cannot accurately capture and decouple the effects of 

aleatory uncertainties and epistemic uncertainties. In an idealized, bottom-up simulation, 

such as those in this thesis, they are decoupled at the lowest component level by design. 

Only aleatory exists at the lowest level, while epistemic uncertainty grows with scale. This 

thesis does not argue that the results of a simulation will be identical to reality, because 

that is impossible. It does argue, however, that once enough levels of self-organization 

appear in a simulation, there exist sources for the same kinds of uncertainty one faces in 

reality, and the emergent behavior observed in the simulation is of the same quality as that 

observed in reality. Thus, the methods used for studying emergence in a simulation can be 

extended to physical experiments. 

Simulated SoS are not idealized objects. Their simulated behaviors contain sources of 

instability, aleatory uncertainty, and epistemic uncertainty. Therefore, a method 

developed for simulations of SoS emergent behaviors can be extended to empirically 

observed emergent behavior.141 

Readers interested in making the simulated behaviors closely mimic those observed 

empirically (including emergence, by extension) are referred to Patrick Meyer’s 

forthcoming PhD thesis [176]. Readers interested in methods for reducing uncertainty in 

                                                 
141 An aphorism on why this is important: if simulated emergence is not bona fide emergence, then 

discrepancies between simulations and reality are not errors or simplifications, they are fantasies. 
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SoS design are referred to Dr. Talley’s thesis, the work by Beven and Squair, and the 

following optimization studies [177] [178] [179]. 

The fifth idealization, that the environment is as well understood as the 

components, is the most restrictive by virtue of the sheer number of objects and phenomena 

it neglects (including behaviors of the environment, sources of instability, and sources of 

aleatory uncertainty). Real SoS behavior is often difficult to predict due to unforeseen 

influences from the environment [68] [103] [69] (also known as context dependence [59] 

[180]). One important consequence of an idealized environment within a simulation is that 

the number of levels of object-environment interaction is limited by the properties assigned 

to the simulated environment (perhaps inestimably). For example, if the environment in 

the simulation is empty Euclidean space, then there exists only distances along some axis, 

time, and the objects that exist within that space and time. Every object-environment 

interaction must be measured in terms of distance and time. The reader is referred to the 

Appendix for additional discussion of the topics presented in this section. Specific 

examinations of context-dependence have been scoped out of this thesis. 

2.2.3 Response to a Relevant Polemic 

Professor of Epidemiology Joshua Epstein argues that the whole-parts dichotomy 

favors reductionism. “Typical of classical emergentism would be the claim: No description 

of the individual bee can ever explain the emergent phenomenon of the hive. How would 

one know that? Is this a falsifiable empirical claim, or something that seems true because 

of a lax definition of terms? Perhaps the latter” [181]. He then proceeds to argue that the 

characterization of an individual bee is incomplete without also including all of the bee’s 
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interaction rules, “It makes little sense to speak of Joshua Epstein devoid of all relationships 

with family, friends, colleagues… My ‘rules of social interaction’ are, in part, what make 

me me… When (as a designer of agent objects) you get these rules right… you get the hive 

too” [181]. Nevertheless, in saying “[when] you get these rules right,” Epstein seems to 

actually support “classical emergentism”: the interaction rule is the real object of interest, 

not the bees. Interactions require at least two parties. To properly define an interaction rule, 

one must fully define both parties involved. The interaction between a bee and a wasp is 

only one vanishingly small part of what makes a bee a bee (to say nothing of wasps), and 

the rule itself belongs equally to the bee and the wasp. One could certainly write a computer 

program where a virtual wasp attacks “anything” but that behavior would not resemble 

reality. The wasp must target a bee, and the bee must evade or counterattack the wasp, and 

the manner in which these behaviors unfold is specific to that pair. They are not merely 

attacking “something.” The wasp acts in accordance with the properties of the bee, and 

vice versa, and those coupled decisions dictate the interaction rules. Furthermore, if it is 

important to avoid vague definitions of bees, it is equally important to avoid vague 

definitions of hives. Wasps also build hives, human beekeepers build hives, and Epstein’s 

virtual creatures also build virtual hives. As stated in Section 1.4, the mapping between 

physical and functional decompositions is often not one-to-one. In order to safely neglect 

the fact that bees are not the only hive-builders and that hives come in many forms and can 

be built of many different materials, one must either be so specific about which bee(s) and 
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which hive that the model no longer generalizes beyond that one case, or one must be so 

abstract that the model never fully or accurately characterizes any hive, anywhere.142 

From a modeling standpoint, such arguments against emergence rely on up to four 

implicit assumptions: (1) all simulated bees are identical, so that knowing the property of 

one bee means knowing the properties of all bees, (2) bees have a small number of 

properties with which to interact, (3) only a small subset of properties are relevant to hive-

building, and/or (4) possessing the properties relevant to hive-building implies that the 

organism possessing them will build hives. The first assumption only matches well with 

reality when the objects are incredibly simple (perhaps quarks). For engineering 

applications, the assumption is false since every physical individual is unique, and those 

distinctions bring important nuance to each interaction (i.e. the “rules” for each interaction 

are slightly different).143 Furthermore, just as hive-building is not unique to bees, many 

other interactions are not unique to bees (e.g. mating, pollination, self-destructive combat, 

etc.). Therefore, any classification of any object based on a subset of its physical and 

functional decomposition is inherently vague. The second assumption is only made by 

scientists and engineers for the purposes of simplifying problems to make them 

mathematically tractable, and in doing so, neglect the holism-reductionism debate 

altogether. In reality, once a model moves beyond quarks or neutrons, that assumption 

rapidly becomes invalid. Similarly, the third assumption is only approximately valid in an 

abstract sense. The thing one obtains by relating some properties to some behavior is an 

                                                 
142 Yet another example: the physical forces that cause spiral galaxies to exhibit the golden ratio are not the 

biological interactions that cause nautilus shells or ferns to exhibit the golden ratio. One cannot use a model 

of gravitation to generate the nautilus shell. One cannot use the model of a bee to produce a wasp hive. 
143 Engineers typically handle this with part tolerances, design margins, and other risk mitigation techniques. 
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approximate model of a mathematical representation of the behavior, not a physical 

instance of the behavior. Many things conform to that model (as stated earlier) but a model 

is a model, not a bee or a hive. Therefore, the modeler must be willing to tolerate a certain 

amount of error in the simulation. Enumerating the rules of interaction for a real system 

places an insurmountable burden on the modeler. For example, interaction rules of a bee 

vary with its age. A larva does not interact like an adult, and there are multiple stages of 

maturation to consider. Developmental issues are also important, as seen in human 

populations, because they can significantly impact health, which affects interaction 

rules.144 Well-written interaction rules also require that all parties involved be sufficiently 

well defined. Aside from the fact that each real bee-bee interaction is unique, there are also 

interactions with different types of bees (e.g. competitive worker-worker-queen mating 

rituals, cooperative worker-worker building all of which must occur for real hives to exist), 

or the interaction with a different species such as predatory wasps, or humans. Then there 

are interactions with the rest of the environment: solar radiation, dust, viruses, bacteria, 

toxins, the forest, the weather, etc. If those entities are brought into the simulation, one 

must characterize their rules as well, and so on, until it becomes necessary to model the 

entire physical universe in order to faithfully model any single real-world hive (see Section 

3.2). Finally, the fourth assumption is clearly an oversimplification. Just because a person 

can build a beehive does not mean that said person will ever build a beehive in their lifetime 

(i.e. sensitivity to initial and boundary conditions / the environment). 

                                                 
144 For example, the pregnant women suffering from famine in the Netherlands during World War II bore 

children that experienced higher rates of obesity, diabetes, and schizophrenia (clear impacts on the interaction 

rules of their children) [180] [181]. 
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2.3 Defining Property, Behavior, and Interaction 

Since SoS often involve human or autonomous decision-makers, some researchers 

draw a distinction between a behavior and the quantifiable properties assigned to a system 

component. Especially with regards to human decisions, studies often focus on whether or 

not the rules used in the simulation accurately reproduce a particular behavior or decision-

making process. These concerns are eliminated by Assumption 1 and the fact that machine 

learning techniques will not be used in the ABM presented in this thesis. Therefore, ‘the 

decision to behave in manner x’ cannot be considered a behavior (as strategies are in [182]), 

because it is dictated by rules assigned to the component at the creation of the simulation. 

In the context of this thesis, a property119 is simply any model variable that represents 

a quantity used to uniquely characterize a specific component, system, or SoS. At times, 

different objects may possess properties equal in value, such as two bricks having the same 

mass. This thesis will focus on real-valued properties. A behavior is simply the time-rate-

of-change of a property.145 A relative property or relative behavior is simply the property 

or behavior of an object X taken with respect to another object Y. For example, if 𝑝𝑥 and 

𝑝𝑦 are scalar properties of X and Y respectively, then the property of X relative to Y, 𝑝𝑥|𝑦, 

is given by the equation 𝑝𝑥|𝑦 = 𝑝𝑥 − 𝑝𝑦. Other mathematical conventions (such as dot 

products for the component of one vector relative to another, or the equation for conditional 

probability) are also permissible for relative properties or behaviors. The subscript for 

relative property will remain consistent regardless of the operation used to calculate that 

relative property. 

An interaction is the change of one object’s properties or behaviors due to the 

property or behavior of another object (see similar definition in [139]). Some authors favor 

                                                 
145 Generalizations to gradients in space or other coordinate systems are outside the scope of this thesis. 
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implementing conditions that suggest interaction (such as proximity) rather than directly 

accounting for interactions because interactions may be impossible to discern if too many 

occur in rapid succession [183] and may be used here when appropriate. A direct 

interaction is defined as the change in the property of one object exclusively as a function 

of the properties/behaviors of another object. If systems X and Y have properties 𝑝𝑥 and 

𝑝𝑦 respectively, and t represents time, then 
∆𝑝𝑥

∆𝑡⁄ = 𝑓(𝑝𝑦)146 is an interaction (the 

property of Y is changing the property of X), and 
d𝑝𝑥

𝑑𝑡
⁄ = 𝑓(𝑝𝑦) is also an interaction. 

An indirect interaction refers to a three-object cause-effect chain where one object 

interacts with an intermediate object, and the intermediate object interacts with a third 

object (see Kim’s discussion of ant pheromone trails [59]).  

 

Figure 13 –Directed multi-edge graph of precision-strike behavior: Ford’s proposed 

Interoperability View [26] 

These definitions of interaction are compatible with the subcategories of 

interoperability defined by Ford [26] (see footnotes 42, and 89). With respect to Ford’s 

                                                 
146 The symbol Δ is taken to mean the change in a property, as per mathematical convention. 
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taxonomy, the direct interaction defined above is an example of confrontational 

interoperability (the effect of one object’s properties or behaviors is imposed on the other), 

and would be represented using a directed graph as in Figure 13.147,148 In Ford’s graph, for 

example, the strike package is directly interacting with the target. Modeling collaborative 

interoperability, or confrontational interoperability in the absence of a clear advantage (i.e. 

the target returns fire), would require a set of direct interaction equations that would couple 

the changes of properties and behaviors of multiple objects over time. Finally, note how 

Ford’s graph refers to the set of interactions required for a higher-level capability (Precision 

Strike). This is an explicit example of the need for a hyper-graph (see Appendix). 

Furthermore, since the C2 edge is bidirectional, there is, in fact, a cycle in his directed 

graph, as discussed in Section 1.6 (this cycle suggests an iterative process where the Strike 

Package and Air Operations Center sequentially send each other messages, which is related 

to the definition of a feedback loop, but is not quite the same phenomenon). 

2.4 A Notional Adversarial Model 

Combat simulations are notoriously difficult to validate [153]. Encoding even a 

fraction of the guidance contained in the better known aerial combat manuals [184] [185] 

into the decision logic and physics of an ABM would be a PhD thesis unto itself. 

Nevertheless, at its core, combat is a competition, which is easy to simulate at an abstract 

level. Recall that the purpose of the CBA is to recommend whether a new physical 

technology or platform needs to be purchased (means), or a change needs to be made to 

the military’s tactics, strategy, doctrine, etc. (ways). FSS then take these decisions, or 

different combinations of such decisions over time, and extrapolate those decisions 10-30 

                                                 
147 Ford’s proposed “view” refers to documentation relevant to DoDAF. See [287] for more information. 
148 Note also the feedback loop between Air Operations Center and Strike Package via the two-way C2 

interaction. Feedback loops are a recurring theme in emergent behavior literature. 
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years into the future. A properly coded adversarial mission model is a straightforward 

mechanism for replicating the ways-versus-means recommendations made by a CBA at a 

conceptual level, since “winning” the mission can be achieved either through better 

decision-making behaviors on the part of the simulated combatants, or by improving the 

material properties of a simulated team. Finally, all combat involves self-organization,149 

which is a crucial component to emergent behavior (see Section 1.7 and 3.2). Therefore, 

this thesis will implement an adversarial model inspired by WWII-style dogfighting. More 

details about this ABM are discussed in Section 5.7and CHAPTER 7. 

 Colonel John R. Boyd was an American fighter pilot that fought in the Korean War 

and was also an influential military theorist.150 In addition to authoring a widely-studied 

manual on aerial tactics [184], he continuously developed over the course of his career a 

series of briefings titled “A Discourse on Winning and Losing” [186]. This and several 

other documents, as well as links to YouTube videos of Boyd’s lectures have been 

compiled into one pdf document by Dr. Grant T. Hammond in such a way that make their 

historical importance is readily observable. Col. Boyd is also well-known for his 

description of human and organizational decision-making, which he called the 

Observation, Orientation, Decision, and Action loop (OODA loop, see Figure 14). 

Consistent with the aforementioned discussion on functional decompositions of emergent 

behaviors, Boyd’s OODA loop is a cyclical, directed, layered hypergraph.151 “The OODA 

                                                 
149 Short range combat requires the obvious, short-term positioning and interactions of combatants, while 

long range combat (such as ICBM attacks/defenses) typically involves the long term positioning of stationary 

combatants. 
150 This is an understatement. The interested reader is referred to [188] [323] [189] for more information 

about his extensive career, as well as the list by Franklin Spinney [324]. 
151 Boyd’s personal collection of papers and books [187] suggest he read a fair amount of literature on 

complex systems and emergent behavior, including on General System Theory. 
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Loop was a nonlinear process with constant feedback and feed-forward channels of implicit 

guidance and control,” [186] which Boyd himself described as “an evolving, open-ended, 

far from equilibrium process of self-organization, emergence, and natural selection” [186]. 

Like dogfighting, incorporating such a sophisticated decision-making framework into an 

ABM would be another research effort altogether. 

 

Figure 14 – John Boyd’s OODA Loop, reproduced from [187] 

This example, as well as the interoperability figure by Ford (Figure 13) show that complex 

behaviors can be depicted using similar graphs whether they occur in a decision-making 

context, or a design context (as shown in Figure 8). The topic of graphing complex 

behaviors will be revisited in Section 5.3. Regarding Boyd’s Discourse [186], the 

discussion of patterns as well as self-organization and emergence is a recurring theme in 

all literature on complexity. While Boyd was concerned with the application of these ideas 
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to war fighting and policy making, this thesis will examine them in a strictly mathematical 

sense in CHAPTER 3.   
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CHAPTER 3. PATTERNS AND EMERGENCE 

A simulation often cited in the literature on emergence, now commonly referred to as 

the Boids Model, was first developed in 1986 to show that the flocking behavior of many 

species of animals could be simulated using an ABM using a small number of rules and 

very simple components [188]. The NetLogo implementation of that simulation is referred 

to as the Flocking Model [189]. Under the right settings, and given enough time, the 

simulated components often coalesce into a group and subsequently proceed to fly in the 

same direction.152 That is, the simulation converges to a stable configuration that is typified 

by components possessing a nearly uniform heading, as well as a relatively persistent 

arrangement in space. See Figure 15, where (a) is the initial random distribution of 

components, depicted using small arrowhead icons, and (b) is the distribution of 

components after 2,898 time steps. It is worth noting that in this particular simulation, over 

the course of several thousand more time steps, small groups of components would 

occasionally break off, travel independently, and then merge back with the larger group 

(the simulation was not perfectly converged/stable). 

Although authors discussing this model generally agree that it depicts an emergent 

behavior (notably, Phelan refers to this emergence as an illusion [170]), authors disagree 

over which specific transient features to refer to as the emergent behavior.153 A convenient 

feature of the Boids Model is that all interactions occur once one component enters 

another’s vision radius.  

                                                 
152 Subject to instabilities that cause some components to oscillate with respect to the group’s trajectory, or 

eject from the group. 
153 Table 2 in [97] lists papers that contain examples of emergence. The authors list, but do not cite, a paper 

by Miner [289] (perhaps they meant to remove it from the paper). Miner’s work is in relation to data 

visualization. Miner does not propose density as a metric of emergence. 
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(a) 

 

(b) 

Figure 15 –NetLogo GUI and flocking simulation (a) before and (b) after ~3,000 

iterations 

Thus, Moncion, Amar, and Hutzler capitalize on the rule set of the Boids Model to utilize 

proximity and relative heading as indirect measures of interaction [183], bypassing the 

need to explicitly relate one or more behaviors to one or more interactions. They only refer 

to flocking as an emergent behavior, but their narrative suggests that spread/density of the 

flock could be one property, and number of components could be another property, thereby 
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classifying splitting/merging as a flock behavior. Szabo and Teo [96], Chan [139], and Seth 

[142] refer solely to flocking as the emergent behavior. Choate refers to swarming itself as 

an emergent behavior [190]. Swarming can be distinguished from flocking in that obstacles 

avoided by one component are subsequently avoided by all components (i.e. it places more 

of an emphasis on collective maneuvering). Phelan also referred to collective obstacle 

avoidance, as well as “wheeling” [170].154 In every case, synchronized behavior, patterns 

of behavior, or sudden disruptions of patterns are the common themes underlying the 

suggested emergent behaviors. This research will not go beyond the self-organization 

(Section 3.2) typically associated with the model. The remainder of this chapter will 

discussed the basis for this data compression and its relationship to emergent behavior. 

3.1 Pattern Recognition 

Several authors writing on the subject of emergence cited in this thesis make an 

explicit or implicit reference to patterns as an underlying feature of emergence. For 

example, the Complexity Primer specifically advises engineers to “Identify and use 

patterns… Patterns are the primary means of dealing specifically with emergence and side 

effects,” [61]. Minati’s research on emergence centers on the notion of a collective system 

which is “established by permanently interacting generic agents provided or not provided 

with cognitive systems,”155 [191]. Minati then argues that collective systems have what are 

called spatial collective behaviors (behaviors attributable to the system resulting from 

component interactions), and inherit properties (called meta-structural properties) from, 

among other things, any regularities including periodicity, quasi-periodicity, and chaotic 

regularities.156 Anderson’s discussion of symmetry is, by definition, a discussion of 

                                                 
154 Wheeling is not described in the text. 
155 Minati’s definition of interaction is compatible with the one adopted here. Figure 1 in [290] is a clear and 

simple depiction of collective systems, and corresponds to the discussion on hierarchy and heterarchy in 

CHAPTER 1. 
156 This argument will be extended in CHAPTER 4 
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regularities and patterns [110]. Polack and Stepney associate patterns in time as well as 

space with emergence [115]. As a final example, although information entropy is not 

considered in this thesis, Szabo and Teo cite a variety of sources that show information 

entropy changes have been associated with the onset of pattern formation in systems 

exhibiting weak emergence [96].  

Pattern Recognition is a term broadly used in machine learning [161], but in this 

thesis, it will take the very specific meaning of identifying periodicity in a data set for two 

reasons. The first reason is that the mathematics is intuitive, and the tools for this approach 

are well established and widely available. To identify periodicity simply means that some 

measurable phenomena (e.g. a property of component X, 𝑝𝑥) can be modeled using a 

periodic function or an almost periodic function [192]. For example, if 𝑝𝑥 is periodic in 

time, an equation can be written 𝑝𝑥 = 𝑓(𝑡) 𝑠. 𝑡. 𝑓(𝑡) = 𝑓(𝑡 + 𝑐), where c is some constant. 

Since empirical data sets are finite and the goal is effectively to fit a function, f, to that data 

it is generally impossible to analytically prove that f is the true function representing the 

behavior. Just as an ANN can essentially fit any data set, a polynomial or a Fourier series 

can be used to fit most practical data sets.157 Nevertheless, a compelling argument can be 

made that a data set is likely to be periodic if two conditions are met: (1) the data can be fit 

with a Fourier Series after a certain number of periods, nr, and the prediction error of that 

Fourier Series remains bounded beneath a strict threshold as the pattern persists for a 

number of periods n > nr,
158 (2) the coefficients of that Fourier Series converge to zero at 

a particular rate [193]. Although, neither of these conditions constitutes a proof, they are 

based on well-established approaches for which proofs do exist. Unfortunately, the 

assumptions required for those proofs cannot be taken for granted because mathematically 

                                                 
157 One can assume data corresponding to smooth and continuous functions without loss of generality. 
158 This would suggest that the pattern converged and the current Fourier series is a good-enough 

approximation. 
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“nice” conditions159 typically only appear in the absolute simplest ABMs. This means that 

Fourier Series can be used as a good indication of periodicity, but false positives are 

possible. 

The second reason the identification of periodicity is critical in this thesis is that, 

unlike emergence, there is much less controversy regarding the ontological claim that 

“patterns exist” (though there is some [194]). Thus, if a persistent pattern of interaction, or 

a pattern of relative behavior present among a collection of components can be identified 

and modeled, the only remaining ontological step is to show that the collective is an object 

unto itself (a collective system, higher-level abstraction, SoS, etc.). Within the context of 

a simulation, this means that, at a minimum, the object can be meaningfully represented 

using a set of properties and behaviors. It follows from the in 2.2.2 argument that, within 

the context of a simulation, only components possessing five idealizations are guaranteed 

to exist (axiomatically). If a second simulation can be written such that a system is coded 

as the fundamental component, then it becomes possible in principle to verify the behaviors 

exhibited in that simulation against the predictions of the original simulation (which is 

valid by Assumption 1), given appropriate initial and boundary conditions. However, even 

under ideal conditions, it may not be possible in practice to perfectly verify the second 

simulation. Work on emergent behavior property identification by Samaey, Holvoet, and 

De Wolf suggests that as there is a prohibitive diminishing return relationship between the 

accuracy of low-level initial conditions reverse-engineered from high-level properties and 

the amount of data required to improve accuracy of those initial conditions [195]. This 

suggests that, for all practical purposes, higher-level simulations cannot be built from 

lower-level patterns without some loss of information. 

                                                 
159 Such as the ability to gather a large enough set of data points to rule out nonsensical overfitting. 
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One useful feature of patterns and pattern recognition is it can be used for 

dimensionality reduction and data compression [161]. If two objects are engaged in a 

pattern of relative behavior, for example given by 𝑝𝑥 − 𝑝𝑦 = 𝑓(𝑡) then rather than simulate 

both objects using their individual behavior rules in, for example, an ABM, it becomes 

possible to simply calculate the properties of the second object using its relationship to the 

first instead. In this sense, the dimensionality has been reduced and the data compressed. 

Since the property attributed to the simulated object is also a property of the model it was 

derived from, one can say that the model was compressed. However, since their 

interactions are what generated the pattern in the first place, deleting one entity would 

disrupt that pattern. Therefore, it seems reasonable instead to treat the two objects in this 

example as a collective, and then to select properties for the collective object from which 

to back-calculate the properties of the individuals as suggested earlier. For example, the 

Moon orbiting the Earth as it circles the Sun could be replaced with the simulation of a 

single, rigid, rotating rod whose length is the distance between the center of the Earth and 

the center of the Moon, that orbits around the Sun in such that the positions of the Earth 

and Moon can be recreated from the centroid of the rod and its length. The action of gravity 

between the Earth and the Moon is replaced by a simplified representation due to the 

stability of the Moon’s orbit (the pattern). However, it was also suggested earlier that 

reverse-engineering the information for the low-level entities can require so many 

additional terms and/or equations as to make the effort counter-productive.160 

If the pattern, f(t), is not perfect because the low-level pattern has not fully stabilized, 

or is subject to perturbations, 𝜀, such that 𝑝𝑥 − 𝑝𝑦 = 𝑓(𝑡) + 𝜀(𝑡), then the continued use 

of f(t) becomes a simplification and information about 𝜀 is lost (i.e. the model relying on 

f(t) is inconsistent with the original ABM). Therefore, the programmer can either make f(t) 

more complicated to account for perturbations, or accept the inconsistencies/information-

                                                 
160 This speaks to the incompressibility of the simulation (see Section 3.2). 
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loss generated by the simplified simulation. Since most of the phenomena presented in this 

thesis will never reach perfect equilibrium, the data compression will typically result in 

lossy compression (as opposed to lossless data compression [161]). Although perfect 

patterns can lead to lossless compression, in principle, the other nonlinear behaviors 

commonly associated with emergent behavior (chaos, bifurcations, fractals, limit cycles, 

etc.) inevitably result in information loss under even the slightest simplification. In these 

cases, the only hope the programmer has of generating a useful higher-level model depends 

on whether the chaos, for example, is bounded. If it is, then the error can be bounded, and 

estimates of how that error propagates through the system can be taken. 

3.2 Self-Organization 

Self-organization is defined as “the transition of a system into an organized form in 

the absence of external or centralized control” [196]. Self-organization is essentially the 

phenomenon of patterns appearing spontaneously within the context of unstable nonlinear 

models [197].161 Several authors consider self-organization to be a precursor to emergence 

[198], or even equivalent to it [199] [200]. Although markedly different definitions and 

associations also exist (see references in [200], as well as [201] [202]), they are beyond the 

scope of this work. Numerous examples of self-organization appear in nature [200] [203]. 

Flocking is one such example.  

As discussed in Section 2.2, nonlinear models can produce phenomena such as chaos 

and bifurcations, or converge to stable solutions as in the case of self-organization. Despite 

being deterministic, these phenomena are impossible to predict without running a 

simulation of the model starting from a particular initial condition (each initial condition 

                                                 
161 Halley and Winkler make a distinction between the emergent properties of equilibrium systems and 

nonequilibrium systems. Any structure not assembled by some intelligence must have self-organized, 

whether that system is currently in equilibrium or not. If it is not in equilibrium the structure is said to be 

metastable. This thesis will not make a distinction between the properties of equilibrium systems and 

nonequilibrium systems. 
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can produce wildly different results). Therefore, nonlinearity can introduce an objective 

form of unpredictability that, unlike subjective forms (Section 1.7), can be used as a 

necessary condition for emergence [117]. Huneman describes this objective 

unpredictability of nonlinear models as a form of information incompressibility. He 

counters Epstein’s reductionism on the grounds that since bee interactions must be fully 

simulated in order to observe the hive, the simulation is incompressible. Huneman argues 

that it is a stronger argument to associate emergence with processes (i.e. how events unfold) 

rather than arrangements of objects and the whole-parts dichotomy where properties are 

ascribed to the whole and not reducible to their parts. Huneman refers to the former as 

computational emergence, and to the latter as combinatorial emergence. He considers 

arguments for combinatorial emergence to be weak. However, the two notions are not 

mutually exclusive. A group of objects can arrange themselves into a self-organized pattern 

via an incompressible process (i.e. nonlinear dynamics), and upon doing so, exhibit 

behaviors that the individual objects cannot exhibit in isolation. Huneman argues that 

compressibility should not be considered a basis for emergence, writing, “according to the 

computational view it is never the pattern as itself that is emergent” [117]. He also argues 

that “emergence is a feature of the whole agent-based simulation process” again due to the 

process by which it occurred [117]. Huneman then adds, “weak emergence defined as 

inaccessibility except by simulation is thereby not something trivial” [117]. Although 

Huneman keeps the two concepts apart, this thesis will show that both computational 

emergence and combinatorial emergence work hand-in-hand. 

Since the simulation of the nonlinear model is incompressible up to the point where 

periodic behavior begins, the onset of self-organization marks a change in the underlying 

information content of the simulation, and, therefore, should be taken to indicate that 

something has occurred. The question is whether that something is merely pattern 

formation, or something more (this is the subject of CHAPTER 4). Ryan, in a paper 
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unrelated to Huneman, writes “formal systems, including mathematical models and 

computer simulations, are incapable of reproducing naissance emergence. This does not 

mean that once naissance emergence has occurred that we cannot alter our models to 

[account for it]. It just means that we cannot do it a priori, because we require empirical 

access to select between the possible properties of completely new configurations… [It] is 

an ontological concept … [and] cannot be epistemic” [111].162 For now, briefly consider 

the limitation of Huneman’s emphasis on incompressibility: if the simulation must be run 

to obtain the result (and it must), then what information does one have left with which to 

determine that a particular behavior is emergent? Or even that an emergent behavior exists? 

It would appear that this information would have to be added to the simulation data. 

Introducing new information to a problem requires additional justification, which is 

undesirable. Recall, however, that once self-organization appears the system is configured 

in a stable pattern. The properties of the components engaged in that pattern can now be 

described using a compact set of equations that are simpler than the original nonlinear set. 

Since this new set requires fewer variables, the system of equations has been compressed 

in a sense. If the data can be compressed, then there is a deficit in the information contained 

in the model relative to the initial setup (loosely speaking). It may be that the new emergent 

properties of the whole can come into existence because this pattern-induced compression 

has made information available for novel use.163 In fact, Ryan argues, “emergent properties 

must be the result of spatially or temporally extended structures… By structure, we mean 

there is a pattern that relates the components, which implies redundancy, and therefore the 

description of the components is compressible.” [111] What we have not yet done is 

determine what properties or behaviors the collective object has. In order to avoid 

confusion going forward, Huneman’s incompressibility will be referred to as objective 

                                                 
162 Ryan defines naissance emergence as “the source of novelty.” The interested reader is referred to Ryan’s 

paper for more information. The distinction can be neglected here. 
163 At least one other thesis has associated data compression with novelty [331], but apparently in a very 

different context. A study adapting the Normalized Compression Distance to self-organization is warranted. 
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unpredictability, and is included in the list of necessary conditions for emergence. We now 

see that self-organization can come about due to objectively unpredictable processes (the 

simulation must be executed in order to observe the outcome), but the consequence of self-

organization is the compression of information content, and this deficit in information 

content enables the rise of emergent properties. Clearly then, the type of pattern determines 

the quantity of data compressed, and the quantity of data compressed could be used as the 

basis for counting the number of new emergent properties possessed by the self-organized 

group. This would provide a clear link between computational emergence and 

combinatorial emergence, thereby resolving the tension in Huneman’s paper. 

El-Hani and Pihlström refer to the discussion in the previous paragraph as the 

problem of “[getting] something from nothing” [204]. Their article turns from that problem 

to the literature that addresses the problem using downward causation. Rather than rely on 

downward causation, this thesis solves the something-from-nothing problem directly. 

Between any two models at any two levels of abstraction, information is both lost and 

compressed. That deficit of information creates the “something” from which new higher 

level properties can be created. Both models can be simultaneously valid, and perhaps even 

invertible. It is much more common to find that one model is the limiting case of another 

as with Kinetic Theory and the Navier-Stokes Equations [205]. Therefore, with respect to 

downward causation, this thesis simply takes the position that some models are easier to 

write from the bottom up, and sometimes they are easier to write from the top down (some 

authors go so far as to say that many cause-effect relations are invertible [198]). The 

hypotheses in this thesis will not attempt to measure the information lost. An exact 

“conservation of information” -style equation is left as future work. 

Similar to Huneman, theoretical physicist Dr. Eric Bonabeau also drew a distinction 

between self-organization and “functional” definitions of emergence [200]. Importantly, 

Bonabeau points out that self-organization alone does not provide a characterization of new 
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functions/behaviors exhibited by the system (hereafter this will simply be referred to as 

functional emergence). One of the more useful definitions of functional emergence that 

Bonabeau cites is given by Steels, “[it is a function achieved] indirectly by the interaction 

of more primitive components among themselves and with the world.” Without going into 

unnecessary details on other variants of the term emergence, 164 Bonabeau writes “the main 

difficulty [is] to make the link between structure and function”  

 

Figure 16 – Graphical depiction of self-organization and emergence in [206] 

The notions of weak emergence and functional emergence are the two main concepts to be 

used in this thesis: a group of self-organized parts will exhibit properties and behaviors 

attributable to the whole (weak emergence), and although those behaviors can be attributed 

directly to the whole, they are enacted indirectly by the parts (functional emergence). This 

                                                 
164 Bonabeau’s paper lists 13 examples of various emergent phenomena, and names at least 10 variants of the 

term emergence including micro-, macro-, nomic, physical, social, biological, psychological, computational, 

thermodynamic, and semantic. Of those here listed, semantic is the most relevant, but only in that “semantic 

emergence corresponds to functional emergence” because “in order to model [it], it is necessary to add new 

observables.” [199] That is, functional emergence requires the introduction of new variables to the system of 

equations. 



 98 

relationship is depicted in Figure 16, which shows how objects (indicated by spheres) self-

organize (lines connecting spheres) into collectives and interact. These collective objects 

(spheres at a higher level of abstraction) can then self-organize and interact. Each stage is 

an example of emergent behavior. 

Wright et al. proposes measuring self-organization as a loss in the degrees of freedom 

of a system in the form of an entropy calculation [207], as do Licata and Minati (although 

they associate it more explicitly with emergence) [208]. As before, since the measures 

presented do not enable bridging the gap between form and function (self-organization and 

subsequent emergent behaviors), they fall outside the scope of this thesis. Prokopenko et 

al. go much further in providing definitions for self-organization, complexity, and 

emergence with the aim of defining them such that they are readily distinguished in order 

to facilitate discussions between researchers in difference disciplines (biology, 

engineering, etc.) [206]. There are many parallels between their work and this thesis.165 

This thesis largely agrees with their argument that, from an engineering standpoint, the 

distinction between an emergent behavior and the self-organization preceding it is a matter 

of computation. As in other research, the authors again rely on information-theoretic 

measurements, but only as “place-holders” [206] for the mathematical calculations that are 

clearly needed in any emergent behavior identification method. They admit that “whether 

this view and these [information theoretic] tools can be successfully applied to [Complex 

Systems Science] is far from obvious,” [206]. Up to this point, this document has dismissed 

all measurements of emergence, complexity, and now self-organization on the grounds that 

                                                 
165 There are also crucial differences in definitions, most of which are already covered at least indirectly in 

Sections 1.6-1.7. Some of those differences are pragmatic (e.g. based on the target audience) and do not 

warrant discussion. For the purposes of this section, it suffices to say that they also distinguished between 

self-organization (roughly “pattern emergence”) and a form of functional emergence (“intrinsic emergence,” 

after Crutchfield, whose work is also cited in this thesis, but appearing in a different publication [201]). 
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they fail to bridge the gap between form and function. A detailed explanation of why such 

methods fail is presented in Section 3.4. 

3.3 A Canonical Example of Self-Organization 

NetLogo contains a built-in simulation of flocking behavior whose rule set is slightly 

different from the original Boids model. This simulation, called the Flocking Vee 

Formations model [209], creates flocks of different shapes using rules that enable the 

components to accelerate in response to neighbor proximity and, provided it is not too close 

or too far, implements the rule that the component will adopt the speed and heading of its 

nearest neighbor (within a restricted cone of vision). Of the patterns visible in this 

simulation, the four most common are: (a) the Line, (b) the Vee, (c) the Wave, (d) and the 

Circle166 (see Figure 17).  

 
(a) 

 
(c)167 

 
(b) 

 
(d) 

Figure 17 – NetLogo Flock Patterns 

                                                 
166 This is probably the wheeling behavior Phelan referred to [172]. 
167 Better examples of a near-perfect sine wave have been observed, but never with the record button on. 
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The circle is a persistent configuration and is the second-most sensitive to perturbation. 

The wave is an unstable, transient configuration (most perturbations destroy the shape). 

These flocks will be considered a system, and the self-organized patterns of component 

arrangement will act as sources of information for flock property and behavior definition 

(e.g. a line has a length, a circle has a perimeter and radius). Flocking, itself, will be treated 

as a synonym for self-organization.  There is room for debate regarding whether anything 

besides a 2-boid line should be considered a SoS rather than a system (all other shapes are 

clearly made of 2-boid lines). In general, the number of birds is, first and foremost, a 

quantitative change in system-level properties, not a qualitative change. In this sense, a n-

bird line can be treated as a system without imposing additional assumptions. A Vee, on 

the other hand, can be modeled as two lines that share a lead bird, which is qualitatively 

different from a single line, and introduces an additional symmetry to the shape (reflection 

about the axis formed by the heading of the lead bird, depending on the number of birds). 

A Circle is a leaderless flock, and has yet another symmetry in its shape (rotational) and 

requires a minimum number of birds in order to form. In both of those cases, the number 

of birds takes on additional qualitative significance and present an opportunity for further 

study. 

This is very different from authors that call flocking (or similar coordinated 

behavior) an emergent property or behavior of the birds. By analogy, the Thach Weave is 

an example of self-organization, not an emergent behavior of a pilot. The self-organized 

object is the leader-attacker pair, which the wingman is trained to intercept and destroy via 

the Thach weave. In this case, as long as the self-organized pattern holds (the attacker 

pursues the leader), then the wingman can predict the heading, speed, and separation of the 
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pair (therein lies the emergence), and destroy the pair by firing at the attacker, which will 

presumably disengage, or be destroyed.168 If the attacker is not destroyed, or does not 

disengage, the pair has not been destroyed and the maneuver failed. In addition to the 

discussion in Section 3.2, detailed reasoning is provided in Section 4.1 to justify why 

flocking is not an emergent property/behavior of birds according to the terminology in this 

thesis. The properties of flocks (center of gravity, etc.) may be emergent properties of the 

collection of birds (subject to the conditions in CHAPTER 4). A bird cannot have an 

emergent behavior (at the bird level of abstraction), although many of the properties of 

birds are emergent properties with respect to its organs (e.g. consciousness).  The same 

idea will be extended to pilots in combat. Pilots engaged in one-on-one dogfighting would 

not perform the weave maneuver, since there is no pair to destroy (they would use some 

other tactic to anticipate/manipulate enemy behavior). 

Referring back to the flock examples, the geometric patterns exhibit easily 

identifiable patterns in component relative heading, relative acceleration, and relative 

distance, which facilitates verifying that a Fourier Series fitted to the data corresponds to 

an actual pattern.169 Consider the case of a line of six boids, depicted in Figure 18. 

                                                 
168 Aside: this is where training artificial intelligence easily goes wrong. If the rules are not carefully written, 

the AI can attack the lead pilot, which would also destroy the pair. 
169 Recall that the first term of the Fourier Series is a constant. 
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Figure 18 – Boids self-organization and model compression 

Before the line had formed, the system of equations for the position of the boids was, 

 𝑥𝑖⃗⃗  ⃗ = �⃗� 𝑖𝑡 + 𝑥𝑖
0⃗⃗⃗⃗  (1) 

The ith boid possessed its own velocity vector, 𝑉𝑖⃗⃗ , and its own initial position, 𝑥𝑖
0⃗⃗⃗⃗ . After the 

line formed and stabilized (assuming the boids are spaced equidistantly), every boid adopts 

the same velocity (speed and heading) as the lead boid. Therefore, assuming the distance 

between the given boid and the lead boid increases with index number, the system 

becomes, 

 𝑥𝑖⃗⃗  ⃗ = �⃗� 1𝑡 + 𝑥1
0⃗⃗⃗⃗ + (𝑖 − 1)𝑐  (2) 
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where 𝑐  is constant the relative displacement among boids.170 The other boid velocities and 

initial positions can be replaced with one velocity for all boids, and one displacement, 

which then simplifies much further. The original system had 37 variables: the two-

dimensional positions and velocities of 6 boids (a total of 24 dependent variables), time (1 

independent variable) and the initial positions of the boids (12 constants). The linear flock 

system only has 21 variables: a single velocity (2 dependent variables), six positions (12 

dependent variables), an index variable (treated as an independent variable, or 5 non-zero 

constants), time (1 independent variable), and the inter-boid spacing (2 constants). In this 

simplistic example, the velocities of the other boids are no longer necessary. In terms of 

space complexity, the number of variables in the system has decreased by, 

24 – 14 = 10  change in space complexity 

The qualities that made these properties ‘interesting’ from an ABM standpoint (that they 

would obey their own internal rules) appear to have been usurped by the formation of this 

spatial pattern.171 Note also that if there were more boids in this line, the amount of data 

compressed would increase. Here, an argument can be made that for the linear flock 

abstraction to be meaningful, the properties of the largest possible flock must be the same 

as the properties of the smallest possible flock (i.e. a long line should have the same 

                                                 
170 The line depicted in Figure 18 shows a “wobbly line.” In that case, although the relative distance between 

each pair of birds is constant, there are multiple relative distances, which would increase the number of 

constants in the equation. 
171 Again: in general, any dependent variables (yi,yk) that can be represented as a metric space can be used to 

detect self-organization. The criterion is that there exists a periodic function, f, such that 𝑦𝑖 = 𝑓(𝑦𝑘 , 𝑥), where 

x is one (or more) independent variables in any metric space, not just time. Whether that pattern is useful 

depends on the context. 
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properties as a short line; no dependence on the number of boids). Although this possibility 

will be discussed in the results, it will not be extensively studied in this thesis. 

 Although the flocking model is used solely for its self-organization, a Master’s 

thesis by Jason Smith found that the behavior of very large groups of boids172 (and real 

animals) can exhibit fluid-like behavior, and thus, can be modeled using a short set of 

equations with few parameters [210]. Not only is this an excellent example of data 

compression, but the fact that the low-level boids model can be replaced by a fluid-motion 

model indicates that the boids model can produce emergent behavior in the limit of very 

large flocks. Smith attributes the fluid-like motion to the separation and cohesion rules of 

the boids model, not emergent properties of small-to-intermediate sized flocks. This 

suggests at least two possibilities: (1) small flocks do not have emergent behaviors, (2) 

small flocks do have emergent behaviors, but those behaviors somehow become irrelevant 

as small flocks are subsumed into massive flocks. If the second is correct, then it may be 

that emergent properties do not necessarily act as a kind of ladder from low, to 

intermediate, and then to high levels of abstraction. Rather, the emergence that appears at 

small scales may come undone or simply have no effect on large scale behavior.173 On the 

other hand, it may be that such a ladder does not exist when the large scale is fluid-like, 

but does exist if the large scale is solid-like.174 Studying this sort of multi-level scaling 

phenomenon is a topic for future study. 

                                                 
172 Smith references the original boids model by Reynolds, but does not utilize the NetLogo implementation. 
173 In this sense, imagine a functional decomposition where some intermediate-level functions have no 

upward path to higher-level functions. They simply dead-end. 
174 It is well known that small dust particles or surface defects act as nuclei for crystallization. Perhaps certain 

organizational structures are more “rigid” than others, and the extent to which this rigidity continues into 

larger scales determines the effect that small-scale emergence has on larger scales. For example, grains of 
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3.4 Synthesis of Key Observations: Measuring versus Modeling Emergence 

Although the criteria for emergence will be given in CHAPTER 4, the preceding 

arguments are enough to clarify precisely why the various measures of complexity, 

emergence, and now self-organization have all been rejected: this thesis is based on the 

premise that emergence cannot be measured, it can only be represented.175 Simulations and 

experiments reveal the myriad interactions that ultimately culminate in the high-level, 

collective behavior that this thesis refers to as emergent behavior. Therefore, simulations 

can be used to depict / illustrate / model176 / represent emergent behavior. Emergence, itself, 

is not a measurable quantity. Rather, it is the byproduct of the organization / structure of a 

collection of components, and is only observable when two collective objects interact. 

Furthermore, it is not until after the interaction is observed that one can hope to write an 

equation characterizing the behavior of the collective objects. For example, it is not 

possible to know from the properties of atoms alone that a helical strand of DNA can 

replicate itself, except by an extraordinary stroke of luck or genius. One would have to 

observe it in its environment to watch the process unfold. Referring back to the example 

of Epstein’s bees, it is impossible to predict how a real bee will respond to a real wasp 

without the wasp. Regarding the various measures of complexity, emergence, and self-

organization, it may be that a mathematical formula using degrees of freedom, information 

entropy, and/or Kolmogorov complexity will one day prove to be a better basis for the 

                                                 
sand are solid, but the grains have no cohesion, and so they behave like fluids at large scales (depending on 

the applied stress). One immediately wonders how this would generalize to fractals. 
175 This is an interpretation based the numerous aforementioned articles stating that emergence can only be 

observed by running the simulation / conducting the experiment (the first time). Once it has been observed, 

this thesis holds that it can be predicted. 
176 Here “model” is used in both the general sense and the strict “mathematical equation” sense discussed in 

Chapter 2. A simulation is nothing more than the numerical integration of an unsteady partial differential 

equation (or the equivalent solution mechanism for discrete / quantized data). 
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change in the measured complexity of the system,177 but first someone must develop an 

unambiguous connection between the two. This thesis takes a much simpler approach to 

associate self-organization with the number of emergent properties attributable to a 

collection of components. 

Ultimately, the issue underlying Research Question 1 is the following: when does a 

self-organized pattern of birds, for example, become a flock with properties and behaviors 

of its own? Borrowing a dichotomy from Winning and Betchel, how can the emergence of 

a pattern be distinguished from the emergence of a being [211] within the context of a 

model?178 Crutchfield provides a clue: “moving from the initial intuitive definition of 

emergence to the more concrete notion of pattern formation and ending with intrinsic 

emergence, it became clear that the essential novelty involved had to be referred to some 

valuating entity,” [199] arguing then that, “the observer is that which recognizes the 

‘something’ … [and] is one that has the processing capability with which to take advantage 

of the emergent patterns” [199].179 That is not to say that a self-aware entity that passes the 

Turing test must “observe” the emergence, but simply that some other entity must be 

present that can capitalize on the existence of this new property. This view is consistent 

with a body of literature summarized by Bonabeau:  

Most of the definitions of emergence related to the idea of levels rely on the 

existence of an observer or of some device capable of observation… but for 

some others, a definition of emergence must not include any reference to a 

cognitive observer, i.e. no mental states must be involved in the definition. 

This is not necessarily in contradiction with the use of “observational 

mechanisms”, but such mechanisms must not be taken … because of the 

‘structural plasticity of biological systems.’ [200] 

                                                 
177 Assuming the premise of this thesis holds, there is a connection analogous to space complexity. Otherwise, 

there would have to be some other connection between measurements of organization and the discrete number 

of new emergent properties unrelated to space complexity. 
178 This caveat, along with the idealizations in 2.2.2, provides the ontological grounding for all objects 

discussed in this thesis. 
179 Note that Crutchfield uses the term model in a sense more general than this thesis. 
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Without that last piece of information (i.e. the presence of multiple systems that can 

somehow affect and be affected by emergent properties) it will be mathematically 

impossible to prove that emergence has actually taken place. That is the subject of 

CHAPTER 4.  
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CHAPTER 4. COMPLEXITY AND EMERGENCE DEFINED 

Speaking on causation across/among levels of abstraction, Mitchell argues, “It may 

well be that the complete causal process is enacted by physical entities; what else could 

there be? But at the same time there will not be a representation that completely captures 

this process in terms of physics entities” [144]. Therefore, studying emergence requires 

new ways of thinking about and describing familiar objects in addition to postulating new 

ones. Borrowing an example from Abbott [72], triangles are not physical entities (although 

physical objects can form triangles), and their properties (e.g. the sum of their interior 

angles equals π) are derived from the axioms of mathematics, not the study of physics. 

Therefore, a property such as the magnetic dipole of the water molecule is caused by the 

atoms and the triangular shape of the molecule. It is easy to take this for granted, but doing 

so creates problematic ontologies that stifle the study of complexity and emergent 

behaviors. Writing on the subject of new ways of thinking, the Complexity Primer makes 

one particularly remarkable suggestion to those studying complexity, “Combine courage 

with humility. It takes courage to relinquish control, encourage variety, and explore 

unmapped territory. It takes humility to accept irreducible uncertainty, to be skeptical of 

existing knowledge, and to be open to learning from failure” [70]. With that said, here goes 

something. 

As the Research Objective of this thesis (Section 1.7) states, the goal of this thesis is 

to combine three basic steps: 

1. To develop a method for making non-decomposable, quantifiable properties and 

behaviors traceable 
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2.  To associate specific non-decomposable, quantifiable SoS properties with specific 

system-level patterns of interaction 

3. To demonstrate that one or more patterns of interaction are exploitable 

The term “exploitable” can mean many things to many people. As discussed in Section 

2.2.2, it is impossible to fully simulate the environment that a system operates in, which 

not only eliminates sources of instability and complexity, but also adds sources of 

instability and aleatory uncertainty unique to the computer executing the simulation, and 

the program being executed. In order to restrict the scope of this thesis to simulated SoS 

while striking a balance with the needs of Fleet CBAs or Fleet Synthesis studies, 

exploitable can be defined as “the ability to be affected by a simulated entity such that one 

or more of the simulation idealizations (the simplicity, indivisibility, predictability, or 

persistence) of a SoS are undermined.” Once again (from 2.2.2), a simulated system is not 

guaranteed to inherit any idealization from its simulated components. However, if the 

pattern underlying a SoS property definition is stable, then it is also predictable, persistent, 

simple (in the sense that it is known), and indivisible for the duration of the pattern (in the 

sense that the pattern is indivisible). To irrevocably disrupt that pattern is to exploit the 

property, and hence, the SoS. 

 To associate a specific SoS property with a specific system-level pattern of 

interaction is equivalent to associating that property with a specific entity (the pattern). 

This is a stronger form of traceability, and it is the form of traceability desired in this thesis. 

Since the SoS property is quantifiable, the essence of this stronger traceability is to express 

that property as a function of metrics associated with that pattern. Otherwise, as Kitto warns 

[73], an infinite list of arbitrary properties could be generated. In this way, the property of 
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the SoS is meaningfully traceable to the collection of components engaged in the pattern, 

without being defined in terms of the properties or behaviors of any single component (i.e. 

without becoming decomposable). However, since a pattern is generated by a set of objects, 

rather than an individual object, the formation of the pattern must somehow correspond to 

a quantity that, when measured, can indicate the onset of this association so that traceability 

(in the general sense) can be unambiguously determined. This thesis will rely on the 

information compression characteristic of patterns to take this measurement.180 

 Since simulated entities exist and have properties by definition, their properties can 

be arbitrary and meaningless. For a simulated, traceable property within a simulation to 

have application in real systems, it must possess a quality that makes it consequential (i.e. 

that demonstrates it causes something to occur). Without this, the only conclusion one 

could draw from the observation of self-organization would be that a pattern exists. 

Furthermore, it would be impossible to empirically validate since inert properties cannot 

be sensed/detected. Within the context of a model, to prove that a simulated property is 

consequential, it must interact with the property or behavior of some other object. 

Therefore, in order for a self-organized pattern to be called a SoS (an entity unto itself), it 

must be shown that the SoS interacts with another entity (a component, system, or SoS 

apart from itself). In other words, “I interact therefore I am.”181 As the equation-free 

modeling approach demonstrates, it is possible to identify such properties without 

                                                 
180 In other words, pattern recognition will form the logical justification for a declaration of traceability 

(something exists and is traceable). Other authors might adapt entropy or some other metric for this purpose. 

However, the actual act of tracing one property to another will be take the form of fitting a function to a set 

of data. 
181 Aphorism credit: James Pagan. See also reference in Footnote 71. 



 111 

enforcing traceability. However, in this thesis, the process of searching for SoS-entity 

interactions is also the process of establishing traceability. 

4.1 A Pragmatic Definition of Emergence 

Recall Research Question 1, “Which essential features of emergent behavior constitute 

necessary conditions that can be implemented in a mathematical/computational model?” 

In the absolute broadest sense, the ability to attribute a behavior to a (structurally) higher-

level entity is a N.C. [68]. The key is to identify additional constraints that justify this 

attribution. While it is premature to call this list sufficient, the subject of emergence has 

been bounded enough to permit the presentation of formal hypotheses. Therefore, from the 

literature, the Answer to Research Question 1 is the following list of necessary conditions 

(referred to as NC-RQ1 going forward): 

1. Dynamical 

2. Decentralized 

3. Structurally Decomposable 

4. Self-organization of Components 

a. Nonlinearity of the model 

b. Variability in Component Arrangement 

c. Periodic Behavior 

d. Model Compressibility / Change in description length 

5. Objective Unpredictability 

6. Not Functionally Decomposable 

a. Not Aggregative 
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b. Irreducibility 

c. Functional decomposition contains cycles; layered graph / hypergraph 

7. Attributable to a Higher-Level Object 

Once a system has self-organized, a pattern is present, which implies that the model can be 

partially compressed in space (change in description length / compressibility). In order to 

study the behavior of the self-organized object without loss of information, it is still 

necessary to run the full simulation since, at any point, an instability can disrupt and destroy 

the pattern. Nevertheless, so long as the pattern is stable, the self-organized object can be 

treated as a single entity, thereby reducing the number of distinct objects in the simulation. 

If the pattern is stable enough, the original nonlinear model for the components can, in 

principle, be replaced with a model of the self-organized object. That is, after the 

emergence has been observed in a simulation or experiment, it is no longer “surprising” 

but remains objectively unpredictable because in order to observe it again, the simulation 

or experiment must be repeated exactly as it was before. For example, human 

consciousness is not surprising, but it is impossible to recreate the same person. Finally, 

continuing with the example of human consciousness, since it is impossible (given our 

current understanding of the universe) to attribute consciousness to atoms, emergence 

implies positing the existence of a human (object at a higher level of abstraction than its 

components182) to whom conscious thoughts can be assigned as a property. In this sense, 

the concept of emergence used in this thesis is consistent with every-day ontology and 

language where objects such as “dog,” “sky,” and “cloud” can be readily identified and 

                                                 
182 Again, the “levels” of abstraction need not be hierarchical. Any categorization could do, including 

heterarchical structures. 
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mathematically modeled (although there is always room for debating the finer distinctions 

between, say, breeds of dog, or the canine evolutionary tree). 

Combining these conditions with the definitions provided in Section 2.3, and the 

above discussion, the following pragmatic definition of emergent property is proposed, 

Pragmatic Definition of Emergent Property: - If a (simulated) SoS can be shown to 

interact with another (simulated) entity using its SoS-level properties subject to NC-RQ1, 

then that property is an emergent property. 

Emergent behavior183 merely follows from the definition of behavior in Section 2.3. Recall 

here that SoS is defined using the model-based definition provided in Section 1.5, and so 

the definition naturally extends to systems and their components.  

 With these definitions and conditions, it is now possible to investigate the practical 

steps required to quantitatively associate emergent properties with self-organization. Since 

the experiments in this thesis are numerical it becomes necessary to ask, 

Research Question 2: What minimum set of data is necessary to simulate a SoS that 

satisfies the requirements for emergent behavior? 

4.2 Requirements for Simulating Emergence in SoS 

As discussed in Section 2.2.2, the only simulated objects that are ontologically 

grounded are the basic components in a simulation (the ones deliberately coded by a 

                                                 
183 This chapter concludes the argument that weak and functional emergence are the only categories needed 

for complex systems behavior prediction, and outlines the numerical approach for doing so. This bears some 

resemblance to structural functionalism in sociology. Functionalism, as a term, has related uses in biology 

and philosophy. This thesis will not explore the literature on functionalism in any further detail. The 

interested reader is referred to [126] [343] [344] [345] for more information. 
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programmer). They exist by definition and can possess the qualities of being indivisible, 

persistent, simple, and predictable. Therefore, in order for a system to be simulated in an 

ontologically useful sense, there must be some circumstance in which it can be said to 

possess those same idealizations while also satisfying NC-RQ1. In order to possess 

indivisibility, components must self-organize and exhibit a bounded pattern of spatial 

arrangement that is robust to perturbation.184 That is, the arrangement is indivisible despite 

being structurally decomposable, up to some maximum perturbation. Going forward the 

arrangement of components will be referred to as the system, as is common practice. In 

order to possess persistence, the component-level interactions that prompted the self-

organization must persist or develop into some form of equilibrium interaction. For 

example, social self-organization might have been prompted by a sudden increase in 

communication between individual people, which after some time settles into a regular 

pattern of communication (a relationship). Since the component-level interactions are 

persistent and regular, the system persists.  

In order to be simple, the system must possess one or more distinct properties that 

other entities can interact with for as long as it persists. In this way, the system also 

becomes predictable, in that it can be the cause of an effect, and it can be affected in a 

traceable way. As a result, it becomes possible to derive interaction rules for the system.185 

Therefore, in the context of bottom-up simulations, the qualities of simplicity and 

                                                 
184 Although this can have analogies in other coordinate systems and spaces, such analogies will not be 

explored in this thesis. 
185 Whether the rules take the form of a math equation or computer code is irrelevant. 
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predictability are coupled.186 The meaning of the term distinct will be formalized in the 

upcoming sections. 

What is not necessarily clear from the simplicity and predictability of a simulated 

SoS is the way in which the underlying systems will be affected by the higher level 

behavior, unless, of course, the pattern equations are somehow invertible. When combining 

simplicity and indivisibility, consider that a SoS may change its underlying structural 

composition while maintaining the same property. In this case, there is some ambiguity 

that can be clarified within the context of the problem being studied.187 For example, a 

human being possesses consciousness before, during, and after drinking coffee, even 

though the behavior of his/her endocrine system changes in response. There is no reason 

to argue that the definition of consciousness is somehow undermined by drinking coffee. 

See Abbott’s discussion of reification machines and levels of abstraction for more 

information [77] [212]. An additional issue with SoS is the number of environments the 

SoS operates in. For example, sentient life can be said to operate in a physical, external 

environment, as well as a psychological, internal environment. This possibility may be 

explored in future work. 

 With this in mind, the Answer to Research Question 2 is that a simulated SoS is 

properly defined when the following four conditions are met (going forward, NC-RQ2), 

1. Its constitutive components are engaged in self-organization. 

                                                 
186 They may be decoupled at the component level, but cannot be at the SoS level. 
187 Although it is outside the scope of this work, this author considers this ambiguity appropriate for open 

systems. 
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2. The conditions for its dissolution are defined such that a SoS can be simulated 

independently of its constitutive parts (in principle, see Section 3.2). 

3. Its quantitative properties and their equations are identified. 

4. Its interactions and their equations are identified. 

Condition 2 is essentially the emergent behavior equivalent of determining the bounds in 

which a model is valid. The self-organization and dissolution criteria would essentially 

serve as underlying assumptions for a higher level simulation (wherein the SoS is 

implemented as a component). Since this thesis will not undertake the effort of creating a 

set of multi-scale/level compatible simulations, the second requirement of the above list 

will be enforced by visual inspection of the data. Furthermore, since multi-scale simulation 

is outside the scope of this thesis, there is no need here to convert interaction equations into 

a higher-level interaction rule set. 

 Since the steps for Condition 1 and 2 are those of pattern recognition, this thesis 

will utilize existing tools and techniques, which are specifically identified in Section 3.1 

and 5.2. Conditions 3 and 4, however, corresponds to gaps in the literature, which leads to 

Research Question 3: 

Research Question 3: How many nontrivial quantitative emergent properties must a 

simulated SoS have? 

Research Question 3 is analogous to asking whether or not a simulated SoS has any 

properties at all. If the answer is no (zero properties), then either it is merely a pattern, or 

the simulation does not possess enough information to characterize the emergent behavior. 
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Then, once a number of possible properties has been determined, Research Question 4 

follows: 

Research Question 4: Which quantitative properties are candidate emergent properties of 

a simulated SoS? 

To answer Research Question 4 there must first be some method for enumerating candidate 

properties, and then an approach for confirming that a separate object in the simulation can 

interact with that property (subject to Ockham’s Razor).188 

4.3 Traceability and Associating Self-Organization with Emergent Properties 

In keeping with the unpredictability of emergent behavior, it is impossible to 

determine which properties will appear without knowing (1) how the environment, other 

agents, or other SoSs will sense, respond to, or interact with them and (2) how the SoS 

itself will capitalize on the novel property to sense, respond to, or interact with other 

entities. In this sense, the exact numbers of behaviors that will appear is context dependent 

(see discussion on environment idealization and bee hives in Section 2.2.2-2.2.3). If taken 

to refer to this context dependence, Research Question 3 is unanswerable. 

On the other hand, once self-organization has occurred, the resulting data 

compression that results from the formation of the pattern is intrinsic to the system. 

Therefore, it may be that the ultimate capacity of a system to exhibit any manner of 

emergent property is contingent on the amount of data that it compresses. In this case, it is 

possible that the upper bound on the number of emergent properties it can have is a function 

                                                 
188 Kim’s causal exclusion argument would apply here except that this thesis takes a different position from 

Kim: the fact that two causal models are redundant does not make them mutually exclusive. 
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of this data compression. In this sense, an Answer to Research Question 3 is proposed in 

the form of Hypothesis 1. 

4.3.1 Hypothesis 1: Upper Bound on the Number of Properties 

As discussed in CHAPTER 3, self-organization can be detected by fitting a Fourier 

Series to a sequence of relative property or relative behavior data generated by two or more 

components (subject to restrictions). Recall that data compression in a model means a 

reduction in the number of dependent variables. The equations and constants required to 

fit the pattern equations are not incorporated into this hypothesis, but they will be discussed 

in the analysis of the results. 

Hypothesis 1: If two or more systems exhibit self-organization (exhibiting pattern R) such 

that the space complexity, CS, of the pattern model, MR, is lower than the space complexity 

of the model that produced that pattern, M0, then data compression can be achieved and 

the maximum number of emergent properties, Nmax, that can be assigned to the SoS made 

up of those systems is equal to the number of variables eliminated by that data compression 

plus one:  

𝐶𝑆(𝑀𝑅) < 𝐶𝑆(𝑀0) → 𝑁𝑚𝑎𝑥 = 𝐶𝑆(𝑀0) − 𝐶𝑆(𝑀𝑅) + 1 

Hypothesis 1 suggests, above all else, that the number of emergent properties an object can 

have is finite. To suppose that this upper bound is a linear function of data compression 

may be naïve, but in the absence of other information, nonlinearity would introduce too 

many confounding factors to test, and merely stating that an upper bound exists cannot be 

empirically falsified. Furthermore, Hypothesis 1 is strict in the sense that it argues the upper 

bound is independent of context!189 Finally, the +1 in Hypothesis 1 is an acknowledgment 

                                                 
189 A question not addressed by Hypothesis 1 is whether the upper bound on the number of properties is “for 

all contexts” or “for each contexts.” For example, a collection of atoms forming a material can have an 
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that every set automatically inherits “the number of elements in the set” as a property.190 

Using the example in Section 3.3, the flock of six boids can have up to 10 emergent 

properties. 

 Hypothesis 1 possesses an antecedent that is not controversial and can be verified 

using well-established tools. The consequent of Hypothesis 1 is falsifiable in one of four 

ways: The strongest way is to show that a SoS possesses more viable candidate properties 

that permitted (see Hypothesis 2), and this is the approach that will be used in this thesis. 

A second way is to fail to generate any viable candidate properties for any SoS considered 

in this thesis (e.g. even something so ubiquitous as a centroid). A third way (albeit weaker 

and arguable) is to demonstrate that the number of fitting coefficients and constants 

exceeds the number of variables compressed. A fourth way is to demonstrate that fitting 

parameters are not constant and also exceed the number of variables compressed. 

 Supposing, then, that the number of properties is finite, the next challenge becomes 

the matter of identifying those properties (i.e. actually tracing cause and effect among 

properties). An Answer to Research Question 4 is proposed in the form of a final set of 

criteria, which, due to the coupling between property existence and interaction 

identification, contains nuanced definitions which make the resulting hypothesis weaker or 

stronger. 

4.3.2 Hypothesis 2: Property Identification and Association 

Hypothesis 2 contains terms that must be carefully defined in order to be falsifiable. 

They are: distinct and interact. The definition of interaction relies on yet another term: 

                                                 
electrical property, thermal property, and mechanical property. Hypothesis 1 does not distinguish between 

having up to Nmax “electrical properties” or Nmax properties overall. Currently, this author is leaning toward 

“for each context” where the context is defined as the environment of the SoS. 
190 Whether the number of elements in the set qualifies as an emergent property is subject to Hypothesis 2. 



 120 

associate. Two definitions are given for distinct, and two qualifications are given for 

associate, resulting in four possible combinations of definitions. In order to avoid 

confusion, please note that since Hypothesis 2 can take on four different meanings, there 

are four possible ways to falsify Hypothesis 2. 

The claim that properties are distinct can rapidly become nuanced because some 

properties lose their utility at higher levels of abstraction. For example, the center of gravity 

is meaningful for a ship, less so for a strike group, and useless for the entire US navy. Even 

a property as ubiquitous as mass might not be as useful as density when, for example, a 

system is open. Definition 2a impose clear restrictions on the meaning of the word distinct.  

Although interact has been defined in Section 2.3, much of the literature on 

reductionism (particularly Kim’s causal exclusion argument [213]) centers on the 

observation that the low-level components of one SoS are necessarily interacting with the 

low-level components of a different SoS whenever two SoSs are directly interacting. 

Therefore, this thesis will err on the side of attributing causation to the interaction that is 

most closely associated with the relevant dynamics. This is clarified using Definition 2b. 

Criteria for Identification of Emergent Behavior from Numerical Data:  

If a self-organized set of systems called SoS possesses a set of properties or behaviors, 

P(SoS), such that one or more properties or behaviors, P(SoS)*, are distinct from those of 

its constitutive systems, and SoS directly interacts with another system or SoS using 

elements of P(SoS)*, then SoS satisfies NC-RQ1 and NC-RQ2 and by pragmatic definition, 

P(SoS)* are emergent properties or behaviors. 
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In order for this set of criteria to be tested, it must be shown that the conditions presented 

in this claim consistently identify weak emergence and functional emergence in the data-

set of a group of interacting components (those terms were defined in Sections 1.7 and 3.2). 

This leads to Hypothesis 2: 

Hypothesis 2: The Criteria for Identification of Emergent Behavior from Numerical Data 

are sufficient for the identification of weak and functional emergent properties in complex 

systems and Systems of Systems. 

In other words, if the models involving higher level properties are consistently more 

accurate and simpler than those involving low level properties, then an emergent behavior 

is taking place even if the regressions derived to model these interactions are only 

approximate. Note that this argument is compatible with the argument by El-Hani and 

Pihlström that “an emergent property can be regarded as real to the extent that it provides 

a more efficient description (for some purpose) of the configurational pattern with which 

it is identified than a micro-level description of that same configuration” [204], as well as 

the argument by Dennett [194] which they also cite. However, this hypothesis goes further 

than El-Hani and Pihlström. Not only does it require a more efficient description, but the 

description in question must represent a measurable interaction between two entities (at 

least one of which is self-organized). 

 It is worth briefly remarking on a key term in El-Hani and Pihlström’s argument: 

“an emergent property can be regarded as real” (emphasis added) [204]. Most of the 

scientific literature does not concern itself with questions of whether something is real or 

not (quarks are real, as are atoms, molecules, fleets of ships, human beings, solar systems, 
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etc.). The problem is not absent from the literature, of course, but it takes on the form of 

statements like “correlation is not causation” or terminology like “spurious regressions.” 

Engineers live in a world of models, and the question to an engineer is: can the model be 

validated? How well does the model conform to reality? To a modern engineer, engaging 

with reality is a matter of conducting an experiment and measuring a quantity. It is not a 

matter of determining whether or not atoms truly exist in a fundamental sense. The 

ambiguity that philosophers confront regularly in their literature is pushed onto the 

empiricist to resolve, as though any question about reality can be answered with an 

adequately constructed experiment (sometimes this expectation is simplistic [156]). 

Unfortunately, philosophers do not have that luxury since the utility of experimentation 

itself can be called into question. The subtle difference between the questions asked by 

philosophers and the questions asked by engineers is probably a significant contributor to 

the confusion regarding complexity, emergence, and complex systems in the literature of 

the various disciplines (not to mention the intersection between those ideas and number 

theory / information theory as seen in this thesis). This is likely the reason that the clever 

machine learning approach by Kokar et al. [97] failed to produce a coherent definition of 

emergent behavior (although their study still yielded several useful results and 

discussions). The various disciplines attempt to discuss similar concepts using similar, or 

even redundant, terminology but they do so with different priorities and assumptions in 

mind, which can easily mislead a reader. A clear and consistent ontology is needed in order 

to study emergence. Systems engineers cannot avoid the issues tackled by philosophers. 

This thesis, as suggested earlier, takes the stance that everything is a model, and thus the 

objects described by those models and the behaviors predicted by those models are real. It 
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also determines that the forms of emergence relevant to SE are weak emergence and 

functional emergence. This makes questions of emergence accessible to engineering 

methods as well as the scientific method because in most practical cases, whenever a 

scientist makes a prediction about the pressure of a fluid, or the position of an atom, those 

predictions start and stop with the model used to make the prediction. The purpose of this 

chapter is to render definitions specific, and to relate those definitions to measurable 

quantities. 

Hypothesis 2 is strict (sufficient condition) in order to make it falsifiable by 

numerical experiment. If the hypothesis were written to say that the criteria are necessary 

conditions, rather than sufficient, the experimental methods in this thesis would not be able 

to distinguish between a deception and true emergent behavior. A mathematically rigorous 

approach to distinguishing between a deception and an emergent behavior is outside the 

scope of this thesis (there is no alternative method to compare to). The methods used in 

this thesis for mining the simulation data and generating a set of candidate properties are 

discussed in CHAPTER 5.  

The details on how to falsify this hypothesis are depend on Definitions 2a and 2b, 

which are described below. Overall, and in layman’s terms, this hypothesis can be falsified 

in two ways: show that the criteria are bad, or show that the criteria are not good. To show 

that the criteria are bad, it must be shown that high-level behaviors that are independent of 

high-level interactions satisfy the criteria. This approach tests that non-emergent and/or 

arbitrarily derived high-level behaviors do not satisfy the criteria for emergence. To show 

that the criteria are not good, it must be shown that a high-level interaction that should be 

emergent does not appear to be emergent, or is difficult to distinguish from noisy data. The 
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former is unambiguous and will be the primary method for falsifying the criteria in this 

thesis. The latter is essentially the same challenge faced by every researcher in this field, 

and will be the subject of discussion in the chapters that follow. Hypothesis 1 is much 

easier to falsify in principle. If more properties are found than permitted by Hypothesis 1, 

then Hypothesis 1 is falsified. So long as Hypothesis 2 is “not bad,” Hypothesis 1 will only 

be falsified when  

At this point it is important to refer back to the Research Objective of this thesis. 

As stated at the beginning of this chapter, the first goal is to “develop a method for making 

non-decomposable, quantifiable properties and behaviors traceable,” which is not the same 

as settling, once and for all, the debate over the definition of emergence. However, in order 

to be practical, the non-decomposable properties identified in this thesis cannot be 

arbitrary, and their attribution to a SoS must be logically grounded. The pragmatic 

definition, necessary conditions, and sufficient conditions listed here cannot been proven 

to be sufficient conditions of emergence beyond any doubt over the course of this single 

thesis. Nevertheless, they scope the discussion sufficiently to perform the tasks of tracing 

properties to collections of self-organized components, and provide useful guidelines for 

determining that those properties are meaningful within the context of systems engineering 

simulations. 

The next issue is the definition of what constitutes a distinct property within the 

context of a simulation. Referring again to a block of ice: at the engineering level, the mass 

of a block of ice is understood to be the mean value of a statistical distribution since it is 

an open system. On the other hand, the mass of a water molecule is generally assumed to 

be constant. Clearly these are both conventions (real oxygen has isotopes; the mass of a 
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real block of ice is estimated while, in a simulation, the number of molecules in a block of 

ice can be counted exactly). When assigning a property to a SoS, the convention used for 

the underlying systems may not extend to the SoS. This thesis will not exhaust the list of 

all possible conventions. Instead, a property will be treated as the totality of the 

mathematical expression used to define it for the purposes of the simulation. In this way, 

equations can be directly compared and visually distinguished. Recall that an emergent 

property can be expressed as a linear function because the basis of self-organization in NC-

RQ1 is nonlinearity, which is intrinsic to the process of self-organization. 

4.3.3 Definition 2a: Property Distinctiveness 

Definition 2a - Property Distinctiveness: Let P(SoS) be the set of all properties and 

behaviors possessed by a self-organized set of n systems called SoS. Let P(A) be the set of 

all properties and behaviors possessed by a single system, A, within SoS (𝐴 ∈ 𝑆𝑜𝑆).  

(2a-i) Relaxed: The set of properties possessed by SoS cannot be identical to the 

set of properties possessed by any one constitutive agent: 

 𝑃(𝑆𝑜𝑆)⋂(⋃ 𝑃(𝐴𝑗)
𝑛
𝑗=1 ) ≠ 𝑃(𝐴𝑘) ∀ 𝐴𝑘 ∈ 𝑆𝑜𝑆, 𝑘 ∈ [1, 𝑛]  

(2a-ii) Strict: The set of properties possessed by SoS cannot contain any properties 

possessed by its constitutive agents (i.e. P(SoS) = P(SoS)*): 

 𝑃(𝑆𝑜𝑆)⋂(⋃ 𝑃(𝐴𝑗)
𝑛
𝑗=1 ) = {∅} 

In other words, the strict version of Definition 2a (2a-ii) means that a SoS cannot directly 

inherit any property from its constituent systems whatsoever (e.g. the “position” of a SoS 

cannot be a copy of the position of any one constituent system). The relaxed form of 
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Definition 2a (2a-i) permits the SoS to inherit some properties directly from its constituent 

systems so long as not every property is directly inherited, and so long as the properties of 

one system are not all inherited. This is the extent to which property distinctiveness across 

levels of abstraction will be enforced in this thesis. Definition 2a essentially acts as a kind 

of necessary condition to filter sets of candidate properties (the set size being restricted by 

Hypothesis 1). 

 To facilitate the search, however, it is reasonable to incorporate structural 

information provided by well-known metrics in the search for new properties. Minati 

provides a convenient list of properties that a SoS could potentially acquire from its 

constituent systems without directly inheriting properties from an individual constituent: 

“(1) Properties of the values acquired by mesoscopic variables…such as 

any regularities including periodicity, quasi-periodicity, chaotic 

regularities possibly with attractors …  

(2) Possible statistical properties of sets of meta-elements detected by 

suitable techniques …  

(3) Properties, e.g., geometrical and statistical, of sets of generic agents 

constituting mesoscopic variables;  

(4) Properties related to the usage of degrees of freedom …  

(5) Relationships between properties of sets of clustered generic agents and, 

macroscopic properties such as density, distribution … percentages;  

(6) Properties of the thresholds adopted for specifying the mesoscopic 

general vector;  

(7) Levels of ergodicity or quasi-ergodicity;  

… 

(9) Possible topological properties of network representations such as 

power laws and scale-freeness.” [191] 

Geometric properties, of course, include shape parameters (characteristic lengths, angles, 

numbers of sides, etc.). Values acquired from periodic functions (such as the one fit to the 
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self-organization pattern) include the period and amplitude of the oscillation (i.e. one SoS 

property may be the amplitude of oscillation). Regarding, network properties, Green and 

Newth go even further than Minati, arguing that “virtually any complex system inherits 

properties of graphs” [76]. If Green and Newth’s statement is interpreted with its full force, 

it could prompt a near automatic violation of Hypothesis 1. It does not, however, because 

according to Hypothesis 2, the property is only emergent if it participates in an interaction. 

 What remains ambiguous in the wording of Definition 2a is whether or not certain 

statistics of the set of systems should be considered “the same” as the property of a system 

in that set. For example, suppose all properties have the same units, and the property of the 

SoS is the maximum value of all system properties. Clearly, at every instant in time, 

max(⋃ 𝑃(𝐴𝑗)
𝑛
𝑗=1 ) ∈ 𝑃(𝐴𝑘) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐴𝑘 ∈ 𝑆𝑜𝑆. This author considers the maximum 

statistic “distinct” from the property of a system so long as Ak can change during the 

simulation (i.e. the maximum is held by different constituents over time). 

4.3.4 Definition 2b: Interaction Detection and Association 

Definition 2b is motivated by the reality that if a SoS is interacting with an external 

object, then at least one of its constituent systems is also simultaneously interacting with 

that same external object (or its components). However, this thesis aims to attribute 

causation to the SoS, not the constituent system, otherwise Hypothesis 2 is falsified. 

Therefore, in order to claim that the SoS is causing the interaction, there must be a property 

or behavior of the SoS that is more closely associated with the change in the object’s 

properties than a property or behavior of a constituent system. The meaning of association 

is clarified in subsequent definitions. Note that since interactions can be multivariate, 

Definition 2b seeks a set of SoS properties and behaviors that are more closely associated 

to the object’s properties than some set pertaining to one of its systems. The added 
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restriction is that the set of SoS properties must contain at least one distinct property (one 

property satisfying Hypothesis 2a), otherwise the SoS property set is merely a copy of its 

system property set. 

Definition 2b – Interaction due to SoS: Let 𝑝𝑖 = 𝑝(𝑆𝑜𝑆𝑖) ⊂ 𝑃(𝑆𝑜𝑆𝑖) be a subset of the 

set of properties or behaviors, 𝑃(𝑆𝑜𝑆𝑖), of SoSi s.t. 𝑝(𝑆𝑜𝑆𝑖)⋂𝑃(𝑆𝑜𝑆𝑖)
∗ ≠ {∅}. Let 𝑎𝑖 ⊂

𝑃(𝐴|𝐴 ∈ 𝑆𝑜𝑆𝑖) be a subset of the properties or behaviors of a system, A, contained in SoSi. 

Let b represent a behavior of another system or SoS: 𝑏 ∈ 𝑃(𝑆𝑜𝑆𝑗) 𝑠. 𝑡. 𝑆𝑜𝑆𝑖⋂𝑆𝑜𝑆𝑗 = {∅}, 

or 𝑏 ∈ 𝑃(𝐴𝑗) 𝑠. 𝑡. 𝐴𝑗 ∉ 𝑆𝑜𝑆𝑖. If pi is more closely associated with b than ai, then SoSi 

directly interacts with Aj/SoSj. 

Note that Definition 2b says “directly interact.” It may turn out that closer associations are 

impossible, which would imply one of two things:  

(1) Interactions were identified but were consistently of lower association strength than 

system-level interactions. This would imply that SoS only interact indirectly with other 

objects via their constituent systems rather than directly, which would suggest that higher-

level models are always less ontologically grounded than lower-level models. If this is the 

case, it does not invalidate the work of this thesis, but it does mean that expectations 

regarding emergent behavior must be shifted accordingly (e.g. accepting that interactions 

are indirect as opposed to direct-yet-contemporaneous). By Definition 2b, this case will 

falsify Hypothesis 2;191  

(2) No interaction was found of adequate strength, which means that no property satisfying 

NC-RQ1 or NC-RQ2 were found. Hypothesis 2b is falsified in general.191  

                                                 
191 Strictly speaking, only a truly exhaustive test of all possible properties can completely falsify Hypothesis 

2b due to its formulation. The methods used here will aim for that, but due to time constraints, this caveat 

must be stated. 
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 The following definitions further clarify the meaning of the term “association.” 

Essentially, both forms argue that a good association can be determined by combining a 

measure of goodness of fit with a measure of the time complexity of the model that is fit 

to the data. Loosely speaking, this is a combination of correlation between data sets and 

Ockham’s razor. 

(2b-i) Weak Association: Let x, and y be independent variables. Let z be a dependent 

variable. Let m be some metric that measures the goodness of fit of some data regression. 

Let f and g be functions used for data regression. Let CT be the model time complexity of 

some function. If 𝑚(𝑧, 𝑓(𝑥)) >  𝑚(𝑧, 𝑔(𝑦)) and 𝐶𝑇(𝑓(𝑥)) < 𝐶𝑇(𝑔(𝑦)), then f(x) is more 

closely associated with z than g(y). If 𝑚(𝑧, 𝑓(𝑥)) =  𝑚(𝑧, 𝑔(𝑦)) and 𝐶𝑇(𝑓(𝑥)) =

𝐶𝑇(𝑔(𝑦)), then f(x) is as closely associated with z, as g(y). 

In other words, given two different regressions on the same data set, the regression that has 

both a higher goodness of fit and a lower time complexity is the better regression. 

(2b-ii) Strong Association: Let x, and y be independent variables. Let z be a dependent 

variable. Let m be some metric that measures the goodness of fit of some regression. Let fi 

be any function derived from some pre-determined set of operations. Let CT be the (model) 

time complexity of some function.  

Let Xm be a set of goodness measures, 𝑋𝑚 = {𝑚𝑖(𝑧, 𝑓𝑖(𝑥))}; Ym similarly defined.  

Let Xc be a set of time complexity measures, 𝑋𝑐 = {𝐶𝑇,𝑖(𝑧, 𝑓𝑖(𝑥))}; Yc similarly defined.  

Let X be the set of pairs, 𝑋 = {𝑋𝑚, 𝑋𝐶} = {𝑚𝑖(𝑧, 𝑓𝑖(𝑥)), 𝐶𝑇,𝑖(𝑧, 𝑓𝑖(𝑥))}; Y similarly 

defined.  
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Assuming optimization objectives that maximize goodness of fit while minimizing time 

complexity, max (𝑚(𝑧, 𝑓(𝑥))) and min(𝐶𝑇(𝑓(𝑥))), if the Pareto Optimal subset of X 

strongly dominates Y, then x is more closely associated with z, than y. If the Pareto Optimal 

subset of X weakly dominates Y, then x is as closely associated with z, as y. 

 In other words, imagine generating a set of regressions on a data set z, using the functions 

of the variable x. Each regression has its own goodness of fit measurement and its own 

time complexity. Clearly some are better than others. From that set, those that have the best 

trade-off between goodness of fit and complexity form the Pareto Optimal set (see [214] 

for more information). Generate another set of regressions using y and the independent 

variable, rather than x. If the Pareto Optimal set of one variable dominates the other, it is 

the variable more strongly associated with z. If it only weakly dominates, then they are 

equally well associated with z. Readers familiar with Pareto Optimal sets will recall that 

the true Pareto Optimal set may not be attainable; in some problems it can only be 

approximated [215] [216]. However, if only approximate sets are available, then the entire 

two-dimensional distribution of performance metrics can also be compared. 

 To clarify the intention and function of Hypothesis 2, Figure 19. The properties of 

the red flock (represented by a red line) are given by variables yk. The properties of the blue 

flock (blue line) are given by variables zi. The properties of a single boid contained in the 

red flock are given by the variables xh. All the properties yk can be expressed as a function 

the properties of the boids in the flock. This is upward causation. Clearly, the flock has a 

length because of the space between boids, and a position (center of gravity) because the 

positions of the boids can be averaged. The same is true for the blue flock. However, it 

may be easier and more accurate to write an equation for the time-rate-of-change of zi in 

terms of yk, zi = f (yk), than in terms of xh, zi = g (xh) (the properties of any one boid 

contained in the red flock) where f and g can be any function. Therefore, it is not merely 
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an interaction with a component, which is governed by predefined rules, but rather it is an 

interaction with a self-organized collection for whom no interaction rules were explicitly 

coded in the simulation. If this equation generalizes to all flocks of the same type, then it 

is an emergent behavior of that flock and it can be used to write rules for simulations of 

flocks.192 This casual description will be clarified in Section 5.1.3 on model complexity 

calculations. 

  

Figure 19 – Pictorial representation of Hypothesis 2 (weak association) 

 To clarify an aptly phrased and relevant question, the previous paragraph will be 

paraphrased. A question was asked: “What is the difference between an emergent behavior 

and the result of just running a simulation?” Clearly, every conclusion one draws from a 

simulation is a consequence of running the simulation. That includes emergence. However, 

the simulation itself is made up of pre-determined objects and their pre-determined 

behavior rules.193 The simulation contains no explicit information regarding the properties 

                                                 
192 The properties of the red line and blue line were denoted with variables y and z to make the argument easy 

to follow. Since both flocks are of the same type they must have all the same properties (y = z). 
193 Recall the response to Epstein’s work in Section 2.2.3. 
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or behavior rules of self-organized objects. Since those properties and behavior rules 

belong to the higher level object, they are emergent behaviors. Those rules are nowhere 

written in the code or underlying mathematical model (although they are caused by that 

underlying mathematical model). The fact that a simple behavior rule can be written at all 

for the higher level object is the emergence. That rule, combined with an appropriate set of 

conditions for the creation and dissolution of the self-organized object can be used to create 

an entirely new simulation where the higher level object is coded in as the basic, idealized 

component (just as one codes a computational fluid dynamics solver or a molecular 

dynamics solver without regard for Bosons). Rather than flying boids, the simulation would 

be of flying lines. Those lines could then, potentially, self-organize and that new object 

could potentially have its own emergent properties. On the other hand, those lines could 

interact without ever self-organizing, in which case the hierarchy of emergent objects will 

have reached a dead end. Dead-ends are beyond the scope of this thesis. 

4.4 Systems Science Research Q&A Summary 

Recall that USN Fleet CBA and Fleet Synthesis studies demand the ability to 

physically and functionally decompose systems and SoS. 

Research Problem: The traditional SE approaches to defining the 

properties and behaviors of a SoS that are distinct from those of its 

constituent systems lacks generality and traceability, and results in designs 

whose behaviors are only partially understood, the remainder of which can 

be exploited for some unintended purpose. 

The associated gaps in the literature are essentially caused by the reductionist 

methodologies that suppose complex behaviors are decomposable (they are not), which 

then fuels disagreement over the definition and inherent nature of SoS, complex behavior, 

and emergent behavior. 
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Research Objective: To develop a method for rendering non-

decomposable, quantifiable SoS properties and behaviors traceable to the 

patterns of interaction of their constitutive systems, so that exploitable 

patterns identified during the early stages of design can be accounted for. 

This research objective entails developing a better understanding of non-decomposable 

SoS behaviors (referred to as emergent behaviors on pragmatic grounds), in order to 

develop a method to trace them to specific constituent systems of an SoS. Although much 

work has been done with regards to emergent behavior, no body of work to date (to the 

knowledge of this author) has enabled users to unambiguously associate quantitative data 

with qualitative behaviors, and then assign those behaviors to higher level entities, as 

depicted in Figure 20. 

 

Figure 20 – Knowledge gaps in relation to existing literature 

Therefore, the first research question is designed to identify the qualitative features of 

emergent behavior in order to guide the thesis. 
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Research Question 1: Which essential features of emergent behavior 

constitute necessary conditions that can be implemented in a 

mathematical/computational model? 

The answer to this question is provided through a literature review, which culminates in 

the collection of necessary conditions referred to as NC-RQ1: 

1. Dynamical 

2. Decentralized 

3. Structurally Decomposable 

4. Self-organization of Components 

5. Model Compressibility 

6. Objective Unpredictability 

7. Not Decomposable 

8. Attributable to a higher-level 

This thesis will conduct experiments using simulations. Within that context, a nuanced 

definition of SoS, and emergent behavior is provided and discussed. 

Research Question 2: What minimum set of data is necessary to simulate 

a SoS that satisfies the requirements for emergent behavior? 

The answer to this question is also provided through a literature review, which culminates 

in the collection of necessary conditions referred to as NC-RQ2. 

1. Its components are self-organized 

2. The conditions for its dissolution are defined 

3. Its quantitative properties and their equations are identified 

4. Its interactions and their equations are identified 

The remaining research questions focus on practical questions of traceability. First, one 

must determine how many properties exist, if any. 

Research Question 3: How many nontrivial quantitative emergent 

properties must a simulated SoS have? 

Without first simulating or observing the SoS, the only logically defensible answer is to 

posit the upper bound on the number of properties a SoS can have. 

Hypothesis 1: If two or more systems exhibit self-organization (exhibiting 

pattern R) such that the space complexity, CS, of the pattern model, MR, is 

lower than the space complexity of the model that produced that pattern, 
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M0, then data compression can be achieved and the maximum number of 

emergent properties, Nmax, that can be assigned to the SoS made up of those 

systems is equal to the number of variables eliminated by that data 

compression plus one:  

𝐶𝑆(𝑀𝑅) < 𝐶𝑆(𝑀0) → 𝑁𝑚𝑎𝑥 = 𝐶𝑆(𝐴𝐵𝑀0) − 𝐶𝑆(𝐴𝐵𝑀𝑅) + 1 

Hypothesis 1 can be falsified in four ways: The strongest way is to show that a SoS 

possesses more viable candidate properties that permitted (see Hypothesis 2). A second 

way is to fail to generate any viable candidate properties for any SoS considered in this 

thesis (e.g. even something so ubiquitous as a centroid). A third way (albeit weaker) is to 

demonstrate that the number of fitting coefficients and constants exceeds the number of 

variables compressed. A fourth way is to demonstrate that fitting parameters are not 

constant and also exceed the number of variables compressed.  

Then one must determine the criteria for assigning a property to a SoS in order to 

subsequently trace that property to a set of constituent systems. 

Research Question 4: Which quantitative properties are candidate 

emergent properties of a simulated SoS? 

This question is answered by the following criteria and Hypothesis 2. 

Criteria for Identification of Emergent Behavior from Numerical Data: 

If a self-organized set of systems called SoS possesses a set of properties or 

behaviors, P(SoS), such that one or more properties or behaviors, P(SoS)*, 

are distinct from those of its constitutive systems, and SoS directly interacts 

with another system or SoS using elements of P(SoS)*, then SoS satisfies 

NC-RQ1 and NC-RQ2 and by pragmatic definition, P(SoS)* are emergent 

properties or behaviors. 

Hypothesis 2: The Criteria for Identification of Emergent Behavior from 

Numerical Data are sufficient for the identification of weak and functional 

emergent properties in complex systems. 
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The criteria contain nuanced definitions for certain terms (see Section 4.3). The detailed 

ways to falsify this hypothesis are discussed with respect to Definitions 2a and 2b, because 

they are coupled. In general, however, this hypothesis is falsified if no interaction can be 

found using properties that are distinct from those of its constituent systems, or if a 

decidedly non-emergent property satisfies the conditions of an emergent property. 

 These answers to these questions open the door to the final research question 

considered in this thesis, which is also the one of central concern for the execution of a 

CBA and FSS (see CHAPTER 5 and CHAPTER 7 for the complete development of this 

question and answer): 

Research Question 5: Once identified, how can emergent behaviors be 

exploited? 

Since there is no systematic approach yet in existence, this thesis will adapt a Sensitivity 

Analysis (SA) that will enable decision-makers to clearly identify opportunities for 

emergent behavior exploitation. The adversarial boids case study and its measures of merit 

will be used to illustrate the sensitivity-based approach. The test for Hypothesis 3 is also a 

test for the efficacy of the SA: 

Hypothesis 3: Targeting the system-level property will be more effective 

than targeting either pilot. 

Answering Research Question 5 will be the primary focus of CHAPTER 7. 
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CHAPTER 5. EXPERIMENT PROCEDURES AND 

EXPLOITATION ANALYSIS 

Revisiting the Research Objective of this thesis (Section 1.7) once more, the goal of 

this thesis is to combine three basic steps: 

1. To develop a method for making non-decomposable, quantifiable properties and 

behaviors traceable 

2.  To associate specific non-decomposable, quantifiable SoS properties with specific 

system-level patterns of interaction (i.e. perform the trace) 

3. To demonstrate that one or more patterns of interaction are exploitable 

This chapter will illustrate a method for performing each of these steps, review some tools 

to be used in each step, and present the experiments for testing Hypothesis 1 and 2. 

Following the numbering above, an analyst looking for exploitable emergent behaviors 

would perform the following three steps (see Table 1). That this method fills the knowledge 

gaps (see Figure 21) is not particularly controversial. By identifying a self-organized 

system, properties and behaviors become traceable to that system. By observing system-

level interactions, one can infer the properties that are changing during that interaction, and 

so it becomes possible to associate that behavior (property change) with the system 

exhibiting it. Taken together, the pattern recognition and behavior association steps fill 

most of the gaps in Section 1.7. Finally, if the properties of the system are exploitable, then 

the patterns of interaction, which form the foundation of that system, are exploitable (this 

fills the remaining gaps).  

If one wished to prove that this method cannot work there are two options. One can 

attempt to empirically determine that this method cannot work, which is impossible without 
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testing infinitely many applications (though a small number of tests may suffice to show 

that it contains some inherent deficiency).  

Table 1 – Method for bridging the emergent behavior knowledge gaps 

(1) Pattern Recognition 

a) Determine model / simulation space complexity 

b) Run Simulation 

c) Identify self-organization (find pattern model) 

An emergent behavior is now traceable to interacting, 

self-organized components, if it exists. 

d) Determine pattern model complexity 

e) Compute maximum number of emergent properties 

according to equation in Hypothesis 1 

(2) Behavior Association 

a) Continue running simulation 

b) Observe one or more direct interactions between 

components of self-organized system and 

components not in that system (“external”) 

c) Determine association between properties of 

external component, and emergent property of self-

organized system, if any 

Emergent behavior has now been traced. Hypotheses 1 

and 2 can now be tested. 

(3) Exploitation Analysis 

The type of exploitability analysis depends on the goal 

of the study: 

 Design Performance* 

o Impact on MoMs 

o Facilitate / inhibit emergent behavior 

 Behavior Change* 

o Rule modification (ways) 

o Design change (means) 

 Model Discovery 

* Types considered in this thesis. 

As Balestrini-Robinson points out, however, the hypothesis that a method can do 

something or will improve something is difficult to support and to falsify [81], especially 

when the state of the art is largely made up of ad-hoc techniques and the literature generally 

lacks agreement on fundamental definitions. In the case of this thesis, there is currently no 

known alternative method to test against for efficacy. Second, one could attempt an 

impossibility proof, but as John Bell once quipped, “The only thing proved by impossibility 
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proofs is the author’s lack of imagination” [217].194 As will be shown in this chapter, the 

first and last steps can be implemented using known tools and techniques. The most 

significant challenge in this approach is the behavior association step. Though this author 

does not consider the step to be impossible, there are significant hurdles to overcome in 

performing this step (see Section 5.3.2 in particular). Ultimately, this one step appears to 

be the essential gap in the emergent behavior literature. 

 

Figure 21 – Bridge across knowledge gaps (simplified Figure 20) 

This chapter describes the mathematical tools and workflows needed to perform 

these tasks illustrated in Figure 21, and will conclude with a discussion of the case studies 

to be used for hypothesis testing, and the steps required to conduct the experiments. The 

method described in Table 1 is further illustrated in Figure 22. To implement the method, 

a user must obtain quantifiable data of the relevant component properties, and interactions, 

as well as the mission they will perform (i.e. the context in which they operate, and any 

purpose they may serve). If any of this data is missing, it must be supplemented by 

simulation or experimentation (e.g. the component properties may be known, but 

                                                 
194 Though ironic, the contradiction between Bell and Gödel’s theorem later in this document is superficial. 
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knowledge of the ways they interact may be limited), or eliminated by idealization of the 

component. The environment, too, must be idealized (scoped to whatever active regions 

are considered to be relevant). Finally, there must exist some mathematical model that can 

be implemented as a simulation. The assumptions used to make the model must be 

recorded, so that discrepancies with experimental results can be accounted for. 

 

Figure 22 – Input-Process-Output diagram for emergent behavior exploitation 

method 

As suggested at the beginning of this section, the reason for these steps, controls, and 

enablers is that component interactions lead to self-organization. Self-organized systems 
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then interact. From the system-level interactions it becomes possible to identify system-

level behaviors. From the system-level behaviors it becomes possible to identify exploits. 

From the exploits one can make ways vs. means decisions, and find that new measures of 

merit are needed to properly capture the performance of the exploit. The remainder of the 

chapter discusses how the three main steps of the method mine this data to obtain actionable 

decision-making / design information. 

5.1 Tools for Data Mining 

It is widely known that correlation is not causation, especially when it comes to 

emergent behavior [63]. Nevertheless, some means of detecting cause and effect is 

required. At least one author has suggested counting interactions directly [139]. Although 

that would help filter out spurious correlations, that approach does not scale efficiently with 

the number of properties/components, cannot distinguish between simultaneously 

occurring causes, and becomes challenging when interactions are persistent and continuous 

(e.g. many-body problems in physics). Therefore, additional tools are needed. 

5.1.1 Statistical Measures 

Hypothesis 2 requires techniques that measure the goodness of fit between two data 

sets to determine if higher-level properties and behaviors are closely related to some 

interaction. The naïve approach is to attempt to fit one data set to another data set over 

some judiciously selected time interval using standard surrogate modeling techniques, and 

to measure the goodness of fit (e.g. using R2 and RMSE). While this can be implemented 

in order to establish a baseline, there are more sophisticated techniques for measuring the 

impact of one time-varying parameter on another. 
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Granger causality, as it is now called, is a frequently cited, widely-used statistical 

technique for determining whether one variable influenced the time-evolution of another 

variable [218]. Assuming a statistical stationary time series, the most basic form of the 

calculation can be expressed as: 

 If 𝜎2(𝑋|�̅�, �̅�) < 𝜎2(𝑋|�̅�) then 𝑌 → 𝑋 (1) 

The overlined terms are time-lagged values of the time series data X and Y. The above 

equation tests whether the variance of the error in predicting the current value of X given 

time-lagged values of X and Y added together, is lower than the variance of the error in 

predicting the current value of X given time-lagged values of X only. If so, then Y Granger-

causes X. A number of extensions to this method exist including some for nonlinear 

variables with applications in emergent behavior [219]. One noteworthy extension of 

Granger causality incorporates data-compression algorithms [220]. While that method 

incorporates notions used in this thesis, its compression calculations (which rely on lossless 

data compression algorithms) would introduce a confounding factor to this analysis, which 

computes model compression using an analytical approach. Therefore, it will not be 

included in this thesis. 

 O’Toole, Nallur, and Clarke195 applied the Pearson product-moment coefficient (a 

very straightforward statistic) to search for correlations between properties of components 

in the Boids model [221]. This method is consistent with Minati’s list (Section 4.3.3), as 

well as being easy to interpret, widely available, and also useful as a verification tool for 

                                                 
195 Their definitions of weak emergence and strong emergence differ substantially from the body of literature 

cited throughout this thesis. Their nominal emergence is equivalent to weak emergence in this document. 
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analyses on the Boid model in conjunction with the results in. Furthermore, it has a natural 

extension to the tools that will be used for candidate property identification. However, their 

main hypothesis was that downward causation causes the appearance of correlations 

between previously unrelated variables when emergence occurs. While this has some small 

overlap with the hypotheses in this thesis, downward causation is not studied here.  

5.1.2 Candidate Property Identification 

While the above statistical methods can be used largely without modification for 

low-level components, an additional method must be used to generate the time-series data 

for candidate higher-level properties before the statistical analysis can be performed. 

Recently, two methods capable of efficient derivation of nonlinear models from large data 

sets have been published (they fall under the category of symbolic regression algorithms, 

which are briefly reviewed in the Appendix). Both methods take an output data set, Y, and 

data sets for any number of input variables, Xi, and attempt to build an analytical model 

relating the output to the input using a set of elementary operations, Y = f(X1,…,Xi…), where 

the result returned to the user is the functional form of f. This is a break from recent machine 

learning techniques such as ANN in that the goal is to provide a closed-form, human-

readable equation that accurately fits highly nonlinear data. The advantage these methods 

have in the context of this thesis is their ability to enumerate and compute correlations for 

a large number of highly nonlinear combinations of variables. Doing so effectively 

performs an initial search of the higher-level design space (made up of nonlinear 

combinations of lower-level properties), filters out unlikely candidates, and returns 

nonlinear expressions. Therefore, while it is possible to manually generate nonlinear 
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properties (such as the graph theoretic properties, and others suggested by Minati), these 

programs can create much broader lists of novel nonlinear quantities.196 

The Sure Independent Screening and Sparsifying Operator (SISSO) [222] employs 

what can be thought of as a top-down approach. The user specifies which data sets to fit, 

which mathematical operations to utilize in the creation of the analytical expression (e.g. 

addition, multiplication, and simply transcendental functions), how many terms to create 

in the equation (these terms are called descriptors), which units of measurement each 

variable is expressed in, and finally, how many individual variables to include in each term. 

SISSO then produces the combinatorial explosion of terms that results from those 

arrangements of variables and operators (a 3-term equation can easily result in millions of 

candidate nonlinear variables). Once this master list is generated, SISSO begins estimating 

the correlation between those nonlinear terms and the output data. Combined with a 

compressed-sensing approach and efficient matrix operations to dramatically improve the 

efficiency (otherwise the problem is intractable), SISSO down-selects nonlinear terms to 

produce a list of the highest-correlated variables that satisfy the specifications of the user, 

and then ultimately, a human-readable set of expressions containing the top most correlated 

terms. SISSO currently finds application in materials science where it is used to classify 

higher-level material properties using properties of lower-level structures and constituent 

atoms [223]. 

On the other hand, the Sparse Identification of Nonlinear Dynamics (SINDy) [224] 

program takes a bottom-up approach. In the most basic application of SINDy, the approach 

                                                 
196 In fact, a subset of Minati’s list can be prepared in advance and provided as inputs to these programs for 

an even broader generation of parameters. 
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is based on systems whose dynamics can be modeled using a first order, linear, 

nonhomogeneous differential equation in time (with multivariate and potentially higher 

order extensions). Using the assumption of sparsity to accelerate computations, the method 

is capable of generating algebraic and transcendental functions beginning with one term 

and gradually adding more terms until an adequate nonlinear dynamics model is generated 

(information regarding the change in correlation with the addition/removal of each term is 

also available to the user). Extensions to the approach enable the reproduction of partial 

differential equations from empirical data sets. In a direct analogy to complex systems, 

SINDy has been shown to reproduce models of chaotic systems with impressive accuracy 

[224], and has also been used in multi-scale physics modeling to associate low-level 

molecular behavior with higher-level material properties [225]. 

While these tools perform the task of relating a high-level property to low-level 

properties, they do not perform the task of suggesting or deriving high-level properties 

from low-level data. This thesis relies on the structure of the self-organized object, and the 

equations derived from its organization, to provide inspiration for suggesting properties. 

Fortunately, in many scientific applications, the high-level target and the low-level starting 

point are known for a wide range of interesting problems. In those cases, the only challenge 

is to identify possible intermediate variables and pathways to connect the two models. 

However, in examples such as the Turing machine in the GoL, or interactions between 

species of living organisms in nature, or the study of the Boids model in this thesis, many 

of the properties that are observed begin with a hypothesis founded on a combination of 

creativity, and observations about the self-organized structure. For example, it is not a 

stretch of the imagination to suppose that flocks have length and slope because the self-
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organized equation for each pair of birds contains a relative displacement vector which is 

two dimensional. It is also not a stretch to suppose that flocks have a position, speed, and 

heading, because the components of the flock clearly do, and the self-organization does not 

impede the boids from continuing their forward motion. The first step to emergent behavior 

identification is grounded in observations of properties that are familiar, and then 

extrapolation to the unfamiliar when the self-organized object somehow deviates from 

expectation. Fortunately, in that case, too, it is possible to obtain information from the 

structure of the object, because whatever new behavior it exhibits ought to be grounded in 

some perturbation of the structure or change in the properties of the components. 

5.1.3 Model Complexity Calculations 

In number theory and computer science, the complexity of an algorithm is a well-

established concept. However, the notion of the “difficulty” or “complexity” of a model 

(mathematical equation) is not so straightforward. “Evaluating Derivatives,” a textbook by 

Griewank and Walther on algorithmic differentiation [226], reminds readers that 

mathematically compact expressions can be deceptive.197 The authors then list multiple 

reasons why the complexity of the algorithm implemented to evaluate a model can vary: 

named intermediates, joint allocations, program branches, and iterative loops. Many of 

those features are often explicitly omitted from models (e.g. the final equation for 

computing the determinant of a matrix may mask the number of pivots performed, which 

would be implemented as program branches that severely affect algorithm performance). 

                                                 
197 In the Prologue to the book the authors tackle a popular misconception about mathematical functions that 

engineers often think can be evaluated “explicitly,” or “symbolically,” rather than “numerically.” Engineers 

might occasionally forget, for example, that transcendental functions are short-hand expressions representing 

infinite power series that can only ever be approximated (and doing so is often perfectly acceptable [333]). 
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Then, on the matter of derivatives, the authors immediately reject the use of the familiar 

secant equation despite the fact that every modern calculus book uses those equations to 

introduce the concept of the derivative. Not only is it less accurate, it is also slower than 

algorithmic differentiation. Finally, on the subject of the equations themselves, it seems 

equally “difficult” to write “y = ex + 2” as it is to write “y = x2 + 2” despite the fact that the 

transcendental terms represent irrational numbers (they are infinitely long).  

This thesis requires a quantitative way to argue that one model is more “difficult” 

or more “complex” than the other.198 Fortunately, such questions have already been asked. 

Rather than directly measuring the length of the equation (as one might do using 

Information Theory when comparing information content on the basis of Kolmogorov 

Complexity163), one can measure the difficulty of solving the equation by counting the 

number of atomic operations a Turing Machine would need to evaluate the mathematical 

expression. In research by Bowein and Bowein, the authors write,  

(1) How much work (by various types of computational or approximation 

measures) is required to evaluate n digits of a given function or number? 

(2) How do analytic properties of a function relate to the efficacy with which 

it can be approximated? (3) To what extent are analytically simple numbers 

or functions also easy to compute? [227] 

It is customary to characterize the complexity of an algorithm based on the leading term of 

the equation that describes its asymptotic growth in the number of operations it performs 

with respect to the size of the input the algorithm receives. This complexity is expressed 

using “BigO” notation (the interested reader is referred to [228] [229] for more 

                                                 
198 Additionally, this thesis needs a direct link between the self-organized object to the properties it acquires 

as a result of that self-organization, and then to the mechanism by which that property can be affected. This 

effort attempts to align all three at once. 
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information). However, since the output of a mathematical function is a number, and 

computer algorithms represent numbers in binary, it is more appropriate to use the bit 

complexity of the algorithm. Bit complexity also uses BigO notation but the “O” is 

modified to denote this subclass.199  

There are two approaches one can take when computing time complexity using 

asymptotic BigO equations: (1) base all CT calculations on evaluating equations up to a 

given number of digits (such as single or double precision numbers),200 or (2) base CT 

calculations on evaluating equations to arbitrary precision.201 The first approach suffers 

from the drawback that one must prove that the algorithm being used to compute that 

number is the most efficient algorithm possible, which is difficult to prove. There are 

usually many possible algorithms for the same problem, all of which vary in their average 

performance and worst-case performance. Usually, an algorithm that is superior in its 

average performance is inferior in its worst-case performance. It is not typically possible 

to compare such algorithms using a single measure of efficiency.202 This thesis will utilize 

the second approach because it is possible to derive theoretical estimates that abstract-out 

a variety of implementation-specific issues. Furthermore, such comparisons are well 

established in the computer science literature. Finally, the second approach is more 

appropriate for the time complexity of models because models represent exact results, not 

approximations. However, the second approach has the drawback that comparisons cannot 

be more specific than the use of BigO notation. That is, it becomes impossible to compare 

                                                 
199 Since only bit complexity is used in this thesis, no distinction will be made in the notation. 
200 This is the approach taken by AI Feynman [295]. See also the Appendix. 
201 This is often referred to as “multiprecision arithmetic” in the literature. 
202 Given the level of abstraction at which this thesis is operating, it appears one can make the argument that 

it is better to simply replace every algorithm with a massive lookup table, and reduce the entire discussion of 

complexity to a comparison of lookup table sizes. This option will not be explored. 
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two algorithms using a fixed number (one cannot say “adding two 5-digit numbers requires 

11 steps”).  

Derivations of the bit complexity for multiple operations are provided by Borwein 

and Borwein [230] [231], many of which are asymptotically equivalent to the derivations 

by Schönhage, Grotefeld, and Vetter [232].203 The time complexity of the cube root is 

discussed in [233]. Schönhage et al show that addition and subtraction are O(n) where n is 

the number of bits in the binary number representing the full number (e.g. CT = 11n + 68 

[232]).  

Table 2 – Time complexity of various operations and functions 

Operation / Function Time Complexity 

+, -, |𝑥| ≤ O(n)   [232] 

×, ÷ O(n log n) ≤ M(n)204 ≤ O(n2)      [230] [232] [234] 

√𝑥, 𝑥2 0.5×M(n)   [232] 

𝑥3 = 𝑥(𝑥2) 1.5×M(n)   [230] 

𝑥6 = (𝑥3)2 2×M(n)   [230] 

𝑒𝑥, ln (𝑥), sin (𝑥), cos (𝑥), 

√𝑥
3

 

O( M(n) log n )   [231] 

                                                 
203 The current Wikipedia page [235] on the subject is well documented and deserves mention. 
204 M(n) is the time complexity of multiplication. Multiplication, and division are of the same time complexity 

(linear speed-up theorem notwithstanding). 
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Multiplication, implemented the naïve way, has complexity O(n2) (see Section 6.3 of 

[230]). However, it was just recently proved [234] via galactic algorithm205 that 

multiplication of incredibly long numbers can be performed in O(n log n) operations  (this 

was a long sought-after theoretical minimum). These results are summarized in Table 2. 

The claim that squaring a number is faster than multiplying two different numbers is based 

on the RSQU algorithm (8.1.33) in Chapter 8 of Schönhage’s text [232]. Borwein and 

Borwein gives exponentiation as the 6th exercise in Section 6.2 of [230], with an emphasis 

on minimizing the number of multiplications needed. However, that exercise precedes their 

discussion of fast multiplication (which then cites Schönhage).  

 

Figure 23 – Time complexity for n-digit number by operation / function 

                                                 
205 This is a technical term for algorithms applied to problems that are so computationally expensive they are 

too impractical to implement (requiring more data than could be generated on Earth). 
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The coefficients given for exponentiation in Table 2 are based on a combination of using 

RSQU with fewer multiplications inspired by the procedure in Borwein and Borwein.206 

Unlike exponentiation, Table 2 treats all transcendental functions as having the same CT. 

Several references on this subject point to Knuth [235] for more information, but this author 

does not have the background required to properly assimilate the body of information 

contained in his references in a timely manner. 

The asymptotic behavior of three time complexities given in Table 2 are depicted 

in Figure 23 (the complexity of multiplication, M(n), is taken to be O(n log n) ). Although 

the level of detail provided by Schönhage et al. is ideal for finite-precision arithmetic, it is 

hard to find that level of detail in the literature for every function utilized by SISSO. The 

constant in front of the leading term would be useful in distinguishing between similar 

functions but those leading coefficients are not widely available (and suffer from a kind of 

subjectivity that will be discussed later in this subsection). If the results generated over the 

course of this research require time complexity calculations that provide greater 

granularity, the approach and results will be discussed in the relevant subsection for that 

experiment. Finally, note that the time complexity of the models presented in this thesis 

will account for simplifications by substitution. For example, f = (x+y) + e(x+y) and f = 

(y+x) + e(x+y) are both treated as f = z + ez, z = x + y, so that only two additions are 

performed rather than three. Here z is a temporary variable (i.e. a named intermediate, as 

discussed above). Temporary variables produced this way will not be counted against the 

space complexity of the model. 

                                                 
206 This leads to the result that CT(x4) = CT(x×y). Two squaring operations have the same complexity as one 

multiplication of two numbers, x and y. 
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Note that an analogy between the time complexity of an algorithm and the time 

complexity of a model is challenging to define for three additional reasons. First, model 

time complexity can take on two meanings when the system of equations contains integrals 

or derivatives. Take a partial differential equation, for example: Although the number of 

dependent variables remains the same, the time complexity can either be the time 

complexity of the original equation (which requires somehow quantifying the complexity 

of differentiation and integration), or it can be the time complexity of the analytical solution 

to the equation, which may be an infinite series. Furthermore, each representation may 

introduce new sources of numerical instability while eliminating physically meaningful 

sources of instability, as cautioned by Schmidt [156]. It truly appears to be an inescapable 

quality of complexity, that in any controlled study of emergent behavior, every attempt to 

define, measure, or otherwise control one source of complexity comes at the expense of 

observing or understanding another source of complexity.207,208 

Secondly, most problems do not have a one-to-one correspondence to the 

algorithms used to solve them (e.g. the myriad sorting algorithms). Many algorithms can 

have their operations reorganized in order to become more efficient, except that rewriting 

algorithms often takes the form of trading space complexity for time complexity. There is 

an analogy for this in some engineering problems (such as decomposing large or 

challenging optimization problems into smaller, related problems), but model 

decomposition (exchanging highly nonlinear equations for more numerous, simpler 

                                                 
207 Although Boyd was referring to human beings (which he characterized as open systems – a correct 

characterization within the context of SE), his comments bear resemblance to this argument: “Interaction 

permits vitality and growth while isolation leads to decay and disintegration” (emphasis in original) [186]. 
208 There are contemporaries to this research that also factor time complexity into their model selections 

(unfortunately, time does not permit a comparative study): AI Feynman 2.0 uses Bit Complexity [346], while 

SINDy counts the number of terms in the equation [248], and both use a Pareto Optimal approach. 
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equations) is very risky when it comes to studying emergent behavior because it introduces 

new sources of aleatory and epistemic uncertainty. Furthermore, algorithms for arithmetic 

operations or the evaluation of transcendental functions are often based on the number of 

atomic operations performed. Such calculations are only possible because the numbers 

being added have a fixed number of significant digits (i.e. the number can be stored as 16, 

32, or 64 bits [159]). Real numbers can be irrational209 or arbitrarily long, making the 

number of operations unknowable a priori. Thus, to be analogous to algorithmic time 

complexity, this thesis will use the asymptotic multiple-precision time complexity of 

algebraic operations and elementary functions as the basis for its comparisons. This 

assumption will limit the predictions made by this thesis in one important way. Many 

algorithms for performing an operation such as multiplying two floating-point numbers, 

have the same worst-case performance, but vary on average, or vary by a constant, which 

is masked by big-O notation. This can cause two different models to appear to have the 

same computational complexity. 

Thirdly, there’s the linear speed-up theorem [236]. This ties back to Kolmogorov 

Complexity from information theory. Just as the Kolmogorov Complexity cannot be 

uniquely computed for any description (only the mean is estimated) there is no unique 

representation for a model, and thus no unique ordinal system of comparison for closely 

related operations. In other words: it is easy to compare multiplication to addition, and 

transcendental functions to multiplication, but there exists a Turing machine for which ex 

is faster than sin(x), and an identically constructed Turing machine for which sin(x) is faster 

                                                 
209 Not to mention other classes of numbers such as complex numbers or quaternions, which are categorically 

different yet nevertheless well-defined objects. 
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than ex by a constant multiple. If we select a unique Turing machine (e.g. the one where ex 

is faster than sin(x)) and perform all of our calculations on that machine, we would obtain 

one set of CT values that can be sorted so that our various models are ranked consistently. 

In general, however, that ranking is not perfectly universal (i.e. the linear speedup theorem 

cannot make multiplication faster than addition, but it can make division faster and 

multiplication and vice versa). In terms of the Pareto Front plots that will be demonstrated 

in CHAPTER 6, where the horizontal axis is CT, this means that any point on the plot can 

move left or right within its complexity “bracket” (the range corresponding to its 

asymptotic growth).210 That, in turn, means that any pair of dominated and dominating 

points can translate within a complexity bracket, potentially causing them to swap roles 

(the dominated point becomes dominating). Thus, the linear speed up theorem introduces 

a form of unknowability analogous to the limitations of Kolmogorov Complexity. This is 

at once reassuring and frustrating. It shows that this approach of computing CT does not 

violate a basic principle of Information Theory, which is reassuring. However, it is 

frustrating because it results in a CT estimate that is somewhat vague. This ambiguity is 

partially remedied, however, by examining the entire Pareto Front with a large sample of 

points (just as one would want a good estimate of the Kolmogorov Complexity). There are 

three cases where the linear speedup theorem will have no effect: (1) If the difference in 

performance between models is sufficiently great, such as one model having transcendental 

terms while the other is purely algebraic, or (2) if the type of highest-order operation in 

                                                 
210 Though relevant, determining precisely how much each model would slide by some linear speedup is 

outside the scope of this thesis. 
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multiple models is the same, such as two models whose transcendental terms are ex, or (3) 

cases where the form of the functions are the same.  

A second notion of difficulty comes from the number of variables needed to 

complete the equation. Clearly a model with more variables is more difficult to evaluate 

(all else equal).211 As stated in Section 2.2, the number of variables in an equation will be 

referred to as the space complexity of the model. While this might seem obvious, the 

mapping of space complexity between a model and the algorithm used to solve it is not 

1:1.212 Moreover, computer scientists generally measure the space complexity of an 

algorithm in terms of the extra variables “over and above the space that is needed to store 

the given input” [159].213 This distinction is critical for two reasons: (1) it is often possible 

to reduce the time complexity of an algorithm by increasing its space complexity (e.g. 

computing xn [232]),214 (2) the physical architecture of a machine, as in its cache and 

physical memory, directly impact the efficiency of the algorithms implemented on it. 

To properly associate the space complexity of the model to the time complexity of 

the model, this thesis takes the space complexity of a model to be precisely the number of 

dependent variables needed to write the system of equations that capture the desired 

behavior.215 Computer scientists scale algorithm complexity as a function of the number of 

inputs to the algorithm. The analogy in modeling, is that model complexity scales with the 

                                                 
211 Some authors use the phrase “parsimony” or “parsimonious model” to refer to finding the model with the 

fewest variables. 
212 Recall from the discussion in Section 2.2 that there are infinitely many ways to write a model. 
213 Engineers typically refer to this as “temporary variables” in our codes. 
214 This is an example of the aforementioned named intermediates. 
215 The underlying assumption being that given the infinite set of possible descriptions for a phenomenon, 

there exists a boundary containing the model with lowest possible space complexity, the model with lowest 

possible time complexity, and all Pareto Optimal models in between. That is, while our models can be 

infinitely complex, the extent to which they can be simplified is bounded. 
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number of system components being modeled since each component contributes one or 

more equations to the system of equations that needs to be solved (independent variables 

such as space and time do not scale with the number of components).216 Therefore, when 

two or more components exhibit a pattern of behavior (as discussed in Section 3.1) the 

equations that those components contribute to the overall model become at least partially 

redundant. Parts of the system of equations can be replaced with a smaller set of equations 

that captures the essential features of the pattern (as illustrated in Section 3.3). The amount 

of data compression (the space complexity change), then, is the difference between the 

number of component-level property equations that were removed from the system, and 

the number of pattern-level property equations that were added to the system (in 

principle217). Note that this applies even to differential equations. 

Another issue with space complexity calculations is upward causation. If all 

information of lower level behavior is retained, then all high-level models actually have 

greater space complexity than their lower-level counterparts. For example, the position of 

a flock is typically computed as average positions of boids. Therefore, in any method where 

the simulation is run to track the boids and additional mathematics is performed to track 

the “flock-level” behavior, then the total number of variables and equations has increased. 

To treat the high-level property as an idealized property (Section 2.2.2), information about 

the individual components must be discarded. This almost always guarantees some amount 

of information loss (e.g. multiple configurations of boids can produce the same center of 

gravity, and thus the same flock position). Nevertheless, it is standard practice across all 

                                                 
216 In a sense, this model complexity scaling is more closely related to program complexity, since the total 

memory usage of the program scales with the number of components it is simulating. 
217 Recall that, in general, this is lossy compression. Quantifying that loss remains to be rigorously explored. 



 157 

modern disciplines to discard this information at higher levels of abstraction, and yet they 

serve their purposes well. For example, the projectile motion equation describing the flight 

of a free-falling object does not take into account the exact position of every atom inside 

the object, nor does it need to so long as the underlying assumptions are satisfied. The 

moment the position of any one atom in the object becomes important, the projectile motion 

equation loses most of its utility. In this way, we see that nearly all compression is lossy 

even when the pattern is perfect. So when the space and time complexities of system-level 

equation are compared to component-level equations, it must be remembered that 

information is lost in that process, and such a loss is justified whenever that information is 

negligible with respect to predicting the desired behavior of the higher level object.218,219 

5.2 Self-Organization Detection Tool Workflows 

The method in this thesis is geared towards simulation data, and so its principal input 

is the time series data generated by that simulation (Figure 24). As discussed in Sections 

3.1-3.3, identifying self-organization in a simulation can be achieved by performing pattern 

recognition on relative values (such as relative distance). Patterns are picked out from that 

data by using the Fast Fourier Transform (5.2.1), and Fourier Series (5.2.2), as well as a 

user-defined time interval (a.k.a. window) and data regarding component interactions. 

When one or more relative properties of two or more interacting components exhibit 

concurrent periodic signals over the same time window, that group of components can be 

classified as a self-organized system. In this thesis, all systems will be classified based on 

                                                 
218 This concludes the “something from nothing” discussion started in Section 3.2, continued through 4.3.2. 
219 This raises the obvious question: how does one guarantee that low-level equations and high-level 

equations are written such that an emergent equation bridging that gap can be written? Furthermore, if 

information is lost between levels of description, it is very possible that the crucial information needed to 

bridge models between levels was lost in the process! This is future work. 
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their geometry because only kinematic equations are considered (as opposed to dynamic 

and thermodynamic equations). The set of variables that are needed to classify a set of 

components as a self-organized system (the ones resulting concurrent periodic signals) is 

always problem-specific, and so this process requires at least some human judgment. 

 

Figure 24 - Input-Process-Output diagram for pattern recognition step220 

                                                 
220 The interaction detection process (marked with *) was recognized as necessary during the experimentation 

process, as illustrated by the document narrative. It is included her for completeness. 
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A very sophisticated tool that can dramatically simplify the self-organization identification 

process is the Matrix Profile [237] [238]. Although that tool is not needed for this thesis, it 

will likely be indispensable for extending the method developed in this thesis to very large 

data sets due to its ability to pick out similar periodic signals over large time intervals. 

Variational auto-encoders and semantic segmentation are also important tools for pattern 

recognition, due to their ability to associate patterns under a variety of coordinate system 

transformations with human-interpretable classifications (the interested reader can begin 

their literature review with [239] [240]).221 These enablers are listed in Figure 24. 

5.2.1 Tool 1: Fast Fourier Transform (FFT) 

The FFT converts time series data into frequency-domain data, which significantly 

simplifies the identification of a periodic behavior. A simple implementation is provided 

on the Matlab website [241], and is used here. 

 
(a - TS) 

 
(a – FFT) 

                                                 
221 These advanced tools are one way to deal with the combinatorial explosion of relative property time series. 
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(b - TS) 

 
(b – FFT) 

Figure 25 – Fast Fourier Transform (-FFT) applied to “clean” time series (-TS) data 

(a) sum of sine waves, (b) constant non-zero signal 

Figure 25 illustrates two examples of periodic functions and plots of their corresponding 

FFT. In the first case, (a-TS), three sine waves are added together. Their respective 

frequencies correspond to the three peaks shown in (a-FFT). In the second case, (b-TS), a 

single non-zero constant function is shown, which produces a single peak at 0 Hz (b-FFT). 

Most smooth, non-periodic functions will produce similar peaks.  

 
(a - TS) 

 
(a – FFT) 
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(b - TS) 

 
(b – FFT) 

Figure 26 – Fast Fourier Transform (-FFT) applied to “mixed” time series (-TS) 

data (a) piecewise defined signal with sine wave, (b) step function 

The difference is that the constant function will only produce a single non-zero value above 

0 Hz, whereas the other functions will produce a single-tail distribution of frequencies that 

peak at 0 Hz. 

Figure 26 shows examples of periodic signals that are not uniform in the given time 

domain. In the first case, (a-TS), the first half of the time interval is an all-zero signal,222 

which does not produce a peak in FFT plots, followed abruptly by a sine wave. The 

frequency of that sine wave is indicated by a single peak in the FFT plot (a-FFT). In the 

second case, (b-TS), a step function is given. Since each of the three steps have a frequency 

of zero, a single peak appears above zero in the FFT plot (b-FFT). These examples reveal 

a few limitations of relying solely on FFT. First, it is impossible to distinguish spatially or 

temporally distributed signals from one another if they have the same frequency. Those 

signals will simply aggregate into one large spike above their mutual frequency in the FFT 

                                                 
222 In most applications this is typically interpreted as the absence of a signal. That is not the case here, as 

will be discussed later in the section. 
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plot (as shown in b-FFT of Figure 26). Another issue with FFT is depicted by the various 

little bumps in (b-FFT) of Figure 26: these bumps are numerical artifacts of the 

discontinuities in the step function.223 In the case of data containing vast amounts of 

interactions, those bumps would be comingled with other time series, which are known as 

“noise” in the signal-processing literature. If a time series is too noisy, or, as in this thesis, 

if the number of signals being simultaneously tracked becomes very large, it will be 

impossible to distinguish meaningful spikes in frequency from background transient 

data.224 Nevertheless, for small data sets with no other source of noise and an adequate 

windowing procedure (see below), a FFT is a quick and easy way to isolate self-

organization from time series data of relative properties. Moreover, one must carefully 

select the relative metric to track in order for a signal to appear in the FFT plot. For 

example, one can detect that two boids are flying parallel to one another by tracking the 

relative heading (𝐻𝑖–𝐻𝑗) or the normalized dot product of their vector velocities 

(𝑉𝑖⃗⃗ ∙ 𝑉𝑗⃗⃗ ‖𝑉𝑖⃗⃗ ‖‖𝑉𝑗⃗⃗ ‖⁄ ). The difference here is that when the boids fly in a linear flock 𝐻𝑖–𝐻𝑗 =

0, which will not appear in the FFT plot, while 𝑉𝑖⃗⃗ ∙ 𝑉𝑗⃗⃗ ‖𝑉𝑖⃗⃗ ‖‖𝑉𝑗⃗⃗ ‖⁄ = 1, which will produce a 

visible peak in the FFT plot. Finally, the number of measurements taken during a particular 

time interval (sample size) influence the quality of the observed peaks (distortions, and the 

appearance of small peaks due to approximation errors). Windowing is simply the process 

                                                 
223 “Numerical artifacts” with regards to the goals of this thesis. In general, any non-constant, non-periodic 

curve will have non-zero spectra across multiple frequencies (i.e. the “artifacts” belong there). This will make 

it very challenging to observe flat regions of a space unless the right window size is chosen. Additionally, a 

scatter plot is easier to interpret than a line plot because the only non-zero points will be directly above the 

frequency of the signal (assuming a clean signal / good window), which leaves less room for error. 
224 “Noise” and background “irrelevant” perturbations, are nearly interchangeable concepts. 
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of breaking any data series into smaller intervals that cover the phenomena of interest (it 

filters out unnecessary, irrelevant, or otherwise confounding data) [242]. 

 

Figure 27 –Time-series plot of Boid relative distances and simulation screenshots at 

given moment in time 

The width of the window is typically problem dependent and often requires some amount 

of experience working with the data. In the case of the Boids model it may be possible to 

derive a sophisticated window size rule based on knowledge of the boid properties (vision 

distance, updraft, speedup, etc.) but for the purposes of this thesis it is far more efficient to 

obtain a ballpark estimate by running a few simulations. Figure 27 shows the time series 

data for the distance between pairs of boids in a simulation containing 4 boids, as well as 

snapshots of the distribution of boids in the simulation. There are six pairwise distance 

curves in total (4 choose 2). The two curves that are highlighted (yellow and purple bold 
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lines) correspond to the pairs of boids that formed lines later in the simulation (e.g. boid 0 

and 3 formed a 2-boid line).  

 

Figure 28 - Time-series plot of Boid relative distances with windows and FFT 

Figure 28 shows the FFT plots that result from applying the FFT over two separate 

windows in the simulation (one for the purple time series, and one for the yellow time 

series). Observant readers will note that a correction has been applied to the distance 

measurements of self-organized flocks to account for sudden jumps caused by the periodic 

domain.225 As is clear from those figures, when the boids organize into a single flock, the 

corresponding FFT contains one large peak. This provides a numerical approach for 

                                                 
225 As boids fly across one boundary, they disappear from one side of the domain and reappear on the other 

side. This causes naïve distance measurements between boids to display step-function behavior. Fortunately, 

they are piecewise continuous, and so corrections are straightforward. 



 165 

distinguishing self-organization from disorganized behavior among agents, and can be 

performed for any set of properties. 

5.2.2 Tool 2: Fourier Series (FS) Curve Fitting 

A second approach to identifying a region of periodic behavior is by fitting a FS to 

the data. In order to reduce the occurrence of false positives (as mentioned in Section 3.1), 

this will be performed in conjunction with the FFT and a windowing procedure. FS are a 

natural fit because they can fit most periodic functions of interest to engineers [243].226 

Figure 29 depicts a notional example of a pairwise relative property (e.g. relative heading 

or distance) that at first follows some arbitrary nonlinear trend and then converges to a 

periodic time series. A window of 8 ticks is placed on the time series shortly after it appears 

to stabilize. The equation for the pairwise property depicted inside the window of Figure 

29  corresponds to the following equation: 

 𝑃𝑖 − 𝑃𝑗 = 2 + sin(3𝑡) + sin(5𝑡) (3) 

The absence of other dependent variables on the right hand side of Eq. (3) is the evidence 

that the property, P, of the ith boid and jth boid are locked into a pattern (here, a temporal 

pattern), which then indicates boids i and j have self-organized. If P were Euclidean 

distance, then the boids have a spatial arrangement that persists in time. In general, P could 

be any variable in any metric space. 

 

                                                 
226 Attempts to generalize this will have to account for convergence issues (see Section 5.4 of [347]). 
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(a) 

 
(b) 

 
(c) 

Figure 29 – Plots of pairwise property (a) time series with window on periodic 

behavior (b) FFT of window (c) 6-term FS of window 

An FFT of the time series, shown in Figure 29(b), indicates three peaks that 

correspond to the horizontal line on which the periodic time series is centered (y = 2),227 

                                                 
227 It is a coincidence that the 0-frequency peak happens to have a height of approximately 2. 
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and the two sine waves used to generate this portion of the time series. The peaks 

correspond to frequencies of 0.5/ticks and 0.75/tick. The true frequencies are 3/(2𝜋) ≈

0.477 and 5/(2𝜋) ≈ 0.796. A 6-term FS is also shown in (c). Already it is clear that the 

FS is approaching the behavior of the property. More terms and/or a window sized to an 

integer multiple of the period228 would be needed to improve the fit shown in this figure.  

Note that the frequency peaks illustrated in the FFT plots can be used to accelerate 

the creation of the FS model by providing approximate initial estimates of the frequencies 

of each term as well as the number of terms. To be efficient, such an approach would 

require a nonlinear optimization scheme to tune the frequency and amplitudes of the 

periodic functions individually. The FS code used here works best for constant functions, 

and waves with integer-valued frequencies. A general approach will be considered for 

future work. The presence of the pattern will be verified by direct inspection of the movies 

recorded during simulation.229 Figure 30 shows the overall self-organization detection 

workflow, and assumes that only one property is needed for self-organization detection. In 

practice this may not be the case. Linear flock detection requires three properties: a periodic 

relative distance, a periodic velocity dot product, and verification that each boid sees the 

boid in front of it. With some ingenuity, the third condition can be described as a periodic 

function.230 

                                                 
228 That is, the value of the property at the beginning of the window equals the value of the property at the 

end of the window. 
229 It is for this reason the FS can be fitted using only RMSE. Without human judgment (and sometimes even 

with human judgment) autocorrelation and time series stationarity would have to be accounted for. 
230 The boid label can be sorted and concatenated into unique numbers to produce piece-wise constant 

representations of the vision field (e.g. a boid that sees three boids with labels [3,10,2] can use the number 

100302 to indicate that it sees the group). This is an application-specific remedy. 
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Figure 30 - Flowchart for self-organization (S.O.) data creation and identification 

For simplicity, however, confirmation of mutual visibility will be performed with a script 

that directly checks and compares the indices of each boid. A linear flock is identified 

whenever all three conditions are met simultaneously. In general, any periodic signal would 

apply, and the data compression calculation would be modified accordingly (so long as the 

only new variable in the periodic expression is time, or some other independent variable, 

the compression calculation can proceed as indicated in Section 3.3). Generalizing this 

compression calculation is a topic for future study. 

From Figure 30, note that Netlogo does not support space-fitting DoEs (full-factorial 

only) [244]. Therefore, a space-filling DoE is generated using Matlab and provided to the 

program via its file reading functions. The disadvantage to this approach is that Netlogo 

cannot simulate such DoEs in parallel. Also, Netlogo uses random order of execution so 

that no one agent receives preferential treatment [244]. Therefore, Netlogo output of agent 

properties needs to be sorted. This randomization will be more important when simulating 
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adversarial flocks because it will cause adversaries to over/under-estimate their opponents 

speed and heading. It also means that simulations can never be repeated (unless the random 

order execution is manually overridden). 

5.3 Behavior Association (Curve-Fitting) Tool Workflows 

Before proceeding with the process, it is important to clarify a reason this thesis takes 

the approach that it does. Since the studies in this thesis are purely numerical, then in order 

to claim an emergent behavior has occurred without immediately making a circular 

argument, it is essential that two self-organized objects within the simulation interact, and 

that the properties they interact with be mined from the data (i.e. derived from the self-

organized structure, etc., as described in CHAPTER 4), not coded into the simulation. Such 

behaviors can only be attributed to the self-organized group since the property being 

affected is computed using multiple component properties. 

For idealized components with simple rules, the change of a component-level 

property only occurs during interactions. For boids, this means they only change heading 

and speed when see each other and/or enter the updraft region of another boid. Once the 

boids can no longer see each other (or if the conditions permit stable flight) the boid will 

continue in a straight line at constant speed until the next interaction. One significant 

difference between a boid-boid interaction, and flock interactions is that flocks will 

destabilize to varying degrees, and must re-stabilize before the pattern-recognition tools 

used in this thesis can numerically confirm their persistence.231 That is, all interactions at 

                                                 
231 Pattern recognition tools for open systems with time-varying composition, or systems that can undergo 

significant deformation without changing their fundamental nature are outside the scope of this thesis. 
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the system-level will cause perturbations in the structure of the system. This causes changes 

to properties of one or more components over time, which will then re-organize in response 

to the perturbation. Once the components re-stabilize, the self-organized structure can be 

detected using the approach described in Section 5.2. The time it takes for each system to 

stabilize can vary, as seen in Figure 31 (using a linear flock of boids as an example). 

 

Figure 31 – Flock length change due to interaction and re-stabilization 

In Figure 38, the time it takes for Flock A to stabilize is much shorter than Flock B. 

Furthermore, since interactions are one-way in the Boids model, it is possible for each flock 

to have different interaction time intervals (one flock may “see” the other for a longer 

period of time). To test against spurious regressions of one form or another, the 

experiments in Section 5.5 will cover five different time intervals: (1) Stable / Independent, 
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the two flocks have not yet encountered each other, and all flock-level behavior can be 

calculated directly from boid-level behaviors, (2) Interaction: the birds in at least one flock 

see the birds of the other flock, and begin to maneuver accordingly, (3) Re-stabilization: 

the birds in the perturbed flock no longer see the birds of the opposing flock, and re-

organize into a flock shape, (4) a combined interaction and re-stabilization time interval, 

(5) Full Time Interval: this includes an additional period of time after interaction to allow 

study of time intervals with an additional obfuscation of the data. 

 

Figure 32 – Time intervals of interest for flock-level interactions 

Since the qualitative and quantitative criteria for the existence of the system are contingent 

on pattern recognition, there are two ways to analyze the resulting time series data: (1) 

consider the system’s properties before the interaction and after the interaction, while 
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disregarding the intermediate transients. In this perspective, the only system properties that 

are ontologically justified are the ones that can be unambiguously associated with the stable 

system, since stable systems are the higher-level analogy of an idealized component.232 So 

long as the system is not broken during its interaction, the transient perturbations caused 

by the interaction merely represent the minimum length-scale and time-scale over which 

the system operates, and is the minimum grid-size and time-step over which a system level 

simulation can be executed. This is common in engineering: if the beam in a truss buckles, 

the truss has failed and its load-bearing capability is altered or destroyed. Thus, the word 

“truss” loses some of its meaning. The name, properties, and meaning of a system, as well 

as the failure of the system to serve its purpose is intimately associated with the stability 

of its structure. Whether or not it exists depends on its ability to return to a recognizable 

shape after some perturbation. (2) Consider the system’s properties before, after, and 

during the interaction. In this perspective, a model that predicts the time-evolution of the 

system’s property from the onset of the interaction up to its re-stabilization is sought. This 

is also common in engineering, such as in irreversible processes, fluid dynamics equations, 

and solid-fluid interaction models. This second perspective is particularly important for 

open systems, and systems where some degree of structural evolution is within the scope 

of system definition (such as phase changes in a material).231 

 The behavior association process is depicted in Figure 33 assuming the 

implementation of the numerical criteria given in CHAPTER 4. In its current form, it is up 

to the analyst to manually derive a set of candidate properties for the self-organized system 

                                                 
232 See Section 2.2.2 for the discussion on idealized components.  
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based on his/her own subject matter expertise.233 With that information, the systems are 

simulated such that they interact.  

 

Figure 33 – Input-Process-Output diagram for behavior association step220 

                                                 
233 Testing the numerical criteria for sufficiency requires implementing them as a “post-mortem” approach. 

Future studies can compare this to Szabo & Teo’s work (discussed in Section 1.7). 
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Once a system interaction is detected (i.e. an interaction between components of two 

different systems), it will be possible to determine if the candidate property changes in a 

statistically meaningful way across multiple simulations. If the property does change, then 

the numerical criteria can be applied to determine whether the behavior is an emergent 

behavior (see Section 5.5 for more detailed information on the application of the numerical 

criteria, and the test for Hypothesis 2). 

5.3.1 Time intervals using SISSO 

This study focuses on how behaviors that occur over meaningful time intervals 

affect properties, as depicted in Figure 32.  The duration of the interval, and the evolution 

of the property during the interval itself, are omitted from the data. Only the initial and 

final property values are studied.234 

 

Figure 34 – Flowchart for flock interaction data creation and curve fitting 

As shown in Figure 34, once self-organization (S.O.) is detected,235 the simulation is 

continued until the self-organized object interacts with another object such that its structure 

is perturbed.236 In Figure 34, two 3-boid linear flocks are perturbed when their constituent 

                                                 
234 In some of the literature this would be referred to as a change of state. 
235 This process begins when the S.O. detection process ends (see Figure 30). 
236 In other words: if nothing changes, nothing happened. A similar notion is quoted in [359]. 
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boids see each other and maneuver (the red flock turns much more dramatically than blue). 

The initial boid locations are indicated using circles, and their flight paths are indicated by 

lines. The next step is to associate those system-level properties with a set of input 

properties by generating sets of symbolic regressions for each DoE simulation (in Figure 

34 the example is a change in flock length). Thus, behavior association is the process of 

writing a system-level property as a dependent variable, which is a function of independent 

variables that fall into one of two categories: (1) the properties of the “other” flock, (2) the 

properties of a randomly selected boid from the “other” flock. These two sets of functions 

are depicted in Figure 34 as f(System) and f(Comp.), respectively.237,238 Assume, for the 

sake of discussion, that both functions fit the data reasonably well. In layman’s terms, this 

means that each function is a plausible explanation for the behavior of the flock (both sets 

of inputs explain the behavior of the flock). However, regressions can be spurious, and so 

some criteria is needed to compare the two possible explanations and determine which one 

is the better explanation (that is the purpose of the numerical criteria in CHAPTER 4). 

Once the regressions are performed, the RMSE and CT of every regression are calculated, 

and the function that turns out to be Pareto Optimal (lowest RMSE and CT) is deemed to 

be the one more closely associated with the behavior of the system. Specifically, if the 

various models of f(System) have lower error and CT than the models of f(Comp.), then that 

behavior is an emergent behavior (per the criteria). If not, then it is not (by Ockham’s razor, 

per the criteria). If such a function can be found, then it is possible to describe the behaviors 

and interactions of the system using a function that is not explicitly encoded into the 

                                                 
237 Comp. is short for “component.” 
238 Since the input variables are also functions of time, the dependent variable is implicitly expressed as a 

function of time. Time does not vanish in this approach, but the emphasis is on the initial and final states. 
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simulation (i.e. a behavior rule of the system has been “discovered” from the data).239 

Whether the numerical criteria can effectively support this argument is subject to the 

falsification of Hypothesis 2. Behavior association is implemented using the following 

step-by-step procedure: 

1. Create a design of experiments for nA simulations with M×N initial component 

property values, such that the components will self-organize, and the self-organized 

systems will interact at least once240 

2. Determine the time interval T > 0 and number of time-steps nt required for the self-

organized systems to interact at most once (usually by trial and error and/or initializing 

the components as a stable, organized system)241 

3. Determine the list of ns system-level properties, S, to track (based on information from 

the pattern-recognition step) 

4. For each simulation execution (𝑖 ∈  [1, 𝒏𝑨]): 

a. Determine the time interval 𝟎 < ∆𝒕𝒊 ≤ 𝑻 at which to measure the initial and 

final values of the component properties (may vary per simulation) 

b. For each self-organized system 𝑗 ∈  [1,2]:242 

i. For each system-level property (𝑘 ∈  [1, 𝒏𝒔]): 

1. Use the initial and final component property values to compute 

the change in values of the system-level property ∆Sk (the 

change in this property over time is the “behavior”) 

5. Filter out simulations where the systems never interact (nB ≤ nA simulations remaining). 

6. Organize all of the values for each ∆Sk into two large tables:243 

                                                 
239 Model discovery is outside the scope of this thesis. True model discovery requires that the behavior rule 

be subjected to a battery of tests to ensure that the statistics used to converge to that model are appropriate,  

to confirm that the model extrapolates well, and to show that the model can be validated by experiment (or 

verified by some theory). The interested reader is referred to [348] [349] [350] [359]. 
240 Each component has M properties, and there are N components in total. In tabular form, this DoE could 

have M×N columns and A rows, where each row is a different simulation. 
241 For example, one can choose T = 1000nt (the simulation runs for 1,000 time steps). 
242 Assume there are only two self-organized systems for simplicity. 
243 Assuming two similar interacting systems, this will produce 2×ns tables of data (two tables for each 

system-level property) with 2×nB rows per table (nB rows of values for each system assuming both systems 

experience changes in each simulation). 
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a. Table 1: ∆Sk is the output column, and the 2×ns input columns are the initial 

values of all system-level properties for both systems 

b. Table 2: ∆Sk is the output column, and the ns + M×N input columns are the 

initial values of the system-level properties for “this” system and the 

component-level properties for a single component of “the other” system 

7. For each system-level property (𝑘 ∈  [1, 𝒏𝒔]): 

a. For G regressions:244  

i. Using Table 1 as input to SISSO: 

1. Extract X rows of data to serve as a training set (e.g. 60% of the 

data). 

2. Obtain a regression for ∆Sk as a function of system-level 

properties on X. This is f(System). 

3. Extrapolate the functions obtained for ∆Sk onto the test data (Y 

rows of data, Y = 2×nB - X, e.g. 40% of the data). 

ii. Using Table 2 as input to SISSO: 

1. Extract X rows of data to serve as a training set. 

2. Obtain a regression for ∆Sk as a function of component -level 

properties on X. This is f(Comp). 

3. Extrapolate the functions obtained for ∆Sk onto the test data. 

b. From both data sets (i.e. For 2×G functions): 

i. Filter out pathological functions (e.g. they diverge when they should be 

bounded, or have relative errors > 50%). 

ii. Filter out any functions that do not include properties from “the other” 

system (e.g. highly nonlinear functions relating ∆Sk of system 1 to the 

initial values of Sk for system 1). These regressions are spurious. 

c. Compare f(System.) to f(Comp.) by applying the numerical criteria, and from 

those criteria, determine whether an emergent behavior has been found. 

                                                 
244 Rather than interpolating on all of the simulation data to find a single function, this thesis regresses on 

random subsets of the simulation data in the hopes of filtering out poor quality regressions. For example, this 

thesis runs 30 regressions per table per system property for the boids model in CHAPTER 6. 
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Section 5.5.2 will describe precisely how to compare f(System) and f(Comp.), and then how 

to use the result to determine that an emergent behavior has been found according to the 

numerical criteria. 

5.3.2 Contrasting With Other Behavior Association Studies245 

Over the course of this thesis, a few methods were found in the literature that 

provide something resembling a behavior association framework (to varying degrees) in 

addition to definitions of emergence and self-organization. This section briefly contrasts 

the most pertinent of them to the work in this thesis. Readers interested in these methods 

are strongly encouraged to read the rest of the discussion in the Appendix. 

Work by Prokopenko, Boschetti, and Ryan [206] follows the formulation that self-

organization precedes emergence, and that emergent properties are those of the self-

organized system (although to a lesser degree than this thesis). The authors adapt an 

information-theoretic approach for numerically detecting self-organization.246 They then 

show how a ratio of information-theoretic scalars can be used to detect emergence. Where 

the authors agree with this work is that self-organization can be detected numerically, as 

can emergence, and in doing so, the emergent properties can be associated with the self-

organized system. Furthermore, the authors use complexity metrics known in computer 

science to perform this detection. However, there are a number of important distinctions 

between their work and this thesis besides the obvious limitations of a journal publication. 

                                                 
245 Note that some of the studies cited here titled their work in such a way that suggests behavior association 

despite using a very different procedure and logic for their association process. 
246 An improvement to this thesis may involve using changes in the Excess Entropy to signal a region of 

interest, wherein a pattern-recognition algorithm can search for explicit structures (in the form of periodic 

functions described in CHAPTER 3). 
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(1) They do not attempt to explicitly specify necessary or sufficient conditions. It may be 

possible to glean some criteria from their work, but the primary purpose of their article was 

to make the study of emergence accessible to researchers in various fields. Their work 

provided inspiration for this thesis. (2) The variables considered for emergence are known 

in advance. Their numerical approach does not facilitate prediction of which emergent 

properties will arise, or how many. This thesis tests a hypothesis regarding the number of 

properties. However, this thesis does not examine a mechanism for deriving those 

properties from scratch (this will be elaborated on in CHAPTER 9). (3) The authors borrow 

an example of emergence from Shalizi (see references in [206]). Unfortunately, it is an 

example of emergence without self-organization. The authors do not explore the fact that 

the system (a cloud of argon gas somehow contained in a finite volume) has been 

artificially organized by its container (the time-averaged mean free path between atoms is 

constant).247 This omission undermines the connection the authors establish between self-

organization and emergence and raises the question of what causes the emergence in the 

first place (if not self-organization). The ontology of this thesis does not depend on that 

connection. In this work, the assumption is that any organization of interacting parts can 

exhibit emergence.248 The special case of self-organized parts was selected for this thesis 

only to avoid making a circular argument when testing hypotheses.249 The authors show 

                                                 
247 Since this thesis is focusing on configurations that reach a form of equilibrium, time-averaging and moving 

averages (which are a natural fit for AR models) has been largely omitted from this discussion. 
248 Paraphrasing: emergent properties are functions of component properties and arrangement/structure, while 

ordinary properties are those assigned to a component without regard for structure. Therefore, ordinary 

properties are actually artifacts of problem simplification (the only truly ordinary objects in the universe are 

quarks). Emergent properties are distinguished from arbitrary structural properties by being shown to affect 

the properties of other objects. Here, “arbitrary” does not mean devoid of all use or meaning. 
249 When studying emergent behavior using a simulation, it is safer to study self-organized systems because 

their properties cannot be hard-coded into the simulation, and the mathematical formalism developed for 

emergent behavior detection is easily tested by extending it to another self-organized system.  
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how Shalizi’s approach successfully concludes that most of the low-level statistical 

information is irrelevant, and that the property of temperature is an emergent property of 

the gas. However, the argument, as outlined by the authors, fails to explain why 

temperature has any meaning besides invoking the laws of thermodynamics a priori, and 

why the interactions of argon atoms contribute to this temperature beyond the fact that 

macroscopic temperature is a statistic and the behavior of the atoms is essentially random 

(due to the sheer number of collisions they experience). It may be the authors did not have 

the space or need to elaborate on those connections due to the limitations of the journal and 

the goal of their article (and perhaps Shalizi did in his work). Regardless of the reason, the 

contrast is that this thesis seeks stronger connections.250 (4) As stated in Section 3.2,165 the 

author’s definitions of emergence, borrowed from Crutchfield, are incompatible with the 

definitions in this thesis. Though useful in biology (their examples are biological), they do 

not generalize in the way that weak and functional emergence do. Namely, their definitions 

rely on components capable of observation,251 although it may be that the authors meant 

the term observation loosely. Nevertheless, in this thesis, all emergence is detected by an 

object external to the system (otherwise, it is undetectable, which is the primary reason 

engineers are so frequently surprised despite studying the components in isolation). 

Secondly, they cite the notion of intrinsic emergence where the components of a system 

somehow realize that the system itself has properties that can be capitalized on, and then 

                                                 
250 Here, the work by Halley and Wrinkler provides an alternative way of thinking, wherein the argon gas 

may be exhibiting “simple emergence” (see [198]), but reasoning that would require adopting a distinction 

between self-assembly and self-organization. The interested reader is referred to [389]. For the purposes of 

this thesis, it is unclear how their distinction will affect the link between data compression and emergence. 
251 Observation: as opposed to brute interaction, which can still produce the same “pattern emergence” they 

speak of. For example, a viral infection or an amoeba consuming bacteria. Merging their example with this 

thesis: the emergence lies in the fact that the gazelle can hear the lion roar (one makes sound that the other 

detects and responds to). Whether that reaction is biological or purely mechanical is irrelevant. If a tree falls 

in a forest, there is emergence. 
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change their behavior in order to do so. This definition is incompatible with their example 

of the emergence of thermodynamic temperature in argon gas (temperature has no 

downward causation with respect to the same atoms its measurement depends upon), and 

does not generalize to mindless agents. 

In her PhD thesis [245], Dr. Cummings developed an M&S environment for SoS 

simulation in order to facilitate searching for emergent behavior. Although the environment 

facilitates a variety of simulations, the environment itself does not perform the task of 

behavior association. Rather, it is up to the user to inspect the graphical output of the 

environment to determine which interaction and agent metrics, if any, indicate possible 

emergent behavior. Cummings implements the interaction metrics by Chan252 [139] in an 

effort to identify emergence, but finds that “it is not just in the deviation but emergent 

behavior can be found in any run.” [245] This appears to contradict Chan. It also appears 

that the definition of emergence adopted by Cummings is incompatible with the definition 

in this thesis (although it is compatible with Chan’s). She writes (regarding a simulation of 

wolf predation on rabbits), “We found interesting groupings among the rabbits and wolves. 

This is known as emergent behavior” [245]. In this thesis, such groupings would be 

classified as self-organization. 

In his PhD thesis, Dr. Vadim Kim [59] implemented a design space exploration 

approach to search for emergent behavior in simulations of complex systems. As in this 

thesis, Kim emphasizes weak emergence and functional emergence as the most useful 

concepts to build on. However, there are several points where this thesis breaks with Kim’s 

                                                 
252 Roughly: Chan argues that the cumulative count of agent (component) interactions is normally distributed, 

and deviations from Gaussian indicate emergence. 
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conceptual framework. For example, Kim appears to see a dichotomy between patterns 

exhibited by interacting components and function, writing, “analysis of patterns is not the 

right approach; instead, we need to examine the function of the system as a measure of the 

effectiveness” (see Section 2.4 of [59]). He later argues “Many researchers attempt to 

measure structural complexity…, but it is not clear that there is any fundamental reason to 

believe that structural complexity is correlated with behavioral complexity in a context-

independent way” [59]. This thesis argues to the contrary in CHAPTER 3, both in that 

there is a context-independent link, and that context-dependence is essential to weak and 

functional emergence. Kim agrees that “systems engineering methods generally fail” [59] 

when self-organized systems exhibit emergent behavior (under the definitions in this 

thesis), but then scopes the topic out of his thesis saying, “This work does not attempt to 

measure the structural complexity. It also does not assume or imply any connection 

between structural complexity and behavioral complexity. The goal of this research is to 

focus strictly on the behavioral/dynamical complexity” [59]. Like Cummings, Kim argues 

that one can identify emergence in the plots of key metrics over time (although their work 

appears to have developed independently). While Cummings advocates for examining 

sharp changes in the slope of a metric, Kim argues that “Emergence is manifested by the 

qualitatively different probability distributions compared to non-emergent design points” 

[59] and specifies shifts in mean and variance as useful indicators. Ultimately, Kim claims 

that “Direct measures of system effectiveness are a better way of comparing system 

behavior rather than indirect methods such as pattern analysis” [59]. What such approaches 

cannot capture is the underlying direct cause for the effectiveness of the system when those 

underlying causes are emergent behaviors because, from the perspective of a design of 
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experiments (DoE), those emergent behaviors are latent variables and, thus, are not 

included in the DoE,. Whatever sampling distribution Kim uses to search the design space 

may not have adequately covered the key regions of the design space that exhibit the 

emergent behavior, and so, there is no explicit guarantee that significant changes in mean 

and variance reflect the presence of emergent behavior. Furthermore, since the existence 

of these latent variables373 is evidenced by the onset of self-organization (so this thesis 

argues), Kim’s decision to disregard pattern recognition may have hindered his ability to 

map the DoE to relevant regions of the design space (e.g. by not factoring in initial and 

boundary conditions). Finally, Kim’s proposed measures of emergence are intended to 

“enable the detection of critical transitions in behavior,” [59] which is meant in a sense 

different from identifying novel functions in the system (i.e. no behavior association).253 

Rather, it is a quantitative shift between system functions that are known a priori. This may 

be a useful approach for known emergent behaviors, but given the absence of pattern 

recognition and functional graphs indicating emergence (hypergraphs, etc.), it seems that 

Kim’s method would require supplemental diagrams to make it fully diagnostic. Whatever 

behavior Kim’s method can discern, Kim’s method is not designed to attribute that 

behavior to a specific configuration of the components (i.e. it assumes that all components 

are part of the same system without explicit regard for of their arrangement). 

In her PhD thesis, Dr. Kitto [73] explored philosophical questions of modeling 

emergence. Kitto does not define complexity (opting instead to think of it as a scale), and 

while this is a compelling idea, systems science seems to require some categorization for 

                                                 
253 To be clear, the phrase “not previously observed” means that over some time interval within a simulation 

the system does not exhibit a particular behavior because it is not organized in a way that enables that 

behavior to manifest (much like a light bulb will not turn on if the switch is set to “off”). 
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the purpose of outlining the right tools to use in a particular engineering application. The 

main argument of her work is very interesting. She points out that models in physics are 

typically object-centered (think 𝐹 = 𝑚𝑎),254 which is an inherently reductionist255 

perspective.256 Stated that way, the struggles we face in identifying emergence are obvious: 

how can we mathematically formulate a problem using a framework that’s designed for 

components in isolation? Certainly not easily. She proposes to resolve these issues by 

adopting a process-based modeling approach, where the interactions/relationships are the 

central focus of the model.257 Kitto admits this will lead to a set of disparate models that 

do not necessarily overlap, but, as she (and later Mitchell [144]) argue, this ought to be 

expected. If, as she argues using numerous examples in her thesis, the emergent behavior 

follows naturally by reformulating the problem, then perhaps this explains why the object-

centered approach in this thesis naturally produces self-organized objects. Perhaps self-

organization is better thought of as the structural analog of emergent behavior. That is, self-

organization is to structural decompositions what emergent behavior is to functional 

decompositions.258 The fundamental elements possess nonlinear relationships that enable 

them to organize into a higher-level analogy of the low-level element.259 Hence, pattern 

recognition techniques can be applied in a straightforward manner to the data generated by 

object-centered models used in this thesis to unambiguously identify a self-organized 

                                                 
254 Those interested in a deep dive on the existence of objects are referred to [397]. 
255 Kitto uses Reductive Analysis to denote to the perspective broadly referred to here as Reductionism. 
256 See also a recent video on quantum jumps by PBS (in particular, Schrödinger’s train of thought regarding 

the nature of quantum objects) [403]. 
257 This is compatible with my refutation of Epstein’s bee hive argument in Section 2.2.3. Given the years 

that have passed, it is no longer possible to determine if my counter-argument was due to a subconscious 

internalization of Kitto’s arguments. 
258 If this conjecture pans out, it calls into question whether self-organization truly precedes emergence. 
259 That is, the system possesses qualities that are equivalent to the qualities of its idealized components so 

long as certain conditions are met (Section 2.2.2). 
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object. Perhaps a similar procedure would exist using her framework. However, since there 

is no one-to-one mapping between form and function (in general), there remains a gap 

between the self-organized structure obtained in object-centered models and emergent 

behavior, which seems to require at least some human intervention (hence the challenges 

of the behavior association step discussed in reference to Figure 125, and the hypotheses 

in this thesis).260 While Kitto’s philosophical approach seems promising, she concludes her 

thesis with a warning: “Indeed, in adopting a more complex initial set of models, many 

more phenomena appear to be justifiably brought into the realms of physics, although at 

the price of so altering physics that it may no longer be considered the same field” [73]. 

Since this thesis is placed nearer to systems science than physics, that is not necessarily a 

problem, but one table flipping per thesis is more than enough. 

Finally, consider again the work by Kokar et al [97]. The project itself had multiple 

goals, and provides several interesting questions and answers with regards to the dynamics 

of collective systems. Of interest here is their ontology of emergent behaviors, their global 

control policies resulting in emergent behaviors, and their quantitative approach to 

identifying a decision-maker when a system is approaching the onset of an emergent 

behavior. As in this thesis, the authors encountered several definitions of emergence, which 

they broke into three categories. Only the category of non-localized properties is 

compatible with the definition of weak functional emergence used in this thesis (the topics 

of adaptability and feedback they derive from Fromm are neglected here). Their Boids 

model example lists flocking as an emergent behavior, which is incompatible with the 

definitions in this thesis. They use the ratio of speeds to determine that the boids are 

                                                 
260 See also the discussion of Bonabeau’s writing in Section 3.2. 
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flocking (in addition to other constraints), which serves a purpose similar to the interaction 

equations discussed in Section 2.3 and CHAPTER 3. Of the emergent behaviors they 

identify in their UAV example (which are (1) trashing, (2) poorly covered facilities, (3) 

saturation, (4) collision, and (5) imbalanced use of resources), only the imbalanced use of 

resources appears to be a distinct behavior of the swarm of UAVs. The others are either an 

undesirable outcome relative to some mission requirement, or the behavior of one or more 

individual UAVs that is pathological with respect to the mission. It is unclear exactly how 

these behaviors were deemed emergent, so it seems that they are based on subject matter 

expertise (i.e. human judgment, as in the work by Moyal et al.). Later in their paper they 

argue that the UAVs exhibit Type IIa and IIb emergent behaviors (due to Fromm; see 

reference in [97]) based on whether they follow separation rules only, or separation and 

cohesion rules (as in the Boids model), which to the knowledge of this author, prompt the 

onset of self-organization or the lack thereof. In order to properly claim that the behaviors 

they observe are an emergent behavior, some kind of behavior association must be 

performed. They do not perform this step. Rather, they implement a “variety metric” (due 

to Holland; see Equation 33 in [97]) whose value is intended to indicate that emergence 

has occurred. The authors write, “As shown, when the groups are formed (undesirable 

state)… variety becomes flat, whereas it fluctuates when no groups are formed (desirable 

state)” [97]. While many of the tools they use are very interesting, their study does not 

follow the conceptual framework used here (though their tools could automate some of the 

steps described in this section). In their conclusions, the authors acknowledge that they 

have not yet developed a formal model of emergent behaviors, or a complete taxonomy of 

emergence. Therefore, the hypotheses presented here are still merited. 
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As shown in Figure 35, the behavior association technique (and ontology) by 

Cummings and Kokar et al. begins by simulating components, and then arguing for the 

existence of some emergent behavior. V. Kim, similarly starts from the component 

simulation and argues for the existence of an emergent behavior, but does not conflate self-

organization with emergence. Prokopenko et al., and this thesis, begins by simulating a set 

of components, and arguing for the existence of a self-organized system (any behavior 

associated with this system immediately qualifies as weak emergence). After the system is 

identified, it is observed to interact with another system and from there, this thesis argues 

for the existence of an emergent behavior (on the basis of it being functional emergence 

and satisfying the conditions in CHAPTER 4). 

 

Figure 35 – Sample of relevant behavior association techniques and their implied 

ontologies (a) Cummings [245], and Kokar et al. [97], (b) V. Kim [59], (c) 

Prokopenko et al. [206], and this thesis 

This thesis argues that if one can write a computable function (of any kind) that computes 

the numerical value of an unambiguous system-level property, the mere existence of that 

function (subject to certain conditions) justifies the ontological claim that said system-level 

property is emergent (subject to certain conditions). Without that computable function, one 
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can only claim that the simulation shows self-organization (justified by pattern recognition) 

and “strange” nonlinearities resulting from low-level interaction. It may turn out (as Bedau, 

Huneman, and others suggest261) that the only way to perform that computation is by 

“running the simulation” and creating a large lookup table,262 but due to the information 

compression and loss involved in modeling the system-level object as an idealized object, 

this thesis takes the optimistic stance that there exists at least some class of emergent 

behaviors that can be modeled using a human-interpretable mathematical expression (see 

CHAPTER 3) because of the measurable information those equations provide (i.e. they 

facilitate experiments). Thus far, scientists have written such equations when the number 

of components is vast (i.e. the amount of information lost/compressed it vast). Perhaps it 

is only in the asymptotic case that some key pieces of otherwise relevant information can 

be safely neglected (Section 2.2 of Balestrini-Robinson’s thesis [81] provides interesting 

counterpoints).263 To elucidate that, however, more studies that follow the three-phase 

procedure outlined in this thesis (Figure 21) would have to be performed since studies that 

focus on “measurable” emergence or self-organization alone do not provide enough 

information to make this determination. In other words, it appears that any approach to 

studying emergent behavior cannot proceed without some explicit focus on behavior 

association, however problematic it may be.264  

                                                 
261 See also Kim’s [58] discussion of work by Darley, Goldstein, and others. 
262 For many engineering applications this would be counterproductive due to the discrepancies between 

simulations and reality, which only compound when the phenomenon is nonlinear. 
263 Or, rather than asymptotically, it may be by order of magnitude. Emergence that is possible on a scale of 

10 components may be meaningless at a scale of 100 components, and so forth. Perhaps the self-organization 

is better suited for determining scaling laws where different emergent behaviors are relevant at different 

scales with no or only some connection between emergent behaviors at different scales. The interested reader 

is referred to additional philosophical discussion in [393] [394] [395] (for mathematics, again [159] [108]). 
264 Judea Pearl might say “an explicit focus on causation.” This goes without saying in engineering literature. 
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5.4 Stability Analysis Method for Emergence Exploitation 

There is no restriction in the literature requiring that the analysis for emergent 

behavior exploitation for design purposes be different from that of exploitation for 

decision-making purposes. The presence of an “intelligent component” (systems that 

include people or artificial intelligence) is irrelevant, because self-organization is the basis 

of the pattern, not merely the rules governing the component behavior. The only difference 

between the engineering mindset (building a predictable system made of mindless 

components), and the decision-maker mindset (building a predictable system that includes 

intelligent components) is that in a decision-making context the apparent “rules” of 

behavior can change (people can learn and adapt). In a design mindset the only rules that 

matter are the rules of physics, chemistry, and biology.265 Therefore, this thesis will 

examine two cases: (1) situations where the rules can change, (2) situations where the rules 

do not change. 

In both situations, the task of determining which emergent behaviors to exploit and 

how can be performed using a Sensitivity Analysis (SA). Although there are no systematic 

approaches in the literature for emergent behavior exploitation, there is no need to develop 

such an approach from scratch (as was the case with behavior association). Sensitivity 

studies are common in the engineering literature for regressions of a known output from a 

set of known inputs. Furthermore, the conclusions one can draw from SA are generally 

easy to interpret and act on. There are a variety of techniques that fall under the umbrella 

of SA. In his textbook, “Sensitivity and Uncertainty Analysis” Physicist Dan Cacuci 

defines sensitivity analysis as an approach to “quantify the effects of parameter variations 

on calculated results” [246] where those parameters are taken to mean the constant 

coefficients of an equation (not to be confused with the independent variables, dependent 

                                                 
265 In the broader engineering mindset the rules of ethics matter, as well as the artificially imposed rules of 

finance. 
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variables, or the form of the equation). The exploitation this thesis concerns itself with is 

design and behavior modification, meaning that the focus of the research is on finding 

dependent and independent variables. In design and behavior modification, equation 

parameters can be treated as satisfactory regression coefficients so long as the error of the 

regression is tolerable. This is very different from model discovery, where both the 

parameters and variables are of equal importance. For example, the gravitation constant in 

Newton’s inverse square law of gravity has genuine physical significance and so must be 

known to the utmost precision possible.266 Therefore, Cacuci’s definition of sensitivity 

analysis can be modified to better suit design and behavior changes: an approach to 

quantify the effects of independent variable variations on calculated dependent (emergent 

behavior) variable results. This view of sensitivity is also common in engineering practice. 

Measuring this sensitivity is performed by taking derivatives of the equation and 

determining the magnitude of the output derivative with respect to the magnitudes of the 

derivatives of the input variables [226]. Note that those derivatives correspond to variables 

that can be directly controlled in the case of component-level properties, or indirectly 

controlled in the case of emergent properties. With this in mind, it is now possible to outline 

the four steps of an SA approach to emergent behavior exploitation: 

1. Obtain a reliable regression of the Measure of Merit (MoM) that includes the emergent 

property or behavior in question. 

2. Using the chain rule, differentiate the expression until all derivatives are expressed in 

terms of component-level variables. 

3. Identify the component-level variables that have the largest individual (or collective) 

impact on the MoM, and propose an approach to affecting those variables. 

                                                 
266 Showing that Newtonian gravitation is a special case of general relativity, and that the curvature of 

spacetime is proportional to this constant were two significant milestones in the development of the theory 

of gravity [329] [330]. In model discovery, the parameters can be as important as the variables themselves. 
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4. Simulate the proposed changes and measure the impact on the MoM. 

Note that if the fit required for Step 1 is impossible, statistical tools will be needed to 

determine the effect an emergent behavior has on the MoM. The approach can then proceed 

beginning with Step 2, as will be discussed later in this section. Such an approach serves 

to answer Research Question 5: 

Research Question 5: Once identified, how can emergent behaviors be 

exploited? 

In the abstract sense, the answer to this question is yes, by definition. Since the 

trace has been completed, the data shows that this emergent property can affect other 

objects, and other objects can affect this property (hence, it is exploitable). However, in 

physical applications, utility takes on a context-dependent meaning. To an engineer, useful 

can mean (1) reproducing the behavior in a predictable fashion and incorporating it into 

the intended/designed function of the system in question, or (2) avoiding the behavior 

altogether because it is undesirable. To a hacker, useful means almost the opposite: 

reproducing the behavior in a predictable fashion, especially those that are unintended 

functions of the system. In a competitive acquisition environment such as the context of 

this thesis, the goals are a combination of both: (1) fostering desirable emergent behaviors 

within acquired systems, (2) mitigating or eliminating undesirable emergent behaviors in 

acquired systems, and (3) using the emergent behaviors created by adversarial systems to 

their detriment. To be clear, the purpose of this step is not to prescribe a specific 

exploitation approach, but to outline the steps for uncovering the exploits that are available. 

From there, it is up to the decision maker, analyst, or engineer to select the appropriate 

course of action. 

For exploitation analyses other than model discovery (i.e. formulating a sort of 

“theory” or “law” that describes all the self-organized object’s interactions with the world 
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around it), it is possible to use the upward causation equations that constitute one form of 

the emergent property model to guide the bulk of the decision-making, and wherever an 

accurate and robust interaction equation becomes available, use the additional equation to 

further guide the process.267 Suppose a variable, x, belongs to component A, and another 

variable, y, belongs to component B (i.e. they are the properties of these components). 

Components A and B self-organize into System I by some pattern in the value of x – y, and 

System I now has a property 𝑧 = 𝑓(𝑥, 𝑦).268 Now suppose that the time-rate-of-change of 

z is the emergent behavior, e-I. Since x, and y are known, and both A and B are low-level 

components that can be directly controlled, then a change in e-I can be studied without an 

exact interaction equation relating e-I to some other system, since e-I is essentially known 

from the chain rule: 
𝑑𝑧

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
. The question for the engineer then becomes how 

to change x and y over time in the desired manner (i.e. the engineer must develop an exploit 

for the time-varying properties). On the other hand, as will be seen in Section 5.7 and 

CHAPTER 7, if the system is made of components that are not under the direct control of 

the engineer (such as the system adversaries in combat) then the decision of how to affect 

a variable is no longer purely technical (because it is not possible to directly control the 

adversary in the combat system the way one would control a technical design variable). It 

now becomes a ways-versus-means decision. Once the exploit has been identified, its 

impact on performance can be measured by simulating system-level interactions with and 

without the exploit, and comparing their performance using an appropriate MoM. If the 

                                                 
267 In other words, a perfect understanding of the emergent property is not necessarily needed (so long as 

there is a good reason for calling it emergent). Sometimes it is more important to find a way to influence it. 
268 z can be the position of the system (defined as the center of gravity of its components), a shape parameter 

such as length or volume, a statistic (recall that thermodynamic temperature is an average value), etc. 
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MoMs are totally insensitive to the exploit, this suggests a new MoM may be needed (or 

that the exploit is truly benign). This process is depicted in Figure 36. Therefore, this 

approach to exploitation analysis ties in directly with setting requirements for design, as 

well as the analysis needed for an effective CBA, in addition to standard engineering 

processes. Once the variables of interest are known and the goals of the design project can 

be identified, the problem becomes a regular engineering problem. 

 

Figure 36 – Input-Process-Output diagram for exploitation analysis step220 
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The steps for implementing a generic exploitation analysis are as follows: 

1. Begin with a list of ns system-level properties, S, that may be exploitable, and their 

equations (interaction equations from the behavior association step, or upward 

causation equations from the pattern recognition step). 

2. Identify MoMs that are relevant for the mission in which these systems participate. 

3. For each system-level property (𝑆𝑘, 𝑘 ∈  [1, 𝒏𝒔]): 

a. Take the derivative of Sk with respect to time, applying the chain rule as needed, 

until the equation is expressed in terms of component-level behaviors. 

i. If there are time-varying properties present in the equation that have not 

been included in simulations, consider re-running the simulations DoE 

with these variables included (depending on available time and 

resources). 

b. Identify the variables, which correspond to components that can be directly 

controlled, and those that must be indirectly influenced (collect these variables 

into the set X). 

i. In both cases, determine which behaviors can be affected via design 

changes, and which can be affected via rule changes (ways vs. means). 

ii. Determine the appropriate design change or rule change for each 

variable (i.e. design the exploit). Within the current method, this step 

must be performed manually. 

c. In the case of design changes, create a DoE with nA rows that varies the value 

of variables in X.269 

i. Include one row where the variables as unchanged in order to serve as a 

baseline for MoM comparisons. 

d. In the case of rule changes, create a generalization of the simulations used for 

the baseline rule set. 

i. The rules for the components that do not exploit the emergent behavior 

must be a subset of the rules for the components that do exploit the 

                                                 
269 The DoE and nA depend on the MoM being evaluated. The sample size needed to properly estimate the 

mean value of the MoM, for example, may be large. This is determined case-by-case. 
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emergent behavior, otherwise the baseline simulation cannot serve as a 

control case. 

ii. Ensure that the code for the non-exploit rules “can be reached” by the 

simulation of the exploit rules, so that the baseline simulation can serve 

as a control case. That is, the components in the exploit-rules simulation 

must at least occasionally fall back onto the “default” non-exploit rules. 

4. Run ns simulations of each row in the DoE created for each system-level property 

design change, and measure the values of the MoM for each simulation (the size of ns 

varies as some MoM statistics may require large sample sizes to converge).  

5. Run ns simulations of each component rule-set-change, and measure the values of the 

MoM for each simulation. 

6. Compare the changes to MoM statistics that result from design changes as well as 

component rule changes (the decision-maker then selects the appropriate course of 

action). 

a. If the MoMs are completely insensitive to a design change or rule change, but 

the decision-maker recognizes than an exploit has been achieved, then a 

possible hack has been identified (an unanticipated, possibly negative, 

exploitable behavior). 

i. Additional MoMs are needed to properly measure the significance of 

this new functionality. 

b. If the MoMs are sensitive to a design change or rule change, additional 

simulations may be needed to determine how to encourage or avoid this new 

functionality. Additional simulations can provide the following information: 

i. The numerical bounds in which the designed variables cause or inhibit 

the emergent behavior (this requires a separate DoE, and is tantamount 

to a feasibility study). 

ii. The numerical bounds of the design variables that enable the rule change 

to be effective. 

iii. Additional rule changes that increase or decrease the likelihood of the 

rule-based exploitation from occurring. 
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A final question on this topic is the extent to which data from the behavior 

association step is needed for exploitation analysis. That is not straightforward to test, but 

if self-organization precedes emergence, then disrupting the self-organized object is 

equivalent to eliminating its emergent behaviors. In some applications, this may be good 

enough. Furthermore, under the definitions in this thesis, deliberately targeting the property 

of a self-organized object would immediately cause it to qualify as an emergent property 

(both weak and functional). This topic will be revisited in CHAPTER 7-CHAPTER 8. 

5.5 Hypothesis Testing Procedure 

As stated in Section 1.7, there is no mathematical approach for emergent behavior 

exploitation. An outline of the research presented thus far is summarized in Figure 37. 

 

Figure 37 – Research Outline and Method for Answering Research Questions 

Due to the substantial volume of work that has been published on the subject, the questions 

pertaining to terminology and ontology were answered from the literature. Although the 

mathematical approach was also derived largely from tools available in the literature, it is 
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impossible to determine the efficacy of this method without experimentation, because there 

is no way to determine that the qualitative predictions made by the mathematical approach 

are valid apart from testing them. Each of the questions that follows from the mathematical 

approach leads to one hypothesis that must be tested empirically. The results of those 

experiments will be the topics of CHAPTER 6 - CHAPTER 8. 

5.5.1 Hypothesis 1 Testing  

Falsifying Hypothesis 1 will proceed in a straightforward manner: the total number 

of emergent properties identified using the numerical criteria in Section 4.3.2 will be 

compared against the maximum number of emergent behaviors predicted by the equation 

in Hypothesis 1. If the number of emergent properties found by the numerical criteria 

exceeds the upper bound given by Hypothesis 1, then Hypothesis 1 is falsified. For clarity, 

the steps of the experiment are: 

1. Perform behavior association step to obtain list of N emergent behaviors belonging 

to system S, according to numerical criteria. 

2. Identify the equations that govern the time evolution of the properties of the 

components of S (these were explicitly coded into the simulation), and calculate the 

sum, CS(M0), of the dependent variables in this system of equations. 

3. Identify the pattern equations for the components of S, based on the self-organized 

structure of S (this is a new system of equations not explicitly coded into the 

simulation, obtained by the pattern recognition step). 

a. Substitute this new system of equations into the old system of equations, 

and eliminate any redundant variables. 
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b. On the simplified set of equations, calculate the sum, CS(MR), of the 

dependent variables contained in that system of equations. 

4. Obtain the maximum set of emergent behaviors from the equation in Hypothesis 1: 

𝑵𝒎𝒂𝒙 = 𝑪𝒔(𝑴𝟎) − 𝑪𝒔(𝑴𝑹) + 𝟏 

5. To falsify Hypothesis 1, simply find that N > Nmax. 

For example, suppose that two components (identified using the labels 1, and 2) in a 

simulation self-organize. At any point in the simulation, according to the rules of the 

simulation their x-positions are given by, 

 𝑥1 = 𝑉1𝑡 + 5.86 

𝑥2 = 𝑉2𝑡 − 3.14 

 

where t is time, V is the component velocity, and the constants are purely notional. Their 

velocities are also given by rules that can also be represented by some function in time, 

 𝑉1 = 𝑓(𝑡) 

𝑉2 = 𝑔(𝑡) 

 

The precise form of the functions, f and g, is irrelevant. Since the velocities are functions 

of time, they are dependent variables, as are the position variables. Then, suppose, that the 

as a result of self-organization, the pattern recognition step finds that, 

 𝑥2 − 𝑥1 = 0.86 sin(2𝑡) + 1.12 sin(𝑡) − 8.4  
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Again, the coefficients do not matter. This pattern means that the original set of equations 

can be simplified to obtain, 

 𝑥1 = 𝑉1𝑡 + 5.86 

𝑥2 = 𝑥1 + 0.86 sin(2𝑡) + 1.12 sin(𝑡) − 8.4 

 

The velocity information for the second component is redundant, and can be eliminated 

from the system of equations by substitution. This is the “data compression” that results 

from pattern recognition. In this case, one dependent variable has been eliminated from the 

system of equations, and the simplified set of equations is valid so long as the self-

organized object persists.270 The original system of equations had 4 independent variables 

(two positions, two velocities), while the new system of equations has 3 independent 

variables. Therefore, Nmax = 4 – 3 + 1 = 2. If three or more emergent behaviors are found 

for the self-organized system, Hypothesis 1 is falsified. Since this mathematical approach 

claims that the maximum number of emergent behaviors for all self-organized systems 

follows this relationship, and there is no quantitative evidence in the literature to contradict 

that relationship (nor is there an alternative relationship in the literature), an experiment is 

needed to confirm that it is valid. 

For the purposes of this thesis, no alternative will be explored, but the criteria raise 

an important question that should be considered in future work. Should the definition of 

self-organized system be restricted to the smallest possible representative object for the 

given interaction equations? For example, if a boid forms a line, the smallest system is a 

                                                 
270 As the system is perturbed, the coefficients or form of the periodic relationship may vary, but as long as 

the system preserves its structure, there will exist a periodic function relating the two variables. 
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pair of boids. Should a long line be treated as a single system, or a system of systems made 

up of 2-boid line segments? If this is the case, then the self-organization of the long line 

would have to be expressed in terms of equations that use line-segment properties rather 

than boid properties. There is precedent for this in physics where materials are often studied 

in terms of the properties of their periodic unit cells. In some cases, the extension is 

painless, but there exist cases where there are multiple ways to examine the same structure 

due to its symmetries. The inequality in Hypothesis 1 does not take these extensions into 

account because it is supposed that this rule generalizes for all self-organized objects. The 

results in the chapters that follow will provide guidance for future work. 

5.5.2 Hypothesis 2 Testing  

Since Hypothesis 2 claims that the numerical criteria are sufficient conditions, there are 

two ways to falsify Hypothesis 2: 

1. Checking for false positives (contradictions in definition): 

a. Find properties and behaviors that do not qualify as emergent behaviors 

(weak + functional) but do satisfy the criteria.  

b. Find properties and behaviors that do qualify as emergent behaviors (weak 

+ functional) yet do not satisfy the criteria. 

2. Checking that the conditions listed in the numerical criteria are complete. 

Since the numerical criteria use quantifiable information to make a qualitative claim (that 

an emergent behavior has been found), and there is no alternative in the literature to 

categorically contradict it, the prediction made by the numerical criteria must be tested 

empirically. Care must be taken to perform these falsifications (see the Appendix for 
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additional discussion regarding these tests). Recall that emergent behavior is a combination 

of weak emergence and functional emergence (borrowing from Bonabeau and Steele) as 

defined in Section 1.7 and CHAPTER 3, respectively: 

Weak Emergence: any system-level behavior generated by component-

level behaviors that can only be observed by running the simulation (or 

direct empirical observation). 

Functional Emergence: a new system-level behavior achieved indirectly 

by the interaction of the system’s components. 

The Criteria for Identification of Emergent Behavior from Numerical Data from 

CHAPTER 4 was introduced to complete the connection between the above qualitative 

definitions and the quantitative data. They are the quantitative version of the qualitative 

definition (also in CHAPTER 4): 

Pragmatic Definition of Emergence: any system-level property that can 

be shown to participate in an interaction (subject to restrictions). 

Hypothesis 2 is that these criteria (and hence the pragmatic definition) are sufficient 

conditions for weak and functional emergent behavior. Going forward weak and functional 

emergent behavior will be referred to simply as emergent behavior.  

During the behavior association step, once SISSO has generated an equation that 

models the interaction between two systems in a simulation, that equation will have an 

error (related to the data set the model was trained on) and a computational complexity. 

Since many simulations are being run, SISSO will generate a family of models associated 

with several batches of training data randomly sampled from a master data set containing 
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all the data generated in every relevant simulation.271 Their errors and complexity will be 

plotted on figures such as Figure 38. 

 

Figure 38 – Sample “point cloud” of slope, “M,” and Pareto optimal set of models 

Figure 38 shows the data for two sets of models of flock slope, and how that slope changes 

with respect to some input variables. The blue points (FvF) represent cases where the model 

input variables are flock-level properties. Therefore, FvF is a flock-level property 

expressed as a function of the “other” flock’s flock-level properties (i.e. a flock-flock 

interaction). The red points (FvB) represent models where the input variables are boid-

level properties, as though a single “other” boid was affecting the flock-level property (i.e. 

flock-boid interaction).272 The distribution of the data provides two pieces of information. 

First, the cloud of points indicates whether FvF models tend to be more accurate and 

                                                 
271 Relevant: e.g. flock interaction simulations data will only contain cases where the flocks did not split up. 
272 In order to generate the flock-boid interaction data, the boid from the “other” flock is selected randomly. 
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simpler than FvB models. In this case, there is a clear downward shift in the mean of the 

points, indicating that the models tend to be simpler and more accurate. Second, the solid 

lines indicate a Pareto Front drawn through using the points that are simultaneously the 

most accurate and the simplest (clearly, this Pareto Front is approximate). This Pareto Front 

will be used to test Hypothesis 2 under the strong definition of association discussed in 

Section 4.3.4. Note that slope is the case of a variable that boids cannot have273 (assuming 

only well-defined quantities are permitted), and so it is guaranteed to be distinct. This plot 

shows that the FvF models dominate the FvB models, and so the flocks are more closely 

associated with each other. This plot shows that slope is an emergent behavior according 

to the numerical criteria. In the case of this plot, one could argue that the linear speed-up 

might undermine the dominance of the FvF Pareto front.274 The only way to determine that 

it does not would be to manually inspect each equation. For example if one equation had a 

single multiplication, while the other had a single division, the linear speedup theorem 

would apply because it would be possible to design a machine that could perform division 

faster than multiplication by some constant factor. If all the FvB points in this graph where 

inside the O(n2logn) bin, however, the linear speed-up theorem would not apply. 

 More important than the linear speed-up theorem, however, is the sensitivity of the 

model error to extrapolation. Therefore, two plots will be generated for each model: one 

for the error on the training data, and another for the error on the extrapolation data (usually 

referred to as the test data [247]). The worse of the two outcomes will be taken as the true 

outcome for the sake of hypothesis testing (both plots will be provided so that the reader 

                                                 
273 Not all properties are so easy to classify as distinctly high-level. 
274 If, for example, all the models in the left bin contain only multiplication, then it does not apply. 
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can follow the discussion in the results). Besides that, the size of the statistical sample is 

always important. Note that under the settings used in this thesis, SISSO will generate three 

different models per simulation time series (in increasing complexity). The number of time 

series is determined from the overall DoE size after filtering out cases where self-

organization failed to persist throughout the relevant timeframe. 

 Figure 38 is only one figure for one system-level variable. In order to critically 

examine the results produced by the numerical criteria for a simulation, the criteria must 

be applied over several time intervals in each time series to see how the results vary based 

on the user-specified time interval for each variable (see Figure 32). 

Table 3 – Notional comparison of property Pareto optimality across time intervals 

 Interval Stable / 

Independent 

(×,-) 

Interaction 

(×,-,+) 

Re-

stabilization 

(×,-) 

Interact / Re-

stab. (×,-,+) 

Full Time 

Interval (×,-,+) Property  

PxF 

     

PyF 

     

The result of doing so will be summarized in a table resembling Table 3. The question this 

table seeks to answer is “can the criteria be fooled by indicating system-level interactions 

when there are none?” (i.e. a false positive) with an emphasis on the properties of self-

organized systems. In this example, the rows correspond to the final x and y coordinate of 

position of the flock at the end of a given time interval. Note that the labels in Figure 32 

correspond to the column labels in Table 8. In this table, a green “+” indicates that the 

numerical criteria were satisfied. A red “-” means that the numerical criteria are not 
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satisfied in a weak sense (the Pareto fronts are non-dominating because they intersect).275 

A red “×” means that the numerical criteria were not satisfied in the strong sense (here, the 

boid-level interaction model Pareto front strongly dominates the flock-level Pareto front). 

Both “×” and “-” mean that the numerical criteria indicate no direct interaction, while a 

green “+” means they indicate a direct interaction. 

 Table 3 can be read column-wise or row-wise. To read column-wise, note that each 

column label contains the list of symbols that this author expects to see in parenthesis. For 

example, the Re-stabilization column is expected to contain only “×” and “-“ because there 

are no interactions during this time interval. The same results are expected for the Stable / 

Independent column. Both are testing against false interaction detection (a false positive), 

and so a result contradicting expectations would falsify Hypothesis 2 (the numerical criteria 

are not sufficient, but they may still be necessary). Row-wise, one expectation that seems 

plausible is that if the Interaction column exhibits a green “+” then the symbol in the 

Interact / Restab. column should be at least “+” if not more red,276 and then the Full Time 

Interval column should continue the trend. The expectation is so because each of those time 

intervals is longer than the previous, beginning with the interaction time period and 

extending to the end of the simulation. This would support Hypothesis 2 because the 

emergent behavior should be most obvious over the span of the interaction, and will 

perhaps get obfuscated after the flock re-stabilizes. Deviations from this expectation are 

not necessarily conclusive, but demand an explanation. To summarize this discussion, the 

                                                 
275 Another way of thinking about this (rather than using the intersection of two fronts): if all model results 

were collected onto one plot, and a single Pareto Front were drawn for all points, this Pareto Front would 

include points from both flock-boid and flock-flock interaction models. 
276 If the two Pareto fronts were gradually translating across the plot in opposite directions, the trend would 

be monotonic +  -  × (or the reverse). 
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steps for performing the experiment to test Hypothesis 2 are listed below (assuming the 

strict set of criteria for Hypothesis 2 from CHAPTER 4): 

1. Perform the behavior association step on a given system property involved in a 

system-level interaction, and in particular: 

a. Using SISSO, obtain two sets of equations from the simulation time series 

data: (i.) interaction equations indicating that the property of system 1 is a 

function of the properties of system 2, which are the f(System) equations, 

(ii.) interaction equations indicating that the property of system 1 is a 

function of the properties of a randomly selected component in system 2, 

which are the f(Comp.) equations. 

b. Filter out pathological equations (poor extrapolation, etc.). 

c. Filter out equations whose variables come entirely from one system. 

2. Calculate the error (RMSE) and time complexity (CT) for all remaining equations. 

3. Plot the RMSE and CT of every equation obtained by SISSO and find the Pareto 

Optimal set of equations for the f(System) and f(Comp.) equations separately. 

4. According to the numerical criteria, if the Pareto Front for f(System) dominates the 

Pareto Front for f(Comp.), then that system-level property/behavior is an emergent 

property/behavior. 

5. False Positive Test: Identify a time series that the numerical criteria finds to be an 

emergent behavior despite violating some aspect of the definitions provided 

(weak/functional emergence). For example: if no system-level interaction has taken 

place, then there is no evidence that the property is functional, and so the numerical 

criteria should not find that it is an emergent behavior. 
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6. Completeness Test: Identify conflicting results obtained by the numerical criteria 

that cannot be resolved without introducing additional criteria. 

The tests will be performed using results presented in the format of Figure 38 and Table 3. 

5.6 Boids Study 

As stated in Section 3.3, the Boids model is an example of self-organization. 

Unfortunately, the properties of a flock are too abstract to permit a meaningful discussion 

of emergence exploitation.277 Since the Boids model can be used to illustrate the first two 

steps of the overall method (Pattern Recognition and Behavior Association)278 it will be 

used to test Hypotheses 1 and 2. The simulation’s parameters can be broken into two 

categories: (1) simulation, environment, and boid properties that are constant throughout 

the simulation, (2) boid properties that vary over time during the simulation. The former 

category determines whether self-organization is feasible within the simulation, and the 

latter contains the variables that directly represent the time-varying behavior of the boids, 

and thus, the self-organization. The properties that are constant include: 

Table 4 – Flocking Vee simulation and constant boid properties 

Number of boids Vision Distance Vision Cone 

Obstruction Cone Base Speed Speed Change Factor 

Updraft Distance Too Close Max Turn 

Length of Map Width of Map Space Boundary Condition 

                                                 
277 The term ‘exploitation’ connotes an objective, which implies an optimization problem. Although goal-

directedness has been associated with emergence in the literature [215] [403] [200], goal-directedness in the 

Boids model is too great a stretch for this thesis. 
278 An opportunity available for future is to apply the numerical criteria to the emergent properties of 

flocks/herds identified in [214] to see if the properties identified in that Master’s thesis are consistent with 

the approach used here. 
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Most of these properties are self-explanatory. Readers interested in details not covered here 

are referred to the simulation’s documentation [209]. In this thesis, the map in which the 

boids fly has periodic boundary conditions (it is a torus), and so additional care had to be 

taken when measuring the relative positions of boids. The boid properties that vary over 

time are: 

Table 5 – Time-varying boid properties 

Position Speed Heading Boids within 

Vision Cone 

Since flocks, like all self-organized entities, are only stable under certain conditions, the 

success of the experiments depends on the ability to study flocks without destroying them. 

Unfortunately, due to the sheer number of variables involved, generating a convex hull 

characterizing the set of all parameters that produce stable flocks is computationally 

prohibitive. 

Note that the coordinate system used in Netlogo is such that the reference angle (0 

degrees) is on the upward vertical axis, and positive angles are measured clockwise from 

there [248]. Therefore, a heading of zero corresponds to a boid flying straight up. The 

simulation tracks which boids see which other boids using their unique in-simulation 

numerical identifiers. This information is used to distinguish a meaningful self-organized 

flock from an accidental linear distribution of boids.230 The speed of the boids can never 

go below the base speed. Also note that although the speed of the boids has no enforced 

upper bound in the simulation, it is generally impossible to diverge to infinity because the 

behavior rules prevent it. In terms of rules, each boid is always executing one of the 

following five rules: 
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 Default behavior: fly at constant heading and speed equal to base speed 

 If the closest visible boid is further away than the updraft distance, then fly towards 

that boid and accelerate 

 (else) If there are any boids within the obstruction cone, then randomly turn in order 

to avoid those boids 

 (else) If the closest boid’s distance is less than the “Too Close” distance, then slow 

down 

 (else) Match the speed and heading of the nearest visible boid 

Although the rules clearly indicate that self-organization is possible, they say nothing about 

the various configurations the boids can attain, or what properties those flocks will have. 

For the purposes of testing Hypothesis 1 and 2, it is only necessary to consider linear flocks. 

Not only are they the simplest shape, the analysis of their properties would be the easiest 

to reproduce and debate. 

 Each simulation will have unique variables of interest. Since the interactions of 

interest are between flocks and some other entity, and the experiments here are specifically 

designed to falsify Hypothesis 1 and 2, it is not necessary to obtain a thoroughly 

representative set of data for all possible settings of every variable.  In order to ensure that 

the flocks would interact, a space-filling design of experiments of 5,000 initial 

configurations is used. The line flocks are initialized with various separations between 

boids (calculated based on their vision cone angle and vision distance so that the boids all 

see each other), and point at each other so that some kind of interaction is guaranteed to 

occur within a few iterations by crossing paths. Figure 39 depicts a simplified DoE where 
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a variety of randomly selected locations inside the vision code of a boid (red circles labelled 

Boid 1) selected as destinations for a second boid (Boid 2) to intersect at a pre-determined 

iteration. Boid 2 is then given a variety of random starting points (blue circles) from which 

to fly to that destination (blue dotted path). This is a small fraction of the full DoE, which 

contains hundreds of starting locations, hundreds of destination locations, and several flock 

sizes wherein the boids can cross paths within the vision cone of any boid in the flock. 

 

Figure 39 – Sample of DoE trajectories indicating where Boid 2 will initially 

intersect vision cone of Boid 1 
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Besides relative spacing between boids, the relative angles at which the flocks inevitably 

cross paths collisions are also variables in the DoE, as are the offsets between the centers 

of gravity at the point of intersection (if the offset is zero, then the center of gravity of each 

flock would overlap in the case of a perfect collision). Figure 40 depicts the full trajectories 

of a three-boid flock (flying vertically) crossing the path of a five-boid flock (flying down 

and left). In this example, the relative positions of the three-boid flock are altered 

dramatically as they try to retain their formation, while the five-boid flock is hardly 

perturbed. 

 

Figure 40 – Initial boid positions and intersection of two flocks 
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The case studies will emphasize simulations that begin with no more than two 

highly organized structures (the line flocks shown in Figure 17) made up of no more than 

five components each. The structures will be oriented so that they are guaranteed to interact 

once during the simulation. Since the flocks are initially self-organized, only Step 2 

(Behavior Association) from Table 1 will be performed. This case will be divided into two 

parts: Case 1a will study the situation where a single boid crosses paths with a flock, while 

Case 1b will study two flocks crossing paths. After the simulations run for 400 ticks,279 the 

data will be sorted into three categories: (1) flocks that re-stabilize, (2) flocks that break 

formation, (3) flocks that oscillate for the full simulation. Although each case can provide 

useful insights, the scope of this work is restricted to the flocks that re-stabilize. To confirm 

that the flocks re-stabilized, the positions of the boids in each flock were passed through 

the polyfit function in MATLAB [249], which generates a polynomial regression on the 

points (here, linear). If the R2 of the regression exceeded 0.95, and if the velocities of the 

boids were all parallel, and if all-but-one of the boids could see each other (the lead boid 

does not see anyone else) during each of the last four iterations of the simulation, then the 

configuration was accepted as a line. 

5.7 Adversarial Boids Study 

Many adversarial confrontations/competitions involve some form of self-

organization. World War II-style formations and dogfighting is one such example [43]. As 

briefly discussed in Section 1.4, LCDR Thach reviewed reports on dogfighting between 

Japanese and American pilots, and devised a maneuver that exploited a predictable pursuit 

                                                 
279 This is slightly less than the amount of time it takes for a boid to traverse the full map once. This way, the 

opposing boids cross paths only once and there is ample time for flocks to re-stabilize. 
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scenario in air-to-air combat [250]. In this case, the self-organized system was the incoming 

Japanese fighter pursuing the less maneuverable American fighter from a favorable attack 

position (i.e. from behind the blind spot of the fighter [184]). The wingman could spot the 

incoming fighter [185],280 and this gave the targeted American pilot the opportunity to act 

as the bait while he and his wingman maneuvered into a position that gave the wingman 

an advantage against the Japanese fighter.  

 
(a) 

 
 

(b) 

Figure 41 – Depiction of Thach Weave (a) adapted from [250], (b) annotated 

The entire maneuver was predicated on the persistence of the “pursuit system” (see Figure 

41), as well as the fact that it had readily identifiable and quantifiable properties. What 

made it successful was the fact that a very similar pursuit with very similar quantitative 

characteristics would inevitably come into existence multiple times each battle. Thus, the 

American multi-plane formations (a self-organized object) changed their usual formation 

                                                 
280 Hence the formations pilots flew in, which is an example of self-organization that became codified. 
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to become a “bait and hook” system with each pilot assuming novel functionality in direct 

response to the quantifiable properties of the pursuit system. These are simple examples of 

systems defined by their organization, and not just their composition, as depicted in Figure 

125 and Figure 126. Furthermore, these examples show how functions specific to special 

arrangements of components impact higher-level capabilities. A Fleet Synthesis study that 

cannot take such complex behaviors into account would be limited in its ability to judge 

between 30 year acquisition programs. 

The dogfighting model used here, however, is severely limited in its realism for a 

number of reasons. First, NetLogo cannot perform numerical integration accurately enough 

for real-world engineering applications due to the sheer computational cost required to do 

so. Second, it is not possible in the time permitted for this thesis to develop a model with 

even a fraction of the sophisticated instruction provided in [185] [184]. Thus, the NetLogo 

model of air combat used here will aim to capture “generic dogfighting” in the same sense 

that Epstein’s ABM’s capture “generic hive-building.” 

Table 6 – Adversarial boids simulation and constant pilot properties 

General Parameters 

Number of red boids Number of blue boids Team color 

Length of Map Width of Map Space Boundary Condition 

Vision Parameters 

Vision Distance Obstruction Cone Blind Spot 

Motion Parameters 

Base Speed Red Speed Boost Speed Change Factor 

Too Close Max Turn Red Turn Boost 

Firing Parameters 

Max Firing Distance Rounds per Shot Firing Cone 

Wherever convenient, the terms “pilot” and “boid” will be used to describe the 

basic components in the simulation. Although this model was built on top of the flocking 
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Vee boids model, there are significant differences between the decision-making processes 

of the original boids and the pilots in this simulation. As indicated in Table 6, there are two 

“teams” of pilots, distinguished by their colors: red and blue. There can be up to four pilots 

on each team. Pilots only form up with pilots of the same team. The boundary condition 

remains periodic, as before. The red team has “boost” parameters that will enable 

simulating combat against an aerodynamically superior/inferior foe. The pilots have a blind 

spot directly behind them to simulate the physical limitation of real-world dogfighting. 

Therefore, their “vision cone” is 360 degrees minus the blind spot cone, as depicted by a 

yellow dotted cone in Figure 42a.281 

 
(a) 

 
(b) 

Figure 42 – Screenshots of (a) 1v1 dogfight with attacker firing from within target’s 

blind spot, and (2) 2v2 dogfight with red pilot countering spoiled formation 

Note that the pilots can only “remember” being fired upon. This means that, during the 

simulation, if a visible enemy pilot maneuvers into their blind spot, the pilot will 

immediately “forget” that it is being chased until the attacker fires on it. Once fired upon, 

the pilot will have an internal timer set to 10 iterations, over which it will evade the 

oncoming attacker. Once the timer reaches zero, the pilot will forget that it was fired upon 

                                                 
281 The blind spot depicted in Figure 42a is notional. The angle used in the simulation is smaller (15°). 
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and proceed to make whatever decisions its behavior rules prescribe. The timer resets any 

time the pilot is fired upon. 

Table 7 – Time-varying pilot properties 

Position Speed Heading Visible Pilots 

Visible Friends Visible Enemies Pilot of Interest Threat level 

Reward level Timer since shot   

As with the boids, the “geometric” properties of the pilots are their position, speed, and 

heading. They also possess the ability to survey their surroundings and assess the level of 

“threat” posed by their enemies as well as the level of “reward” presented by their enemies 

(i.e. the vulnerability of the enemy to attack).  

The “pilot of interest” is any indicator used in the code such as my-target, my-

wingman, and my-obstacle, all of which facilitate executing some behavior in response to 

a specific pilot (the pilot has its attention focused on the pilot of interest for whatever 

reason). There are several very important distinctions between the logic of the simulated 

pilots and Boyd’s OODA loop. The simulated pilots cannot be overwhelmed by too many 

simultaneous events. The pilots cannot respond to simultaneous problems in parallel. The 

pilot perfectly observe all events (to the extent that their rules permit), but only act in 

response to one threat or one reward per iteration (one pilot of interest). 

Other key features are removed from the baseline simulation. The pilots do not 

communicate at all (this will be changed as part of the experiment discussed in Section 

7.3). In the absence of communication, the formations exhibited by the simulation largely 

lose their meaning, and only affect the probability of success in a purely meaningless, 

mechanistic sense. Other features include: The simulation space is two dimensional. All 
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shots land or miss based on a probability distribution that decreases with distance, and they 

hit instantaneously (no need to “lead the target”). This also eliminates the various tactical 

considerations one would have to make based on the munitions, sensors, and jamming 

technologies available to the pilot [43] [185] [184]. Collisions and damage do not destroy 

pilots, although the rules make collisions very unlikely. The two teams simply accumulate 

a score of shots fired, shots landed, and shots received. The pilots are a “point” rather than 

a two-dimensional aircraft, so collisions only occur when their positions exactly overlap. 

Some key dogfighting features are persevered (albeit notionally). The rules are set 

up so that a pilot can force its attacker to break off pursuit by causing it to overshoot during 

an attack [184]. There is a mechanism by which attackers can effectively sneak up on their 

targets [184] [185]. Friendly pilots can intercept an attacker mid-pursuit (a precursor to the 

Thach weave). Multiple pilots can shepherd a single adversary in an unfavorable position 

for an extended period of time (another precursor to the Thach weave). All of this occurs 

due to a fairly simple set of rules and serial decision-making. 

Although Boyd’s OODA loop cannot be faithfully reproduced in this simulation, 

the code is organized in a manner inspired by the principal functions in the OODA loop. 

Each iteration, the pilots first observe the various pilots within their field of vision and sort 

them into the categories of friend or enemy. The pilots then orient themselves toward a 

particular threat (a possible collision or incoming attacker), or a possible reward (attacking 

an appropriate target, or entering into a formation).  The various threat or reward level 

computations are functions of the threat/reward type and the distance between the pilot and 

the relevant alternative pilot (depicted in Figure 43). The threat and reward curves are set 

up in such a way that one behavior is more likely at a particular distance than another. For 
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example, collision avoidance takes over when the pilots are less than four units apart (see 

the blue “Collision” curve in Figure 43). Note that the “Form-up” behavior is the lowest 

priority behavior to occur at any distance. Also note that Figure 43 contains a plot of the 

likelihood of landing a shot as a function of distance (the purple %-Hit curve). The pilots 

fire three-shot bursts in order to increase the likelihood of landing a shot (the probabilities 

are independent and identically distributed), and the probability of actually firing a single 

burst at a target is three-times the probability of hitting the target. The option of deciding 

to fire a shot is only triggered when the pilot sees another pilot within its firing cone (a 

small sector designed to enable more frequent engagement in less-than-perfect situations). 

 

Figure 43 – Pilot decision-making threat/reward curves 

The pilots then decide which course of action to take based on the greater of the maximum 

threat level and the maximum reward level (with a tie breaking in favor of threats), and 



 220 

then act (i.e. each pilot executes its decision). Although Netlogo issues the instructions 

sequentially (in random order each iteration), the pilots do not re-evaluate their decisions 

during that same iteration. Only one behavior sequence is performed per iteration. There is 

plenty of room for debate on how to best implement an OODA loop,282 but that is not the 

primary focus of this thesis, and so is left as future work. Finally, to further clarify Figure 

43, note that the yellow “Incoming” curve dictates when the pilot attempts to evade a 

potential attacker (i.e. it tries to stay out of the incoming pilot’s firing cone), whereas the 

green “Evade” curve dictates when the pilot evades an attacking pilot that has already at it. 

The red “Attack” curve dictates when the pilot selects and attacks a target. In addition to 

distance requirements, the pilots will prefer attacking targets they can approach from 

behind, but will occasionally make opportunistic attacks if they can do so without flying 

into the enemy’s firing cone. 

This case study will focus on the first and third step in Table 1. Since the self-

organized systems in this simulation will be less stable, the approach in Section 5.2 will be 

pushed to its limits. Rather than considering a broad set of candidate emergent behaviors, 

as in the boids study, this case will focus on the separation between the attacker and the 

target (i.e. the “length” of the pursuit system). The exploitation analysis will proceed by 

performing a sensitivity analysis on this length, and result in proposed design changes as 

well as pilot-behavior changes. The MoM for the adversarial boids study will be the ratio 

of shots fired at enemies divided by the shots received from an enemy. This ratio will be 

                                                 
282 In real-world situations, the time interval over which people process their individual OODA loop is orders 

of magnitude shorter than most of the events transpiring in the battle field. Training and experience contribute 

to habits that streamline some of these processes which free up the person’s conscious attention to other 

factors, thereby enabling more sophisticated and faster decision-making. 
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used to compare the effectiveness of the design changes and behavior changes to the 

baseline pilot performance, as well as the sensitivity analysis approach overall. This will 

require running simulating three cases: 

 The red team has superior maneuverability 

 Both teams have the same maneuverability 

 Red team has superior maneuverability but blue team has added behaviors to 

capitalize on the self-organized pursuit system 

The simulations will be 6,000 iterations long in order to obtain reasonable statistics on the 

values of the MoM. This is 15 times longer than the time interval used in the Boids Study 

(Section 5.6), which means the pilots can cross the map 15 times over and have ample time 

for numerous engagements. This time interval was chosen because it is “long enough” to 

capture the dynamics of multiple engagements based on experience with the simulation. 

Since the pilots are initialized randomly, there is no guarantee that there will be any number 

of engagements in a given simulation, or that some useful statistic will converge over the 

course of a single, infinitely long simulation. This uncertainty will be compensated for by 

running a large enough sample of simulations (see Section 7.4.2).  
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CHAPTER 6. THE BOIDS MODEL CASE STUDY 

Boids have only two interaction-dependent properties (heading and speed) in the 

sense that these two properties are constant until an interaction occurs. These interactions 

are one-way. Each boid changes its trajectory in response to seeing one or more other boids 

only (those other boids need not see the boid that boid that is “interacting” with them). Any 

semblance of avoiding a collision is coincidental, and nothing happens to the boids if their 

positions overlap. Finally, note that the sub-section headings in this chapter that correspond 

directly to specialized hypothesis testing will be labelled with “H1” for hypothesis 1, and 

“H2” for hypothesis 2. Data that is relevant to the hypothesis but not amenable to a 

straightforward test will be discussed over the course of multiple sections and summarized 

at the end of the chapter. 

6.1 Case 1a: Boids versus Flock 

Unlike the case of two interacting flocks, when a flock interacts with a single boid 

(as shown in Figure 44), the boid stabilizes as soon as the interaction is over. Thus, for the 

single boid, the interaction time interval is the full interval of interest. Since the speed of 

the boid only changes during the interaction, if at all, the full impact of the single boid’s 

speed will not knowable at the end of the interaction time interval. Thus, the solitary boid 

only has one “useful” property for the purpose of hypothesis testing, and that is its heading 

(only heading permanently changes). The interaction that will be examined here is the 

interaction of the solitary boid with the flock. Therefore, the data used here will correspond 

to the time interval beginning when the solitary boid first sees any boid in the opposing 

flock, and will end when the solitary boid resumes constant heading and speed (the values 
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of the properties of the flock at that instant will be used, whether it has re-stabilized or not). 

In other words, the output/dependent variable modeled in this section will always be the 

heading of the solitary boid, and the input variables will be either flock-level properties or 

boid-level properties. In this sense, this section will test whether the heading of the solitary 

boid is more sensitive to the properties of the flock, or the properties of a randomly-selected 

boid within the opposing flock. Cases where the solitary boid merges with the flock will 

be discarded.283 

 

Figure 44 – Boid on collision course with flock for Case 1a study 

The Pareto Fronts for the interpolation data (Figure 45a) show that the models using 

flock variables as inputs (BvF) are more accurate and simpler (lower CT) than the models 

using boid variables as inputs (BvB). Over the extrapolation/test data (Figure 45b), 

however, the BvF models are just barely dominated by the BvB models. There is a lot of 

information to consider from these plots. 

  

                                                 
283 The “growth” of the flock is a behavior on the border between emergent behavior and self-organization. 

Clarifying this concept will be left for future work. 
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(a) 

 
(b) 

Figure 45 – Pareto optimal boid heading models due to interaction (a) training data 

(b) test data 
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 Since the dependent variable being tested here is the heading of a solitary boid 

(which cannot be an emergent behavior), the question here is whether or not the boid’s 

behavior is a direct response to the properties of the flock (which can be emergent) more 

so than the properties of other boids. One could argue that this scenario is a form of 

downward causation. Based on the numerical criteria alone, and taking the more 

conservative result of the two figures, the BvF models are dominated by the BvB models, 

and so there is no indication that the flock-level properties are emergent behaviors. 

However, since downward causation has not been extensively studied, these results are not 

conclusive. Nevertheless, it is worth mentioning because the common assumption 

surrounding emergent behaviors (particularly those in biology) is that there exist objects 

that respond to groups differently than they do to individual objects at their level of 

abstraction. There is, however, a more compelling feature of these results to consider. 

 Two of the models284 comprising the Pareto Fronts depicted in Figure 45b are, 

BvF: 𝐻𝑏1,𝑓 − 𝐻𝑏1,0 = 0.147 − 8.4 × 10−4𝐷𝐹,0
3 cos 𝐿𝐹,0 (4) 

BvB: 𝐻𝑏1,𝑓 − 𝐻𝑏1,0 = 0.34 − 0.313𝑒𝐷𝑏2,0𝐻𝑏2,0 (5) 

where D is the distance between the boid and the other object,285 L is the length of the flock, 

H is the heading, the subscript F denotes the flock, the subscript 1 denotes the solitary boid, 

the subscript 2 denotes any boid in the flock, and, finally, the subscripts 0 and f denote 

initial and final, respectively. Of the two models, the BvF models is the most believable 

                                                 
284 There are four in total. The third takes the form of (x-y) + |x-y| which is a recurring result and will be 

discussed further in Section 6.2. The fourth model (a BvB model) is not particularly informative. 
285 The position of the flock is the centroid of the positions of its constituent boids. 
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because it suggests that once the boid passes through the center of the flock, it no longer 

changes its heading, which is generally correct since the only way it does this is by flying 

head-on into the flock (i.e. once it passes through the middle, it can no longer see any other 

boids). Furthermore, it is never zero, nor ever constant (with respect to the variation of 

parameters in the design of experiments). On the other hand, the BvB model suggests that 

if the heading of the opposing boid in the flock is zero, then the change in heading of the 

solitary boid is always constant. This is difficult to accept since there is nothing special 

about a boid whose heading is zero. Furthermore, the maximum absolute errors of the BvB 

models are significantly higher than those of the BvF models on the interpolation data, in 

addition to having very poor distributions of errors. 

 
(a) 

 
(b) 

Figure 46 – Solitary boid heading Actual vs. Predicted plots (test data models 

applied to interpolation and extrapolation data) for Pareto Optimal models 

Note that the results in Figure 46 are representative of all BvB and BvF models in their 

respective Pareto Fronts. Such results indicate that it may be necessary to incorporate 

additional model quality tests in order to make the current numerical criteria sufficient 

conditions, or at least more robust to spurious regressions. 
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6.2 Case 1b: Flock versus Flock 

This case will focus on two self-organized systems interacting,286 and so there will 

be many more attempts to falsify Hypothesis 2 using this data set. The time intervals 

referenced here match with those depicted in Figure 32 (the subsection headers will follow 

their naming convention). Sections 6.2.1 and 6.2.3 will directly test the limitations of the 

numerical criteria by testing whether they can produce false positive detections of 

interaction. Sections 6.2.2, 6.2.4, and 6.2.5 will provide the data needed to perform the 

aforementioned287 critical examination of trends to determine whether the numerical 

criteria suffice for emergent behavior detection. Due to the volume of data and discussion, 

the results from each section are tabulated and summarized in Section 6.2.6. 

One important distinction between the data analysis performed here and the 

analysis performed in Section 6.1 is that the beginning and end of the interaction time 

intervals for the flocks no longer coincide with the interaction time interval of the 

individual boids. That is because there is a difference between the time interval over which 

a flock interacts with a boid, and the time interval over which a flock interacts with the 

flock containing said boid. The time interval of the flock interactions is much longer since 

it lasts so long as any boid in one flock observes any boid in the opposing flock. One or 

more boids of the opposing flock can participate in this interaction sequentially, jointly, or 

sometimes not at all. For the sake of clarity, consider the following example: flock Red is 

interacting with flock Blue, and flock Blue contains boids X, Y, and Z. The first boid that 

comes within visual range of flock Red is boid X (this is the beginning of both the Red-

                                                 
286 Recall that the flocks are initialized in their pre-determined shape (see Section 5.6). 
287 Hypothesis falsification approach #3 in Section 5.5.2 



 228 

Blue interaction and the Red-X interaction). Suppose flock Blue is also perturbed because 

a boid from Red is visible to boid X. That means that boid Y, which is not yet participating 

in the interaction (it only sees X), may have already begun adjusting its heading and speed 

in an attempt to stay in formation (to re-stabilize flock Blue). Therefore, by the time flock 

Red begins to interact with boid Y, it has already deviated from its original heading and 

speed. Therefore, the initial heading and speed of boid X is the same as the initial heading 

and speed of flock Blue when the interaction begins, but the initial heading and speed of 

boid Y will be different than that of flock Blue when it begins its interaction with flock 

Red. Thus, the interchangeable property fallacy described Section 5.5.2 (the second way 

of fooling the criteria) cannot occur for the data in Sections 6.2.2 - 6.2.4. It can occur in 

Section 6.2.5, and will be discussed in that section.  

Finally, consider the following example of the notation that will be used in the 

equations in Sections 6.2.2 - 6.2.5: 

 FvB:    𝐿𝐹1,𝑓 = 0.291 + 𝐿𝐹1,0 − 1,682(𝑆𝐹1,0)
6
|𝐻2,0 − 𝐻𝐹1,0| (6) 

In Eq. ((6) the opposing flocks are labelled 1 and 2, where the number 2 corresponds to the 

“other” flock. The equation is labelled FvB to indicate that it is an interaction equation 

between a flock and a randomly selected boid from the other flock. FvF would indicate an 

interaction between two flocks, and the equations would contain only flock-level variables. 

Variables with the subscript F are flock variables, while those without that subscript are 

boid variables. The f subscript means final (with respect to the time-interval in question), 

while the subscript 0 corresponds to the initial value. Therefore, Eq. ((6) is the model for 

the final length of a flock. The final length is given in terms of the initial length of the 
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flock, the initial speed of that same flock, and the absolute value of the difference between 

the initial heading of the flock and the initial heading of a randomly selected boid from the 

opposing flock. Notice that these models assume that the dependent variable is an explicit 

function of other properties/variables (and so, it is an implicit function of time) 

 The notation in the following section will be slightly more descriptive in order to 

facilitate the narrative. Rather than flocks 1 and 2, the flocks will be labelled red and blue 

so that the reader can easily visualize the behavior described by the equations. Also, rather 

than a randomly selected boid, the equations will be based on a specific boid (again, to 

facilitate understanding). 

6.2.1 Stable / Independent 

First, consider the case where two flocks fly away from each other without 

interacting. If two totally independent behaviors satisfy the criteria for emergent behavior, 

then Hypothesis 2 is falsified because if it is not sufficient for interaction detection, then it 

is not sufficient for behavior association, and hence, emergent behavior identification. 

Since both flocks move at a constant speed and heading, it is easy to rewrite the time-

varying position of one flock as a linear function of the other. Therefore, this experiment 

will be conducted using “pencil and paper.” For simplicity, suppose that the two opposing 

flocks are colored red and blue. 

It must be shown that this non-emergent behavior fails to satisfy the numerical 

criteria, otherwise, there is a contradiction. The time-varying positions of the red flock and 

blue flock are given by the following equations, 
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 𝑃𝑦,𝑟𝑒𝑑 = 𝑉𝑦,𝑟𝑒𝑑𝑡 + 𝑃𝑦0,𝑟𝑒𝑑 (7) 

 𝑃𝑦,𝑏𝑙𝑢𝑒 = 𝑉𝑦,𝑏𝑙𝑢𝑒𝑡 + 𝑃𝑦0,𝑏𝑙𝑢𝑒 (8) 

where, 𝑃𝑦 , 𝑉𝑦, 𝑃𝑦0, are the y-position, y-velocity component, and initial y-position of the 

flock, respectively, and t is time. Dividing the red equation by the blue equation we obtain, 

 𝑃𝑦,𝑟𝑒𝑑 − 𝑃𝑦0,𝑟𝑒𝑑

𝑃𝑦,𝑏𝑙𝑢𝑒 − 𝑃𝑦0,𝑏𝑙𝑢𝑒
=
𝑉𝑦,𝑟𝑒𝑑𝑡

𝑉𝑦,𝑏𝑙𝑢𝑒𝑡
 (9) 

Simplifying the equation, and rearranging terms, 

 
𝑃𝑦,𝑟𝑒𝑑 − 𝑃𝑦0,𝑟𝑒𝑑 =

𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
(𝑃𝑦,𝑏𝑙𝑢𝑒 − 𝑃𝑦0,𝑏𝑙𝑢𝑒) (10) 

 
𝑃𝑦,𝑟𝑒𝑑 = (𝑃𝑦0,𝑟𝑒𝑑 −

𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
𝑃𝑦0,𝑏𝑙𝑢𝑒) +

𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
𝑃𝑦,𝑏𝑙𝑢𝑒 (11) 

When the flocks are flying away from one-another and have not interacted, V is constant 

(as are the initial conditions), and so the equation can be rewritten as, 

 𝑃𝑦,𝑟𝑒𝑑 = 𝑐0 + 𝑐1𝑃𝑦,𝑏𝑙𝑢𝑒 (12) 

where c0 and c1 are constants. The same equation can be derived for any boid that is a 

member of the blue flock. Suppose this boid is labelled “1.” Its position is given by, 

 𝑃𝑦,1 = 𝑉𝑦,1𝑡 + 𝑃𝑦0,1 (13) 
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Following the procedure as before, but now using the equation for boid 1, 

 𝑃𝑦,𝑟𝑒𝑑 = 𝑐0 + 𝑐1𝑃𝑦,1 (14) 

Although the constants are different for Eq. (12) and Eq. (14), the forms of each equation 

are the same. Thus, they have the same time complexity, C𝑇  =  O(nlogn), due to the single 

multiplication, and the error of both equations is the same, RMSE = 0. Using the “weak 

association” formulation of Hypothesis 2, since the flock properties are as closely 

associated to one-another as the red flock property is to the boid 1 property (rather than 

more closely), then the flocks do not directly interact using this property, and so the position 

of the flock is not an emergent property. This result is important because it shows that two 

totally independent properties do not qualify as emergent properties under Hypothesis 2.288 

Thus far, Hypothesis 2 is supported. 

 
(a) 

 
(b) 

Figure 47 – Analytical test of Hypothesis 2 (a) SISSO time series input training data 

(b) SISSO settings file 

This analytical test can also be performed using SISSO with the velocities and 

positions as input variables (recall that the velocity is constant throughout). The interested 

                                                 
288 Or perhaps this works because the equations are linear. Section 6.2.3 will test whether or not this extends 

to non-linear cases. 
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reader can verify the forthcoming calculations using the data in the screenshots of the input 

files provided in Figure 47 below.The result returned by SISSO, depicted in Figure 48, is 

the equation: 

 𝑃𝑦,𝑟𝑒𝑑 = 1.124 − 4.6679(𝑉𝑦,𝑟𝑒𝑑 + 𝑃𝑦,𝑏𝑙𝑢𝑒𝑉𝑦,𝑏𝑙𝑢𝑒) (15) 

Observe that, 

 
−4.6679 =

𝑉𝑦,𝑟𝑒𝑑
𝑉𝑦,𝑏𝑙𝑢𝑒
2⁄  (16) 

 
1.124 ≅ − (

𝑉𝑦,𝑟𝑒𝑑
𝑉𝑦,𝑏𝑙𝑢𝑒
⁄ )

2

−
𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
⁄ 𝑃𝑦0,𝑏𝑙𝑢𝑒 + 𝑃𝑦0,𝑟𝑒𝑑 (17) 

Substituting these equations into the solution SISSO yields, 

 
𝑃𝑦,𝑟𝑒𝑑 = −(

𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
)

2

−
𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
𝑃𝑦0,𝑏𝑙𝑢𝑒 + 𝑃𝑦0,𝑟𝑒𝑑 +

𝑉𝑦,𝑟𝑒𝑑

𝑉𝑦,𝑏𝑙𝑢𝑒
2 (𝑉𝑦,𝑟𝑒𝑑

+ 𝑃𝑦,𝑏𝑙𝑢𝑒𝑉𝑦,𝑏𝑙𝑢𝑒) 

(18) 

which simplifies to Eq. (12). Note that although the equation is exact, SISSO reports an 

RMSE of 1.217E-15, which is around the limit of machine accuracy (double precision 

floating point arithmetic in this case). 



 233 

 

Figure 48 - Analytical test of Hypothesis 2, SISSO output file (1D descriptor) 

Clearly in this case, SISSO did not find the same functional form as the analytical case 

(prior to simplification). This has significant consequences on the naïve calculation of time 

complexity from SISSO outputs. The SISSO result contains two multiplications whereas 

the manually-derived example above only has one. Therefore, SISSO cannot necessarily 

be relied on to find the simplest form of an equation from a time-complexity standpoint 

with a naïve input file. 

Despite that drawback, there are four justifications for using SISSO in this thesis. 

First, constant inputs are a pathological example for SISSO, and the studies in this thesis 

will not use constant-value input.289 Second, the strict interaction criteria uses Pareto Fronts 

to compare the time complexity of equations. Although it is possible for SISSO to produce 

a Pareto Front of overly-complex equations, it probably will not to do this for all results.290 

Furthermore, since all analyses are proceeding through SISSO, whatever bias SISSO 

introduces into the complexity of the equations will be applied systematically across all 

results, and can be corrected with further study. Third, this uniqueness problem, wherein 

the most accurate model can be written multiple ways, is a fundamentally inescapable 

                                                 
289 It won’t necessarily crash the program, but experience suggests it was not designed for such cases. 
290 This is a judgment call. 
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problem, as described in Section 2.2. Therefore, even programs designed for time-series 

studies such as PySINDy cannot fully escape this limitation. Fourth, the result in Eq. (18) 

is due to SISSO overcompensating for the initial conditions. The initial condition can be 

subtracted out of the time-series, as shown in Figure 49, 

 

Figure 49 – Input training data (minus initial conditions) 

SISSO then obtains the result (see also Figure 50),  

 𝑃𝑦,𝑟𝑒𝑑 = −0.9336𝑃𝑦,1 (19) 

The intercept is understood to be equal to zero despite the round-off error.  

 

Figure 50 – SISSO output file (minus initial condition) 

Notice that the coefficient can be rewritten as the ratio of velocities, 
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−0.93358 =

𝑉𝑦,𝑟𝑒𝑑
𝑉𝑦,𝑏𝑙𝑢𝑒
⁄  (20) 

Therefore, SISSO has obtained Eq. (10), which has the same fitting error as Eq. (12), and 

simplifies to Eq. (12) when the initial conditions are reintroduced. SISSO results can be 

used to obtain a good initial guess at the form of a function, and although the form of the 

function is not unique, there are multiple forms of the same function that have the same 

computational complexity (e.g. multiple ways to write an expression of associative terms). 

If needed, a user may find it possible to further simplify the equation produced by SISSO 

by hand, or with their own computer program.291 

 Going back to analytical derivations, consider the cases of properties that remain 

constant when the flock is stable and not interacting. In this case, suppose a boid belonging 

to the red flock is denoted with subscript i, while a boid belonging to the blue flock is 

denoted with subscript j. Since all boids have the same base speed, the velocity equations 

can be written as a set of three vector equations (the relationship between the two boid-

level variables is implied): 

 

  {

�⃗� 𝑟𝑒𝑑,𝑖 = �⃗� 𝑟𝑒𝑑,𝐹

�⃗� 𝑏𝑙𝑢𝑒,𝑗 = �⃗� 𝑏𝑙𝑢𝑒,𝐹

�⃗� 𝑟𝑒𝑑,𝐹 = R�⃗� 𝑏𝑙𝑢𝑒,𝐹

 (21) 

where the F subscript is added to distinguish the flock’s velocity from the velocity of its 

boids, V is the velocity, the arrow over the V indicates that it is a vector, and R is a constant 

                                                 
291 Time does not permit developing a rigorous algorithm for that purpose (some obvious simplifications, 

such as terms that reappear in the equation, have been taken into consideration). 
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2x2 rotation matrix. As before, Hypothesis 2 is supported (the equations have the same 

RMSE and CT, and so the numerical criteria do not find an emergent behavior). However, 

these equations bring up a broader issue that is not explicitly dealt with in the numerical 

criteria. The flock velocity is a linearly computed property as shown in the following 

equation, 

 
�⃗� 𝑟𝑒𝑑,𝐹 =

1

𝑛
∑�⃗� 𝑟𝑒𝑑,𝑖

𝑛

𝑖=1

 (22) 

In terms of the manner in which �⃗� 𝑟𝑒𝑑,𝐹 is computed, the equation for �⃗� 𝑟𝑒𝑑,𝐹 is never 

identical to the properties of the boids (it is a multivariable equation that cannot be 

simplified into an exact copy of the corresponding boid-level equation). However, when 

the flock is stable and non-interacting, its numerical values are identical to the speed and 

heading of the boids. Therefore, on quantitative grounds, one could write, 

 
∃ 𝑡∗ 𝑠. 𝑡. ∀ 𝑖 ∈ [1, 𝑛]  {

�⃗� 𝑟𝑒𝑑,𝐹 = �⃗� 𝑟𝑒𝑑,𝑖 𝑡 ≥ 𝑡∗

�⃗� 𝑟𝑒𝑑,𝐹 ≠ �⃗� 𝑟𝑒𝑑,𝑖 𝑡 < 𝑡∗
 (23) 

where n is the number of boids in the red flock. In other words, there exists a time interval 

(any interval of stable flight beginning at t*) where the heading of the flock is equal to the 

heading of any member boid (thereby also being directly proportional to the heading of 

any boid in the opposing flock), and there exists another time interval in which the headings 

are strictly not equal to each other. Therefore, for some time intervals, linearly computed 

properties can be quantitatively indistinguishable from boid-level properties. This thesis 

will take the position that, since the equations are known to be different a priori, the 
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velocity of the flock is not equivalent to the velocity of the boid (therefore, velocity satisfies 

both distinctiveness criteria). It is left to the user of these numerical criteria to beware of 

this potential ambiguity when analyzing quantitative data. However, as with position, since 

the RMSE and CT of the various equations are the same, the numerical criteria find that 

this is not an emergent behavior during this time interval. 

Not all properties have this ambiguity. Slope is a property of the flock (i.e. the self-

organized object). A slope is mathematically undefined for a boid (a single point), and so 

it passes the distinctiveness test, but fails the interaction test (RMSE, CT) and cannot be 

considered an emergent behavior during this time interval. This means that although the 

slope is a valid geometric property, it does not appear to serve a purpose, and so, is not 

emergent. Strictly speaking, boids do not have a length, but it is not difficult to imagine 

that since a one-dimensional point can be embedded in a two-dimensional space then a 

boid has a length equal to zero. Stretching the imagination in this way, however, will not 

be explored in this thesis. What is more important is that length, like slope, is constant 

during stable flight, and so the equations relating it to the length of the opposing flock, or 

perhaps the speed of the opposing boids292 will have the same RMSE and CT. Therefore, 

these properties do not satisfy the interaction criteria, and are not considered emergent 

behavior during this time interval. 

To be clear, saying that these properties “are not considered emergent behavior 

during this time interval” should be interpreted to mean that the numerical criteria do not 

                                                 
292 Since the approach in this thesis does not constrain the coefficients of the equations in any particular way, 

it is possible to write an equation where the length of the red flock is directly proportional to the speed of the 

opposing boid (since both are constant). The only difference between this and the relationship between the 

lengths of the two flocks is the units of the leading coefficient (and the amount of credulity). 
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detect an emergent behavior. Whether or not a property is an emergent behavior293 is not 

solely a consequence of the time-interval during which it was detected. 

6.2.2 Interaction Phase Data 

The interaction phase begins once a boid from one flock can see any boid from the 

other flock. The behavior rules will cause this boid to begin to adjust its position, and as 

more boids enter into view, each flock will destabilize further and their respective shapes 

changes over time. Although cases where the flocks separate (even for a single iteration) 

are omitted, some perturbations may be so severe that the flock can no longer be referred 

to as a straight line. A flock is classified as line because of its initial and final shape over 

the course of the simulation, not this time interval. Therefore, this interval is best 

understood as the interval in which a flock experiences a destabilizing perturbation, and 

ending with the flock in a destabilized form. The numerical criteria were not intended to 

focus solely on this time interval because a change in property is only meaningful after the 

flock has resumed its original shape (within the confines of the ontology in this thesis)294 

but it is informative to see how they respond to this subset of the data. For the purposes of 

generating equations, only boids that actually participate in the interaction are considered 

for FvB equations. 

Of the six properties considered here, only speed (the norm of the flock velocity) 

has Pareto Fronts that dominate their FvB counterparts on the training data set and the 

                                                 
293 The terms property and behavior are used interchangeably for simplicity. Any time-varying property can 

be an emergent behavior. See Section 2.3. This thesis does not examine the case of constant properties. 
294 Yet another simple (albeit morbid) analogy: the logic is that if two people eat food, but one of those two 

eats food that is poisonous, one must wait until after the food works through their bodies to determine whether 

it is appropriate to continue referring to each person as a person rather than a corpse. The end-state of the 

system must possess some crucial quality to prove that it persists. Here that quality is a linear arrangement. 
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testing data set (see Figure 54). In a careless application of the numerical criteria, this 

would be taken to mean that an emergent behavior has been found (a false positive). 

Nevertheless, this would appear to be reassuring because speed can only be affected by 

interactions, and since multiple boids are simultaneously involved, one would expect it to 

become impossible to accurately model the change in flock speed as a function of any 

single boid’s behavior from the opposing flock. According to this line of reasoning, the 

results from the numerical criteria present a false-positive suggesting that the criteria, as 

presented in CHAPTER 4, are not sufficient (more conditions are needed to avoid false 

positives). In addition to this, one of the models in the FvF Pareto Front of Figure 54b 

presents a peculiar case not previously considered: 

 FvF:    𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = −0.06 + 0.005(𝑀𝐹1,0 +𝑀𝐹2,0 + |𝑀𝐹1,0 −𝑀𝐹2,0|) (24) 

This can be rewritten as an implicit function with quadratic length terms, or, more 

interestingly, as a piecewise continuous function, 

 
FvF:    𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = {

−0.06 + 0.01𝑀𝐹1,0 𝑀𝐹1,0 ≥ 𝑀𝐹2,0

−0.06 + 0.01𝑀𝐹2,0 𝑀𝐹1,0 < 𝑀𝐹2,0
 (25) 

What Eq. (25) reveals, which Eq. (24) quite effectively masks, is that it is possible to obtain 

a model that satisfies the definition of an interaction equation for one part of its domain, 

while appearing to violate that definition in another part. The portion of the equation given 

by −0.06 + 0.01𝑀𝐹1,0 would completely violate the definition of an interaction equation 

were it not for the condition that 𝑀𝐹1,0 ≥ 𝑀𝐹2,0. Setting aside the question of whether it 

makes sense that the values of the initial slopes of the two lines should fully explain the 
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subsequent change in their lengths,295 this possibility further adds to the difficulties of 

finding an emergent behavior model. Since the piecewise defined function cannot eliminate 

MF2,0 completely from the equation, it pushes the definition of an interaction equation to a 

very interesting extreme. It remains to be determined in some future study, whether the 

definition of an interaction provided in this thesis is robust enough to be used as it has. 

Nevertheless, since this special case does not completely eliminate the variable due to the 

other flock, MF2,0, from the equation, there is no need to discard the current definition of 

an interaction equation just yet. 

Heading, like speed, only varies during interactions. However, heading displays the 

exact opposite result (Figure 55). Although it is not beyond reason to suppose that a single 

boid can heavily influence the heading of the flock, it seems odd that models built with the 

properties of a single, randomly-selected boid have more explanatory power than models 

built from flock-level variables. Perhaps the variability in heading among boids in the 

opposing flock is too small to make a difference in the error of the model. Nevertheless, 

this piece of information should be kept in mind as the analysis progresses. Consider also 

the equations for the single-point Pareto Fronts in Figure 55b. 

 FvF:    𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.135 + 0.040|𝑛𝐹2𝐻𝐹1,0 −𝑀𝐹1,0 + 𝐻𝐹2,0| (26) 

 FvB:    𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = 0.141 − 0.032|𝑛𝐹1𝐻2,0 −𝑀𝐹1,0 + 𝐻𝐹1,0| (27) 

                                                 
295 In practice, such an equation would have to be tested empirically, or, due the scope of this thesis, more 

simulations. It is not essential for the purposes of testing either hypothesis because the underlying argument 

is that the proper selection of variables will have a bigger impact on RMSE and CT than the form of the 

equation (given that SISSO can obtain a wide range of functional forms). 
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Note that the variable n is the number of boids in the flock. These equations are striking in 

their similarity and apparent symmetry (from the sign flip, to the arrangement of terms). 

Even more remarkable is that a similar result appears in a different time interval (see 

Section 6.2.5 and 6.2.6 for more discussion). 

Besides the heading and speed, the position variables, which are the integrals of the 

velocity vector components, do not consistently show either result (the x-position shows 

weak non-dominance, while in the y-position the FvB models strongly dominates the FvF 

models). This thesis does not take a stance on whether the integral of an emergent behavior 

is also an emergent behavior (or its derivative, for that matter). This is an important 

question to answer once a criteria for emergent behavior detection have been established. 

For now, it suffices to test whether these findings contradict the definitions provided here. 

This observation does not present any obvious contradiction to the criteria. Another 

important factor to consider is whether the criteria are adequate for testing vector-valued 

properties. Since the two position components falsify the criteria in different ways (as 

opposed to consistently) then it is unclear how the vector-valued property should be 

labelled (weakly non-dominating versus dominated). Furthermore, since speed and 

heading are scalars, it is not obvious that converting them back to velocity vector 

components would provide useful information. Consider also that speed and heading are 

two scalars, and so can be formulated as a vector (or at least as a point in two-dimensional 

space). Would the combination of a property that satisfies the criteria and a property that 

fails the criteria produce a vector that satisfies the criteria? Is the fact that speed satisfies 

the criteria enough to argue that velocity is an emergent behavior? These challenges do not 
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falsify any hypothesis in general, but certainly shows that there may be a limitation when 

it comes to vector-valued properties. 

The FvF models for slope dominate the FvF models over the training data, but not 

the test data. Although all the models experience a significant increase in error on the test 

data, it seems that one FvB model remains accurate enough to disqualify this property from 

being considered an emergent behavior within the context of this time interval. The 

behavior of the models for flock length are a bit more nuanced, but the ultimate conclusion 

is the same. Since the time interval is inappropriate for emergent behavior testing, the only 

significance of this finding is that the geometric properties one might expect to stand out 

do not necessarily do so. Thus far, the numerical criteria do not have an obvious bias toward 

any particular property. Naturally, this raises the question of whether the numerical criteria 

are capable of finding anything at all, but that question cannot be addressed with this data 

alone. 
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(a) 

 
(b) 

Figure 51 – Pareto optimal flock x-displacement models due to interaction (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 52 – Pareto optimal flock y-displacement models due to interaction (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 53 – Pareto optimal flock length models due to interaction (a) training data 

(b) test data 
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(a) 

 
(b) 

Figure 54 – Pareto optimal flock speed models due to interaction (a) training data 

(b) test data  
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(a) 

 
(b) 

Figure 55 – Pareto optimal flock heading models due to interaction (a) training data 

(b) test data 
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(a) 

 
(b) 

Figure 56 – Pareto optimal flock slope models due to interaction (a) training data (b) 

test data 
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6.2.3 Re-stabilization 

As with Section 6.2.1, if the numerical criteria suggest that an interaction has 

occurred, then Hypothesis 2 is falsified because there is no interaction between flocks 

during this phase. In other words, the question answered here is whether spurious296 

regressions satisfy the numerical criteria. For all but one of the properties, the FvF models 

dominate the FvB models, therefore, the hypothesis is in fact falsified. This means that 

criteria must be added that specify the time interval over which the sampling must occur. 

Although these were not explicitly stated in the criteria, this was expected. Therefore, the 

recommendation to add such criteria will be made later in this document, and this analysis 

will proceed in search of more interesting ways to falsify Hypothesis 2. 

 Unlike Section 6.2.2, the FvF models of the x-coordinate dominate the FvB models. 

The discrepancy between the result for the x-coordinate and the y-coordinate remains. 

However, this time the y-coordinate FvB model causing this result exhibits the same odd 

behavior seen in Eq. (24). 

FvB: 𝑃𝑦𝐹1,𝑓 − 𝑃𝑦𝐹1,0 = −50.36 + 10.1(𝐻2,0 + |𝐻2,0 −𝑀𝐹1,0|) (28) 

FvB: 𝑃𝑦𝐹1,𝑓 − 𝑃𝑦𝐹1,0 = {
−50.4 + 10.1𝑀𝐹1,0 𝑀𝐹1,0 ≥ 𝐻2,0

−50.4 + 10.1(2𝐻2,0 +𝑀𝐹2,0) 𝑀𝐹1,0 < 𝐻2,0
 (29) 

When the H2,0 variable is eliminated from the equation, the FvB equation no longer 

qualifies as an interaction. Note, also, that the constant in this equation is -50.4, which is 

                                                 
296 Spurious in the sense that it is not an emergent behavior. The regression found by SISSO may, in fact, be 

predictive (i.e. not spurious in the usual statistical sense). 
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approximately half of the entire spatial domain. Since the domain of the angular variables 

is [0,2π), this equation covers the entire y-domain of (-50.5, 50.5).297 The RMSE in the y-

coordinate (see Figure 58) raises the question of whether the Pareto Front is the correct 

approach to take, not because the magnitude of the error is high (although that is 

problematic for other reasons), but because, in principle, the Pareto Front can include 

models whose errors are arbitrarily high. SISSO performs the task of filtering out absurd 

models (based on the training data set), so this extreme cannot be reached given the tools 

used in this thesis. Therefore, the symbolic regression tool is at least as important as the 

Pareto Front itself. Returning to the errors, note that there are very few points in the x-

coordinate plots (Figure 57). Most of the results produced on this training data set were 

discarded because their maximum absolute error on the test data set was unacceptable 

(some errors in position exceeded the size of the domain itself). This additional precaution 

is taken in every data set presented in this chapter. Therefore, the Pareto Front can be used 

as a mechanism for studying families of models, so long as additional steps are taken to 

filter invalid candidates. 

In this time interval, the models for length exhibit a new noteworthy feature. For 

the length models, the FvB Pareto Front appears to be weakly non-dominating with the 

FvF Pareto Front due to its leftmost point (Figure 59). The relevant equations produced by 

SISSO (appear in the O(nlogn) category models in Figure 59b) are: 

                                                 
297 Values exceeding either limit are understood to be “wrapping around” the domain. The data was manually 

“unwrapped,” and so “re-wrapping” must be done manually. On second thought, a re-parametrization of the 

spatial domain would have probably resulted in much friendlier equations. Also, a deep dive into the Netlogo 

documentation is required to determine whether the upper or lower bound is closed. That detail was not a 

problem in this analysis because the boids only cross the boundary once (imposed by the time-interval/speed). 
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FvB: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.291 − 1,682(𝑆𝐹1,0)
6
|𝐻2,0 − 𝐻𝐹1,0| (30) 

FvF: 

(sim) 

 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.866 − 14,938(𝑆𝐹1,0)
6
(
𝑆𝐹2,0

𝑆𝐹1,0
⁄ )

𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.866 − 14,938(𝑆𝐹1,0)
5
𝑆𝐹2,0

} (31) 

 

In the case of Eq. (31), SISSO did not fully simplify the equation, which introduced an 

extra division operation into the equation. The manually simplified result is indicated as 

(sim). After simplification, it becomes clear that the FvF models dominate the FvB models. 

Although both models have a nonlinear term with a large exponent, which is typically a 

cause for concern in engineering modeling scenarios, the massive coefficient in Eq. (31) is 

particularly alarming (again, based on experience).298 Since this is only one of a full set of 

equations, and the claim of emergent behavior is based on the efficacy of the full set, this 

does not falsify any hypothesis. Furthermore, any model of a physical system needs to be 

validated, so the fact that its coefficients vary wildly in their magnitude is not, in and of 

itself, the primary driver for any particular action. Nevertheless, an extension of this 

method to a real-world test case would probably do well to include additional reports on 

the range of magnitudes of the coefficients in the equations, as such reports would help 

subject matter experts quickly identify problematic models. 

 Regarding slope (Figure 62), one of the models that is contained in both the training 

set and testing set Pareto Fronts contains a problematic feature that can be used to 

disqualify it as a viable model without generating new simulation or experimental data. 

                                                 
298 The large coefficient in Eq. (30) is not much better. 
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FvF: 𝑀𝐹1,𝑓 −𝑀𝐹1,0 = 1.51 − 0.6658(𝑀𝐹1,0𝑆𝐹1,0)√𝑀𝐹2,0 (32) 

The model in Eq. has RMSE = 0.462 on the training set, and RMSE = 0.42 on the test set. 

The square root term in Eq. (32) indicates that whenever the initial slope of the opposing 

flock is zero (i.e. a vertical line), the change in the flock’s slope will always be 1.51 radians. 

There is no reason to believe such a result, because there is nothing special about a vertical 

flock. If this point were to be removed from the data set (as it would in practice), then the 

FvB and FvF Pareto Fronts are weakly non-dominating. This does not change the 

conclusions drawn from this section because the other data in this section already falsified 

Hypothesis 2.299 What this does show, however, is that the models generated by a symbolic 

regression tool must be approached with skepticism. Although these tools are useful and 

powerful, they are capable of finding models that are nonsensical even on a purely abstract 

problem such as this. Therefore, the user attempting to implement the method in this thesis 

(or some variant of it) must include an additional mechanism for removing such models 

from the set of candidate models.300 

 For this time interval, the speed plots (Figure 60) greatly resemble those of the 

interaction phase (Figure 56). Given that no interaction is occurring here (between flocks), 

it is clear that some criteria needs to be added that guarantees the time interval under 

consideration is appropriate (otherwise, many irrelevant nonlinear behaviors will appear to 

                                                 
299 It will be retained in the results for the sake of consistency. 
300 Based on this observation, one suggestion would be to iteratively substitute the minimum and maximum 

value of each variable into the equation to see what happens. Zeros are a great way to find breaking points. 
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be emergent behaviors). Note that there are only three models for speed that fall into the 

O(nlogn) complexity bin. 

FvF: 𝑆𝐹1,𝑓 − 𝑆𝐹1,0 = 0.043 − 26.66(𝑆𝐹1,0)
4
 (33) 

FvF: 𝑆𝐹1,𝑓 − 𝑆𝐹1,0 = 0.074 − 4.13(𝑆𝐹1,0)
2
√𝑆𝐹1,0 (34) 

FvF: 

𝑆𝐹1,𝑓 − 𝑆𝐹1,0 = 0.073 − 4.15(𝑆𝐹1,0)
2
√𝑆𝐹1,0… 

…+ 1.96 × 10−4
𝐻𝐹2,0

𝑆𝐹2,0(𝐻𝐹2,0 −𝑀𝐹1,0)
… 

…+ 4.67 × 10−4
𝑀𝐹1,0 +𝑀𝐹2,0

|𝑀𝐹1,0 − 𝐻𝐹2,0|
 

(35) 

Equations (33) and (34) are Pareto Optimal models. However, neither model qualifies as 

an interaction equation, and so cannot function as an emergent behavior equation. Once 

again, the results of the symbolic regression tool cannot be accepted blindly. 

Due to the manner in which the FvF heading models dominate the FvB models, and 

the preceding discussion, there is no need to discuss the data beyond the single FvF Pareto 

Optimal point in Figure 61b. 

FvF: 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = 0.104 − 0.067
𝐿𝐹2,0

𝐿𝐹1,0(𝐻𝐹1,0 − 𝐻𝐹2,0)
 (36) 

Eq. (36) presents the very interesting case of an equation that diverges. If two flocks were 

initialized such that one flock was directly behind the other, given the same heading, and 
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the lead flock was visible to the aft flock, the change in heading is mathematically 

undefined according to this equation. There are at least two possible ways to arrive at this 

result in an ordinary simulation. First, there is the “miraculous” scenario. The probability 

of obtaining exactly two linear flocks with the same heading experiencing an interaction 

from a random initialization is zero (called miraculous because there are infinitely many 

more alternatives). Second, there is the spurious scenario. It is certainly possible that a 

randomly initialized scenario, with a sufficient number of boids, will have so many boids 

in one place that one could draw lines through two sets of boids such that an analyst might 

think this equation applies. In other words, it might seem as though there are two linear 

flocks, one right behind the other seeming to interact, inside a larger wave of boids. If, by 

a statistical miracle, the first case occurred, this equation could not predict a meaningful 

outcome (any outcome can be justified due to division by zero). If the second scenario 

occurred, it would be possible to incorrectly assume the presence of interactions between 

lines contained inside the larger, self-organized group, and assign arbitrary outcomes to 

those interactions. Either case would make undermine the finding of an emergent behavior. 
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(a) 

 
(b) 

Figure 57 – Pareto optimal flock x-displacement models due to re-stabilization (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 58 – Pareto optimal flock y-displacement models due to re-stabilization (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 59 – Pareto optimal flock length models due to re-stabilization (a) training 

data (b) test data 
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(a) 

 
(b) 

Figure 60 – Pareto optimal flock speed models due to re-stabilization (a) training 

data (b) test data  
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(a) 

 
(b) 

Figure 61 – Pareto optimal flock heading models due to re-stabilization (a) training 

data (b) test data 
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(a) 

 
(b) 

Figure 62 – Pareto optimal flock slope models due to re-stabilization (a) training 

data (b) test data 
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6.2.4 Interact. / Re-stab. Phase Data 

Over this time interval, only the FvF models for length, speed, and slope dominate 

the FvB models. Since this is the time interval for which the criteria were originally 

intended, this means that the criteria have identified three behaviors as emergent behaviors. 

It is reassuring that two of the three behaviors pertain to the geometry of the flock, while 

the third is a property impacted directly by interactions. Although some of the models 

obtained for these properties (including some Pareto Optimal models) do exhibit issues 

seen in previous time intervals (Sections 6.2.2 - 6.2.3), only the equations for length, and 

slope would change the Pareto optimality determination if they were disqualified as 

models. The equations for slope are: 

FvF: 𝑀𝐹1,𝑓 −𝑀𝐹1,0 = 0.09 + 0.0156𝐷𝐹,0𝐻𝐹2,0(𝐻𝐹2,0 −𝑀𝐹2,0) (37) 

FvF: 𝑀𝐹1,𝑓 −𝑀𝐹1,0 = −0.214 + 132.7
𝐿𝐹2,0𝐻𝐹1,0

(𝑀𝐹1,0)
6  

(38) 

The variable 𝐷𝐹,0 in Eq. (37) represents the initial distance between flocks when the 

interactions begin. The equations for length are: 

FvF: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.163 − 0.127
𝐷𝐹1,0𝑀𝐹2,0

𝑛1𝑛2
 (39) 

FvF: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.208 − 0.197
𝐿𝐹1,0𝑀𝐹2,0

(𝑛1)2
 

(40) 

The variables n1 and n2 represent the number of boids in each flock. Whether or not these 

results withstand scrutiny will be discussed in Section 6.2.6. 
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(a) 

 
(b) 

Figure 63 – Pareto optimal flock x-displacement models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 64 – Pareto optimal flock y-displacement models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 65 – Pareto optimal flock length models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 66 – Pareto optimal flock speed models due to interaction and re-

stabilization (a) training data (b) test data  
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(a) 

 
(b) 

Figure 67 – Pareto optimal flock heading models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 

Figure 68 - Pareto optimal flock slope models due to interaction and re-stabilization 

(a) training data (b) test data 
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6.2.5 Full Time-Series Data (H2 property interchangeability) 

The previous phase (Section 6.2.4) begins when the flock first begins to interact, 

and ends immediately once the flock has returned to a stable configuration. The time 

interval presented here, however, is the full time series (iteration 1 to 400). The key 

difference between these two is that, at iteration #1, the flocks are all stable, and so the 

heading and speed of the flock is numerically equal to the heading and speed of its boids. 

This presents the opportunity to (incorrectly) treat the variables as though they were 

interchangeable (the second test discussed in Section 5.5.2), thereby testing the numerical 

criteria’s ability to produce a false positive. 

Consider some of the Pareto Optimal equations for the heading of the flocks (see 

Figure 72b). The equations corresponding to the O(nlogn) category models are: 

FvF: 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.11 + 0.036|𝑛2𝐻𝐹1,0 −𝑀𝐹1,0 + 𝐻𝐹2,0| (41) 

FvB: 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = 0.159 − 0.037|𝑛1𝐻2,0 −𝑀𝐹1,0 + 𝐻𝐹1,0| (42) 

FvB: 

(sim) 

 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.22 + 0.104|(𝐻2,0 + 𝐻𝐹1,0) − (𝑀𝐹1,0 − 𝐻𝐹1,0)|

𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.22 + 0.104|𝐻2,0 + 2𝐻𝐹1,0 −𝑀𝐹1,0|
} (43) 

 

Three pieces of information stand out right away. First, these equations are nearly identical 

to the heading equations found during the interaction phase in Section 6.2.2. Second, these 

equations suffer from the interchangeability fallacy in discussed in Section 5.5.2. Third, 

there is a simplification for Eq. (43) that raises another important consideration for the 

calculation of computational complexity used in this thesis. 
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 First, on the subject of the similarity, note that the only difference between Eq. (41) 

and Eq. (26) are the coefficients, and even then, the difference between coefficients is less 

than a factor of 25%. The same is true for Eq. (42) and Eq. (27). A FvF equation like Eq. 

(41) appeared in the Pareto Front of the interaction/re-stabilization data (Section 6.2.4), but 

was not discussed because the Pareto Front was dominated by the FvB model. The FvB 

Pareto Front did not contain an equation like Eq. (42), nor did SISSO produce a stand-

alone equation similar to Eq. (43).301 These equations did not appear in the SISSO results 

for re-stabilization (Section 6.2.3). So it seems that flock-level heading during any time 

interval containing the interaction phase can be somewhat well represented by this 

equation. It also seems that the equation outperforms the FvB models over the time 

intervals that are not appropriate for the numerical criteria. To put it in layman’s terms, it 

would seem that this equation is very good at being wrong (or at least very good at being 

counter-intuitive). However, it is too early to draw any conclusions from this observation. 

 Second, these equations suffer from the interchangeability fallacy. Recall from Eq. 

(21) obtained in the stable time interval (Section 6.2.1), that one can write, 

 

  {

𝐻𝐹1 = 𝐻𝑖
𝐻𝐹2 = 𝐻𝑗
𝐻𝐹1 = c𝐻𝐹2

 (44) 

provided that the headings are constant throughout the entire time interval.302 Suppose, 

now, that the simulation domain was infinite, rather than finite and periodic (for ease of 

exposition). Eq. (44) would be valid for all time before the interaction, and for all time after 

                                                 
301 Eq. (43) did appear as a term in a larger non-linear equation. 
302 For clarity: Hi is the heading of any boid contained in Flock 1. The heading of Flock 1 is given by HF1. 



 270 

the re-stabilization except that each time interval would have a different constant as shown 

in the following equation, 

 

  

{
 

 
𝐻𝐹1 = 𝐻𝑖
𝐻𝐹2 = 𝐻𝑗

𝐻𝐹1 = 𝑐0𝐻𝐹2 ∀ 𝑡 < 𝑡𝐼
𝐻𝐹1 = 𝑐𝑓𝐻𝐹2 ∀ 𝑡 > 𝑡𝑅

 (45) 

where t is time, the subscript I refers to the beginning of the interaction time interval, and 

the subscript R refers to the end of the re-stabilization time interval, and the subscripts 0, f 

simply distinguish the two constants. What all this means is that Eq. (41) shown below, 

FvF: 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.11 + 0.036|𝑛2𝐻𝐹1,0 −𝑀𝐹1,0 + 𝐻𝐹2,0|  

can be replaced with, 

BvF: 𝐻1,𝑓 − 𝐻1,0 = −0.11 + 0.036|𝑛2𝐻𝐹1,0 −𝑀𝐹1,0 + 𝐻𝐹2,0| (46) 

where H1 is understood to mean the heading of a boid contained in Flock 1. In fact, any 

substitution between boid and flock could be performed throughout the equation. 

BvB: 𝐻1,𝑓 − 𝐻1,0 = −0.11 + 0.036|𝑛2𝐻1,0 −𝑀𝐹1,0 + 𝐻2,0| (47) 

FvB*: 𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = −0.11 + 0.036|𝑛2𝐻1,0 −𝑀𝐹1,0 +𝐻2,0| (48) 

Based solely on the quantitative data, Eq. (41) and (46) – (48) have the same RMSE and 

CT. Note the result for FvB*. In this equation, all inputs that could be replaced were 

replaced. The slope cannot be replaced by a boid-level property. Therefore, while it is 
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possible to replace the dependent variable (under the basic premise of the 

interchangeability fallacy), it is not always possible to replace the input variables. 

Therefore, the numerical criteria were not fooled in this case. This confirms, however, that 

the selection of time interval, and the presence of distinct properties in the data set, is 

crucial to a proper implementation of an emergent behavior detection method. 

 Third, notice the simplification of Eq. (43). SISSO did not simplify the 

commutative terms, resulting in an equation where a variable is multiplied by an integer 

coefficient. In the multi-precision framework adopted for this thesis, this extra 

multiplication operation should increase the O(nlogn) complexity of the model. However, 

integer multiplication is really just repeated addition. Therefore, it is actually an increase 

in the O(n) complexity of the model, which is dramatically different. Furthermore, note 

that Eq. (41) – (42) include multiplications between heading and the variable n, which is 

the number of boids in the flock. Clearly, n is an integer. Regardless of how they are written 

(as multiplications between a real number and an integer, or multiple additions of real 

numbers), it turns out that Eq. (41) – (43) all have the same CT. This unforeseen 

circumstance makes clear that estimating the complexity of a model is an inescapably 

nuanced process that demands at least some human judgment if not more research. 

Summarizing these observations about CT, it seems that Kolmogorov complexity’s 

fundamental ambiguity stems from not being able to ever find the shortest possible program 

to produce a desired output. The fundamental ambiguity in the complexity of finite-

precision arithmetic comes from the large number of candidate algorithms that can 

compute the same result, and the various statistics involved in computing their performance 
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(there is no way to decide that one metric is better than the other for all problems).303 

Finally, the fundamental ambiguity in the complexity of multi-precision arithmetic (used 

here) comes from the nature of mathematical representation and the fact that there are 

arbitrarily many ways to write the same expression, in addition to the ambiguity introduced 

by the linear speed-up theorem, and the inability to ever implement a galactic algorithm. 

In other words, when computing CT one must choose between three inescapable 

constraints: (1 – arbitrary programs and Kolmogorov complexity) not knowing the best 

possible algorithm, and therefore, not knowing the exact complexity of that algorithm, (2 

– finite precision arithmetic via any number of algorithms) knowing the algorithms and 

their complexities, but being unable to decide between them because they always trade one 

kind of performance for another, or (3 – multi-precision arithmetic via galactic algorithm) 

knowing the best possible algorithm, but being unable to ever implement it. These are deep 

waters. While each of these approaches exist because they are somehow practical, 

Kolmogorov complexity is clearly the most rigorously defined. The reader interested in 

adapting any of these methods is advised to pick the one they understand the most and 

examine the results of that approach with great skepticism. To this author’s knowledge, 

this topic is not settled in the literature. 

 Now briefly consider the models for length. All of the FvB models in Figure 71b 

build off of the same term. This is typical for a single SISSO output file (though not 

guaranteed to happen), but less common for an entire Pareto Front. 

                                                 
303 Recall the discussions in Section 5.1.3 and the Appendix. 
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FvB: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.28 − 1.122
𝐿𝐹1,0

𝑛1
2  (49) 

FvB: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.20 − 29.96
𝐿𝐹1,0

𝐷0𝑛1
2 

(50) 

FvB: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.29 − 31.06
𝐿𝐹1,0

𝐷0𝑛1
2 − 0.657

cos(𝑀𝐹1,0)

𝐻2,0 − 𝐻𝐹1,0
 

(51) 

FvB: 
𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = −0.24 − 30.73

𝐿𝐹1,0

𝐷0𝑛1
2 − 0.003

exp(𝑀𝐹1,0)

𝐻2,0 − 𝐻𝐹1,0
 

−0.003(𝐻2,0 +𝑀𝐹1,0) sin(𝑀𝐹1,0) 

(52) 

In Eq. (49) - (52), the variable D0 represents the distance between the centroid of the flock 

and the location of the boid, and exp represents the well-known exponential function 

typically expressed as ex. Note that Eq. (49) does not qualify as an interaction equation, but 

it is clear from the complete set of results that this term plays an important role in the 

accuracy of the regression. The fact that the properties of the flock have such a large impact 

on accuracy raises the immediate concern that perhaps all of the models built on it are 

erroneous. The next major improvement in accuracy comes from the introduction of the 

distance term, and that eliminates any doubt that the equations are unreliable because the 

initial positions of the flocks are arbitrary.304 

 A more interesting length equation is one of the FvF Pareto Optimal models: 

                                                 
304 Recall that the decision to omit final values was made in order to avoid systems of coupled equations. 

Examining that possibility is left for future work. 
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FvF: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 0.181 − 0.173
𝐿𝐹1,0𝑀𝐹2,0

𝑛1
2  (53) 

This equation will be discussed in further detail in Section 6.2.6. For now, it suffices to say 

that the MF2,0 term undermines the credibility of this equation because a flock with zero 

slope must induce a constant change in length, which is unconvincing. 

 Speed data is not given for this time interval because it is constant at the beginning 

and end of the simulation. This selection of start and endpoint completely mask the 

interactions that alter the flock’s speed. This highlights the importance of the selection of 

time interval, and suggests that this time interval is inappropriate. This is also an example 

of the “model not existing” during a particular time interval (see Appendix). 

 The slope FvF models are weakly dominated by the FvB models, however, the FvB 

model that causes this is invalid. 

FvB:     𝑀𝐹1,𝑓 −𝑀𝐹1,0 = 0.179 − 0.00005
(𝑀𝐹1,0)

6

𝐻2,0+𝐻𝐹1,0
 (54) 

This equation claims that if the initial slope of the flock is zero, then the final slope must 

be 0.179 radians. This is too strict to accept. Thus, the actual result for this time interval is 

that the FvF models dominate the FvB models. For the sake of consistency, however, the 

discussion in Section 6.2.6 will begin with the results as they appear in the various Pareto 

Front figures. Finally, both position variables show a clear preference for FvF models. All 

of the position models contain transcendental terms or cube roots, suggesting several are 

over fit. This will be compared to the results from other intervals in Section 6.2.6. 
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(a) 

 
(b) 

Figure 69 – Pareto optimal flock x-displacement models over full time interval (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 70 – Pareto optimal flock y-displacement models over full time interval (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 71 – Pareto optimal flock length models over full time interval (a) training 

data (b) test data 
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(a) 

 
(b) 

Figure 72 – Pareto optimal flock heading models over full time interval (a) training 

data (b) test data 
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(a) 

 
(b) 

Figure 73 – Pareto optimal flock slope models over full time interval (a) training 

data (b) test data 
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6.2.6 Critical Analysis of H2-related results 

The results of the Section 6.2.1 – 6.2.5 are summarized in Table 8 below. Position 

variables were omitted from the list of candidate inputs in order to mitigate the issue of 

confounding outputs with upward-caused behavior (i.e. heavily coupled equations). In 

order to focus the reader’s attention and facilitate assimilating the significance of these 

results, the narrative of this section will be presented in a question/answer format. 

Table 8 – Summary of Pareto front comparisons for experiments in Section 6.2 

Interval 

Property 

Stable / 

Independent 

(×,-) 

Interaction 

(×,-,+) 

Re-

stabilization 

(×,-) 

Interact / Re-

stab. (×,-,+) 

Full Time 

Interval (×,-,+) 

∆PxF 

     

∆PyF 

     

∆L 

     

∆SF 

     

∆HF 

     

∆M 

     

What do the columns of Table 8 reveal about the numerical criteria? To 

simplify the notation slightly, the following acronyms will be used: Stable/Independent 

(SI), Interaction (IO for “interaction only”), Re-stabilization (RO), Interact/Re-stab (IR), 

and Full Time Interval (FT). The SI data supports that the numerical criteria are sufficient 
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conditions since they indicate no emergent behavior over a time frame in which no 

interaction occurred. The RO data, however, shows the opposite, thereby falsifying 

Hypothesis 2 that the numerical criteria are sufficient conditions for identifying emergent 

behavior. The only behavior occurring during RO is intra-flock interactions as the boids 

attempt to re-stabilize their flock. This is an example of self-organization, not emergence, 

and yet the criteria would seem to suggest that every property other than PyF corresponds 

to an emergent behavior. This indicates that the numerical criteria are sensitive to nonlinear 

changes in the values of properties, and cannot be applied blindly to just any time interval.  

The IO, IR, and FT data cannot, in and of themselves, falsify Hypothesis 2, but the 

trends across these columns are instructive. First, no single property has a + in all three 

columns, nor is there a pattern of +/-/× for any property. Second, each of three columns 

indicate that no more than 4 properties are an emergent behavior. Whatever their source of 

error may be, the distinction being drawn is more subtle than merely “constant/linear versus 

nonlinear,” as it might seem from comparing SI to RO (a small consolation). 

Do any SISSO models recur in multiple time intervals, and if so, what is their 

significance? This section will focus on the Pareto Fronts obtained for the test data sets, 

and will discuss trends in the forms of the models contained in those Pareto Fronts for each 

variable. The x-coordinate (Px) in the IO, IR, and FT time intervals has FvB and FvF Pareto 

Optimal models that contain sin(HF1,0)
305 as part of the leading term in one or more points, 

and it is in the numerator as one would expect. All models for the FT time interval contain 

the sine term. Neither of the two Pareto Optimal models in the RO time interval contain 

                                                 
305 Recall that the NetLogo coordinate system is not the standard right-handed system. 



 282 

sin(HF1,0). Regarding the y-coordinate (Py) in the IO, IR, and FT time intervals, none of 

the FvF models contain speed as an input variable, whereas in RO all of the FvF models 

contain (SF1,0)
6 in the numerator of the lead term. Models for speed (S) of the form used in 

this thesis can only be generated in the IO, RO, and IR time intervals. All of the FvB and 

FvF models obtained for speed in the RO time interval are univariate functions of the initial 

speed (whether the initial speed of the flock or the opposing boid). All of the FvF and FvB 

models for IO, and IR, on the other hand, are multivariate functions (only some contain 

initial speeds). Thus, Px, Py, and S all exhibit clear differences between the models 

generated for time intervals with interactions (IO, IR, FT), and the time interval lacking 

interactions (RO). 

The flock heading (H) shows a striking trend within the Pareto Optimal models for 

IO, IR, and FT. Specifically, the following equation re-appears in each time series (with 

only slightly different coefficients), 

FvF: 

𝐻𝐹1,𝑓 − 𝐻𝐹1,0 = 𝑐0 + 𝑐1|𝑛2𝐻𝐹1,0 −𝑀𝐹1,0 + 𝐻𝐹2,0| 

𝑐0~− 0.109, 𝑐1~0.036 
(55) 

This error of this equation within the context of the IR time interval is depicted in Figure 

74 below. Figure 74 shows that although Eq. (55) is not yet accurate enough to be useful 

in an engineering context, the errors are spread somewhat evenly across the range of 

prediction (relative to the other models obtained). For readers that might be inclined to 

dismiss this result as terrible, please carefully review Figure 75 in order to get a sense for 

just how pathological the SISSO results can truly be. 
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Figure 74 – Flock Heading Actual versus Predicted plot (interpolation and 

extrapolation data) for Eq. (55) 

Figure 75 shows that there are many ways to be wrong while simultaneously obtaining a 

“reasonable” RMSE. Each of these images is a Pareto Optimal model either from the 

training data set, or both the training and test data sets.306 Compared to those results, Figure 

74 suggests that a useful, predictive model is within reach by building from the nonlinear 

terms and variables in Eq. (55).307,308,309 Now compare the Predicted vs. Actual plots for 

the FvF models in the IR time interval to those of the FvF models in the RO time interval 

(shown in Figure 76 below). 

                                                 
306 Generally there are fewer points in the test data Pareto Fronts because the interpolation points fail to 

extrapolate. 
307  The fact that the equation reappears is also suggestive of the same thing. 
308 Figure 75c is the closest in appearance to Figure 74, but still visibly worse. The two models are different. 
309 Recall that the objective of this thesis requires developing a method for dealing with emergent behavior 

exploitation. The question of “how do I know the exact equation” is a “model discovery” question that has 

been scoped out of this thesis. The goals of this thesis can be achieved without the exact model because the 

upward causation equations are known (this will be explored in CHAPTER 7). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 75 – Flock Heading Actual vs. Predicted plots (interpolation and 

extrapolation data) for IR Pareto Optimal models 

The error distributions in these plots are clearly as bad, if not worse than the errors in Figure 

74 - Figure 75. More importantly, the RO Pareto Optimal equations do not resemble Eq. 

(55), nor the models for the IR time interval in general. While other less common, or even 

unique, models also appear in the Pareto Fronts for IO, IR, and FT, those equations also do 

not resemble the results of the RO models.310 

                                                 
310 Presenting the results here would unnecessarily clutter the document. It suffices to say that SISSO returned 

many different nonlinear forms. 
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(a) 

 
(b) 

Figure 76 – Flock Heading Actual vs. Predicted plots (interpolation and 

extrapolation data) for RO Pareto Optimal models 

In other words, the best-case results for the RO time interval is as bad or worse than the 

results for the IR time interval, and contains models whose form is fundamentally different 

from those of the time intervals with interactions. The results for time intervals with 

interactions is of a quality altogether different than the results from the RO time interval. 

In addition to the FvF models for heading, there is an FvB model that reappears in 

both the FT and IO time intervals (not IR): 

FvB: 

𝐻𝐹1,𝑓 −𝐻𝐹1,0 = 𝑐0 + 𝑐1|𝑛1𝐻2,0 −𝑀𝐹1,0 + 𝐻𝐹1,0| 

𝑐0~0.15, 𝑐1~− 0.035 
(56) 

This FvB equation also differs from its RO counterparts. 

Finally, consider one of the Pareto Optimal models for length (L) in the FT and IR 

time intervals. 
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FvF: 

𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 𝑐0 + 𝑐1
𝐿𝐹1,0𝑀𝐹2,0

𝑛1
2  

𝑐0~0.195, 𝑐1~− 0.185 

(57) 

This result is totally different from the RO Pareto Optimal RO models, all of which contain 

the same speed term raised to the 6th power. 

FvF/FvB: 𝐿𝐹1,𝑓 − 𝐿𝐹1,0 = 𝑐0 + 𝑐1𝑆𝐹1,0
6 𝑓(𝜃)… (58) 

Here, θ is a dummy variable, because the terms that follow are apparently arbitrary 

collections of nonlinear terms that enable the regression. In addition to consistently 

possessing the 6th order term, the coefficients across all of the RO equations vary by 

multiple orders of magnitude suggesting a very poor fit. 

The key takeaway from these results is that for 5 out of the 6 variables311 there is a 

clear trend toward one set of models (and one set of influential variables) in data sets that 

contain interactions versus a totally different trend in the models for the RO data set. 

Qualities that stand out in Pareto optimal models for RO does not appear in IO, IR, and FT, 

and vice versa. Sometimes that quality is the form of the equation, other times it is the 

selection of input variables to the model. The fact that different trends exist in the models 

generated from the two data sets is consistent with the expectation that the results for the 

RO and SI time intervals should be different from the results in the IO, IR, and FT time 

intervals. So while the numerical criteria in their current form fail to invalidate the models 

                                                 
311 Slope has no remarkable similarities or differences in its results. This will be discussed later in this section. 
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for the RO time interval,312 the results obtained by SISSO do reflect the different dynamics 

of those two situations. This can be used to improve the numerical criteria. 

What do the trends in models across time intervals suggest about the 

implementation of the numerical criteria? Since this work takes the stance that the 

system of interest is a self-organized system, and since periods of stable, independent 

behavior do not qualify as time intervals for emergent behavior detection, the most 

appropriate time interval for the numerical criteria is the IR time frame.313 However, this 

immediately suggests that the numerical criteria are only necessary conditions. In order to 

implement an emergent behavior detection scheme properly, it is clear that two additional 

pieces of information must be tracked: (a) the types and durations of system-level 

interactions, and (b) the time required for the perturbed system to re-stabilize.  It may even 

be possible, in some special cases, to turn emergent behavior detection into an inverse 

design problem by examining the perturbations of the system and how they disrupt or 

change the periodic interactions between components.314 For example, if the coefficients 

of the periodic function change, that may be used to infer the form of the system property 

and reverse-engineer the changes to the system property. At a minimum, perturbations of 

the system can be used as a preliminary indication of an interaction. 

Is this the right approach for vector-valued properties? It is reassuring to see 

that SISSO inserted sin(H) into most Px equations and cos(H) into most Py equations. 

However, the position variables in Table 8 do not show a consistent pattern between the 

                                                 
312 They “fail” to invalidate the RO model because the criteria do not call for discarding RO data. That is, 

they possess no mechanism for disqualifying data on the basis that it came from the wrong time interval. 
313 In a sense, the time period between intervals of stable, independent behavior. 
314 These are likely to be very simple cases only, but simple cases can also be important. 
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Pareto Optimal results of the x- and y-coordinates. In order to simplify the DoE for these 

experiments, at least one flock was always initialized with a heading of zero (i.e. an upward 

trajectory), and the opposing flock would fly towards it from a number of different 

trajectories. Perhaps the fact that a significant portion of data has the same initial behavior 

biased the results for the positions. In any case, more experiments are needed to determine 

if the numerical criteria are valid for vector-valued properties. 

Why do the models for slope not have a distinguishable trend? Recall that the 

flocks are treated as though they were lines, so it was thought that two properties typically 

associated with lines would be good candidate emergent properties. However, the 

determination that the flock is a stable line is based on the initial and final configurations 

of the boids over the full time series. It was occasionally observed that the boids can move 

significantly during the flock-level interactions and subsequent re-stabilization. Therefore, 

there are cases where the idea of a linear flock strains credulity, which introduces a kind of 

error into the values of slope at the end of the IO, and beginning of the RO time intervals. 

This author sees those errors less as a kind of numerical inaccuracy,315 and more as a subtle 

category fallacy. Although the boids can be arranged linearly, the flocks are not truly lines. 

So why does length exhibit a trend but not slope? Any two dimensional distribution of 

points can be assigned a characteristic length without introducing a fallacy (a circle has a 

diameter, a cloud of atoms has a mean free path, etc.), but the slope is only meaningful if 

the points are very nearly linear. Perhaps the reason the slope models did not have any kind 

                                                 
315 The Matlab regression algorithm reliably produced the only reasonable value for slope possible. The issue 

is not that it was a “bad fit” but that the boids were not actually a line. 
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of pattern is because slope values lose their meaning faster than length values (i.e. the “line” 

abstraction only goes so far). 

What to these results reveal about Hypothesis 2? As discussed before, a 

complete set of numerical criteria would require some form of interaction detection. And 

re-stabilization detection (for property change calculation). 

Hypothesis 2 is falsified in that the Numerical Criteria are not sufficient 

conditions. 

Furthermore, after observing that so many models have clear trends in one set of time 

intervals but not the other, it seems that this would be very useful and important information 

to include in an emergent behavior detection method. After all, the major distinctions came 

between time intervals containing an interaction, and those that did not. Since the emergent 

behaviors in this thesis must be functional, the appearance of different model types might 

suggest that the behavior being modelled is, in fact, functional. This is an opportunity for 

future work. This completes the experiment for Hypothesis 2. 

6.2.7 H1 Falsification Test 

Since Hypothesis 2 was falsified, this test will rely on a worst case scenario: the 

number of properties for the smallest possible flock will be compared to the largest number 

of properties found in any column of Table 8, which is the re-stabilization column (5 

properties were “identified”). First recall the equations for the boid dependent variables, 

 𝑥 = �⃗� 𝑡 + 𝑥0⃗⃗⃗⃗  (59) 



 290 

 
�⃗� = (

𝑆 sin𝐻

𝑆 cos𝐻
) 

(60) 

To simplify notation, the velocity vector will be treated as the dependent variables rather 

than speed and heading. For a 2-boid linear flock there are eight dependent variables (two 

position coordinates, and two velocity components per boid): 𝐶𝑆(𝑀0) = 8. Once both boids 

form a line, the equations simplify to the following equations, 

 𝑥1⃗⃗  ⃗ = 𝑉1⃗⃗  ⃗𝑡 + 𝑥1,0⃗⃗ ⃗⃗ ⃗⃗   (61) 

 𝑥2⃗⃗⃗⃗ = 𝑉1⃗⃗  ⃗𝑡 + 𝑥1,0⃗⃗ ⃗⃗ ⃗⃗  + 𝑐  (62) 

The position of the second boid can be re-written using the velocity of the first, meaning 

six dependent variables remain, 𝐶𝑆(𝑀𝑅) = 6. According to Hypothesis 1 the maximum 

number of emergent properties is 8 – 6 + 1 = 3, which is consistent with the IR results! 

Hypothesis 1 is falsified in this worst-case scenario.  
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CHAPTER 7. ADVERSARIAL BOIDS CASE STUDY 

As with CHAPTER 6, the pilots have only two interaction-dependent properties: 

heading and speed. Strictly speaking, the interactions are one-way (in large part because 

they are adversarial), but due to the large increase in vision cone angle, the need to avoid 

collisions, and the behaviors of attacking and avoiding attack, most one-way interactions 

will occur simultaneously and/or sequentially. A true two-way interaction would be 

something like the force of gravity between two massive objects. One important difference 

between this and Flocking Vee model is that the components will never all self-organize 

into a single entity because interactions between pilots disrupt formations much more often 

than not. This means that it is typically possible to apply the definition of an emergent 

behavior to the self-organized entities in this simulation. There may exist a case where the 

adversarial self-organized systems become locked in some kind of pattern (a form of 

stalemate), but that has not yet been observed in the data. 

7.1 SO Detection 

Due to the long time intervals of these simulations, the calculation of pairwise 

separation between pilots requires fully accounting for the fact that that the domain is a 

101×101 torus with coordinates ranging from [-50.5,50.5) in each direction. A rigorous, 

but unnecessarily complicated approach, would be to map the square domain onto a torus, 

compute the shortest distance between pilots, and then map that distance back onto the 

square domain starting from the procedures described in [251] [252]. Fortunately, simpler 

procedures exist for the task at hand, which happened to be conveniently listed on a non-
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scholarly website [253].316 The tiling procedure discussed on that website produced results 

with discontinuities, just like the naïve distance formula would, and underestimated the 

distance between pilots in some cases. The more accurate procedure is the simple equation, 

 𝐷𝑥 = 𝑚𝑖𝑛(𝑥1 − 𝑥2, 101 − |𝑥1 − 𝑥2|)

𝐷𝑦 = 𝑚𝑖𝑛(𝑦1 − 𝑦2, 101 − |𝑦1 − 𝑦2|)

𝐿 = √𝐷𝑥2 + 𝐷𝑦2 }
 

 

 (63) 

The reader can verify that the maximum possible separation returned by Eq. (63) 

corresponds to the distance between a pilot at the center of the square and a pilot at any 

corner of the square, which is the correct result. By plotting this distance equation over the 

course of the simulation along with the relative heading and vision information of the 

pilots, one can easily visually identify stable formations and pursuit systems. 

 For example, consider the full time series plot of pairwise distance and relative 

heading for two blue-team pilots, shown in Figure 77. This time series is much noisier than 

the inter-boid distance plot shown in Figure 27.317 Nevertheless, as in Figure 27, the flat 

regions of the graph correspond to stable formations of pilots. One such region is 

highlighted in yellow and labelled “Stable” in Figure 77. Figure 77d shows a screenshot of 

the two blue pilots flying in the corresponding stable formation (the yellow arrow indicates 

                                                 
316 The web address is too long to properly cite using MS Word’s citation feature: 
https://answers.yahoo.com/question/index?qid=20070806182105AAXA7ob&guccounter=1&guce_referrer=aHR0cHM

6Ly9kdWNrZHVja2dvLmNvbS8&guce_referrer_sig=AQAAAJm-edMjNxiTwyrU0tN3-

MN2OtoQGXbdfnkcMOVflkP0lmDmjEJ5cMkBebSLoYCmFaFFrQEufQB9eIpmves4R6fD-mPyUsL-

SQqMOTZDtSw8bklVFvaPQMe9NhS1w3lHpvcQyWDF7RYEwHE__xKHLrzoSGb2iOuL5nuKxIVqwcsq 
317 The time-series could be smoothed using a moving average, which would also make it amenable to 

analysis using ARIMA models and Granger Causality. The notion of a periodic moving average will not be 

explored in this thesis, but lends itself to dynamic structures, and should be studied as part of a more general 

definition of self-organization. 
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their trajectories). Four other regions in Figure 77 are highlighted in green, and one of those 

regions is labelled “Unstable.” The screenshot corresponding to the labelled region is given 

in Figure 77c.  This configuration is unstable because the two pilots are accelerating along 

a curved path, in pursuit of a pair of red pilots. Most perturbations will cause this formation 

to break (e.g. collision avoidance, enemy fire, etc.). This 2-versus-2 pursuit system will not 

be studied, but is a candidate for emergent behavior detection. These unstable 

configurations are more difficult to identify visually, and require additional vision-cone 

information in order to detect algorithmically. Since the unstable formations are relatively 

very short lived (less than 100 iterations) the windowing procedure discussed in Section 

5.2.2 should be supplemented with interaction-detection information in order to function 

efficiently. Note that three of the unstable configurations have a relative heading near zero 

and a relative distance near that of the stable configuration. Each of these turns out to be 

variations of a central theme (the so-called “Fighting Two” formation [43]). The fourth 

unstable configuration at the very end of the simulation is a Fighting Two that is in the 

process of forming up (the pilots are already close and the wingman is turning to follow 

the lead). 

An example of a 1-versus-1 Pursuit System time series is depicted in Figure 78. 

One stable configuration (labelled similar to Figure 77) results in sinusoidal region in the 

distance plot and a flat region in the relative heading plot (see discussed in Section 5.2 and 

CHAPTER 3). These two pilots circle each other for a very long time, as depicted in Figure 

78d, until finally another blue pilot intercepts the red pilot. This, too, is a precursor to the 

Thach Weave. The sine wave is caused by the attacker and target’s acceleration as one tries 

to fly into a favorable position while the other tries to cause its pursuer to overshoot.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 77 – Time series data corresponding to Adversarial Boids simulation (a) 

relative distance between blue pilot 0 and 1, (b) relative heading, (c,d) screenshots 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 78 – Time series data corresponding to Adversarial Boids simulation (a) rel. 

distance between blue pilot 0 and red pilot 5, (b) relative heading, (c,d) screenshots 
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Experienced real-world pilots are unlikely to settle into a long-term pattern, but sporadic, 

short-lived instances of this self-organized pattern are likely. Unlike the friendly-pilot 

systems, the unstable systems depicted in Figure 78 vary in their structure. The system 

labeled “Unstable” is depicted in Figure 78c illustrates the case of multiple pilots chasing 

a maneuvering target. This formation appears to be unstable largely because each time one 

pilot engages, the others typically have to maneuver in order to avoid a collision, which 

introduces perturbations to their pair-wise distance curve. One way to account for these 

ternary and quaternary systems, is to have the interaction detection code generate and 

maintain a graph at each time step, where nodes are pilots and weighted edges represent 

interactions (0/1 for non/interacting pairs). It would be fairly straightforward to identify 

larger-scale systems by looking for clusters using the adjacency matrix. 

 

Figure 79 – Opportunistic attack indicated in Figure 78 

Another unstable system is labeled “Opportunistic” in Figure 78 and is depicted in 

Figure 79. Here, one blue pilot shepherded a red pilot into the firing cone of another blue 

pilot. The green arrows indicate the trajectories of the blue pilots, and the red arrow 
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indicates the trajectory of the red pilot. This system has a relative heading that briefly holds 

around zero (i.e. an approximately flat line) until, finally, the red pilot maneuvers out of 

the trap and forces the blue attacker to maneuver after it. These results show that the tools 

described in Section 5.2 are simple and effective ways to build a self-organization detection 

method. Furthermore, the extensions of this approach for more sophisticated self-organized 

objects are fairly straightforward (although they may be computationally expensive). 

7.2 Sensitivity Analysis 

Given that the distance between the red and blue pilots is simply the L-2 norm of 

the difference in their positions, 

 𝐿𝑝𝑢𝑟𝑠𝑢𝑖𝑡 = ‖�⃗� 𝑏𝑙𝑢𝑒 − �⃗� 𝑟𝑒𝑑‖ (64) 

the rate of change of that distance can be found simply by taking the derivative, 

 𝑑𝐿𝑝𝑢𝑟𝑠𝑢𝑖𝑡

𝑑𝑡
=

�⃗� 𝑏𝑙𝑢𝑒 − �⃗� 𝑟𝑒𝑑

‖�⃗� 𝑏𝑙𝑢𝑒 − �⃗� 𝑟𝑒𝑑‖
∙ (
𝑑�⃗� 𝑏𝑙𝑢𝑒
𝑑𝑡

−
𝑑�⃗� 𝑟𝑒𝑑
𝑑𝑡

) (65) 

where the (∙) is the dot product. It goes without saying that the goal of the pilot under attack 

is to increase the distance between it and its pursuer over time. From Eq. (65) it is clear 

that there are only two ways to achieve this goal. First, blue team can affect the blue pilot’s 

velocity by improving the performance of the aircraft. Second, since the blue team cannot 

control the design of the red team aircraft, the red team pilot must be compelled to break 

off its pursuit somehow (thereby changing its velocity). The first option is a design change 

(means), while the second is a behavior change (ways). Although this approach does not 
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specify exactly how either change can or should be achieved, it clearly outlines the options 

available to the decision-maker, and provides the basis for setting requirements for 

emergent behavior exploitation. It also associates those requirements with the components 

needed to achieve them through the upward causation equation, meaning that the emergent 

behavior interaction equation is not always needed. The equations of the self-organized 

system provide enough information for this approach in this case.  

7.3 Hypothesis 3 Statement 

In order for the length of the pursuit system to qualify as an emergent behavior, it 

must serve a function that another entity not contained within the pursuit system can act 

on. Drawing inspiration from the Thach Weave, one way to act on the separation between 

the bait and its attacker is to have the bait report that information to the hook and add a rule 

so that the hook responds to this information. There are several ways for that information 

to be reported. Some require appealing to the properties of the self-organized system, and 

others do not, which leads to Hypothesis 3: 

Hypothesis 3: Targeting the system-level property will be more effective 

than targeting either pilot. 

In other words, this author suspects that when the bait communicates information about the 

pursuit system (as opposed to its own location, or the exact location of the attacker), the 

resulting response will be more effective. In order to measure that effectiveness, the MoMs 

must first be defined: 

 
𝑀𝑜𝑀1 =

𝑇𝑜𝑡𝑎𝑙 𝐵𝑙𝑢𝑒 𝑇𝑒𝑎𝑚 𝑆ℎ𝑜𝑡𝑠 𝐹𝑖𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑑 𝑇𝑒𝑎𝑚 𝑆ℎ𝑜𝑡𝑠 𝐹𝑖𝑟𝑒𝑑
 (66) 
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𝑀𝑜𝑀2 =

𝑇𝑜𝑡𝑎𝑙 𝐵𝑙𝑢𝑒 𝑇𝑒𝑎𝑚 𝑆ℎ𝑜𝑡𝑠 𝐿𝑎𝑛𝑑𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑑 𝑇𝑒𝑎𝑚 𝑆ℎ𝑜𝑡𝑠 𝐿𝑎𝑛𝑑𝑒𝑑
 (67) 

The ratio given by Eq. (66) describes blue team’s ability to gain opportunities to attack red 

team, while the ratio given by Eq. (67) describes the effectiveness of blue team’s attacks 

relative to red team’s attacks. Aside from intuition, it is not at all clear exactly how the 

separation between pilots, L, from Eq. (64), will map to either MoM (i.e. the function that 

relates MoM to L is not obvious). Rather than attempt to identify that equation, this thesis 

will measure the values from experiment and infer how the various simulation settings 

affect L, and subsequently the MoMs. 

Since the simulation environment contains all the information at once, one might 

wonder why the bait pilot should not explicitly report the position of the pursuit system 

(the center of gravity between the bait and the attacker). The main reason is that there is no 

meaningful causal relationship between the MoMs and the position of the pursuit system 

over the set of all simulations. Any single-variable function relating the two would be 

spurious, and a multi-variable function relating the two would be suspect. Having the blue 

pilot report the spacing between itself and its attacker is meaningful in that it can be 

associated with the MoM since the probability of firing and landing a shot are both 

functions of the distance between the attacker and target. 

In a broader sense, testing Hypothesis 3 is important to this thesis for multiple 

reasons. First, empirical data showing that system-level equations are reliable, and useful 

cause-and-effect constructs undermines some of the more extreme reductionist arguments 

in philosophy, and places systems science on a stronger footing. Second, it must be 
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demonstrated that the steps outlined in the method of this thesis provide useful information 

that has practical consequences on design and decision-making, and specifically on 

emergent behavior exploitation (in response to Research Question 3). The only way to 

show that the techniques in this thesis are effective practical tools is by experiment. The 

steps to test Hypothesis 3 in general will be outlined below. 

1. For a given system-level behavior, perform the exploitation analysis step 

(sensitivity analysis). 

2. Select one or more mission-appropriate MoM(s) and measure the performance of 

the system subject to the MoM(s) when it operates without the benefit of 

exploitation analysis information (no design changes or rule changes). 

3. Implement the exploit identified in Step 1, and measure the impact of the exploit 

using the MoM. 

4. Additionally, implement an analogous rule where the behavior of the component is 

modified to target a component-level property rather than the system-level 

property, and measure the subsequence change in MoM resulting from the change. 

5. Compare the MoM values obtained for the exploit case to the baseline case (no 

modification whatsoever), to ensure that an adequate control case has been 

established. 

6. Compare the MoM values obtained for the system-level rule change to the MoM 

values obtained for the component-level rule change. If the MoM for the 

component-level is superior to the MoM results for the system-level, then 

Hypothesis 3 has been falsified. 
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Since each scenario is different, the application of the exploitation analysis technique will 

result in unique considerations for the case studies in this chapter and CHAPTER 8. 

7.4 H3 Falsification Test 

To test Hypothesis 3 it will be necessary to compare situations where the pilots 

communicate system-level properties to situations where the pilots do not communicate 

system-level properties. This will be achieved by generating three sets of simulation data,: 

(C1) the bait pilot communicates its location to its wingman, (C2) the bait pilot 

communicates a position roughly corresponding to the attacker’s position, in terms of the 

pursuit system length, and (C3) the bait pilot communicates a position roughly equal to 

position of the pursuit system. C3 will be treated as the “pursuit system property” case. 

 

Figure 80 – Pursuit system (line) versus locations reported by bait pilot 

As depicted in Figure 80, Cases 2 and 3 (C2-C3) may not always coincide with the exact 

physical location of the incoming attacker or the exact physical location of the pursuit 

system (i.e. the center of gravity between the attacker and bait pilots) because, in both 

cases, the bait pilot is communicating the pursuit system length and relative heading to the 

attacker based on its latest observation.318 Due to NetLogo’s randomized order of 

                                                 
318 Analogous to saying “1,000 yards on my 5 o’clock” 
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execution, it is possible for the attacker to maneuver away from the position being reported 

during the same iteration that the bait pilot reports that information. Nevertheless, the errors 

in C2 and C3 are negligible for two reasons. First, they are numerically small to begin with. 

Second, the pilots have ample time to correct their headings because the distance over 

which the communications take place are at least one order of magnitude larger than the 

error itself. 

 For Hypothesis 3 to be supported, the MoMs obtained in Case 2 must be greater 

than the MoMs obtained in Case 1 and Case 3. The converse falsifies Hypothesis 3. This 

is the expected result because “reporting the pursuit system location” is roughly equivalent 

to having the wingman “lead the target.” However, the reader is cautioned against reading 

too much into the idea of leading the target. That concept became common sense in real 

life due to mankind’s interactions with nature. The simulation has no built-in sense of 

physics,319 and the pilots have no built-in understanding of the projectile motion equations. 

Finally, note that the design change case does not contribute to testing Hypothesis 3. It is 

informative, however, to examine whether the design changes have a more significant 

impact on the MoMs than the behavior changes because that is the essence of a CBA. 

7.4.1 Pilot Behavior Rules Modification 

In order to perform a strict test of Hypothesis 3, the behavior modification must be 

implemented with the fewest changes possible. Attempting to explicitly implement a true 

Thach Weave would invalidate the experiment, because it would require multiple changes 

to the decision logic, relative to the design-change case. In this way, the design-change 

                                                 
319 Although it can be extended for that purpose [380]. 
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case serves as the “default behavior” control case. The least intrusive way to do this is to 

introduce an additional team of pilots called “Ghosts,” depicted in Figure 81. During a blue 

pilot’s observation step, the pilot stores the identifier of every enemy pilot within its vision 

cone. During the orient step, that pilot then determines if any of those enemies is 

maneuvering to attack (or had attacked during the previous iteration). The blue pilot now 

takes on the role of a bait pilot, and selects one enemy pilot as its biggest threat. 

 

Figure 81 – Wingman turning to pursue ghost (black triangle) located approx. at 

pursuit system position (C3), outside of its max. vision distance 

The pilot that fired during the previous iteration has priority in the threat ranking / decision 

curves. Upon selecting that threat, the bait pilot will initiate the creation of a ghost pilot in 

the simulation. The location of that ghost depends on the Case being run. Once the threat 
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identification part of the orient step is completed, all pilots move on to the “assess reward” 

phase of the orient step, which includes determining if any visible enemies are viable 

targets, and determining if any visible teammates are in a position to form up with.  During 

this step, the blue pilots will scan the map region outside of their vision cone for ghosts, 

and add them to their list of possible targets. Within their vision cones, the decision logic 

remains the same. Due to the behavior rules currently in place, the pilots will only act on 

the presence of a ghost if their vision cone is clear of enemies. Otherwise, they will simply 

pursue the most convenient target inside their vision cone. The action of detecting ghosts 

is equivalent to receiving a communication from another pilot about their attacker, but does 

not require any additional behavior rules. Assuming the pilot is not already engaged, and 

it detects a ghost, it will maneuver towards the nearest ghost, thereby dramatically 

increasing the likelihood of intercepting the attacker (relative to the design-change case, 

where the act of intercepting an attacker is purely coincidental). Ghosts inside a pilot’s 

vision cone are ignored. Finally, the ghosts are deleted at the end of each iteration. 

This function, as implemented, acts solely as a mild override of the target 

assessment logic during the orient step (it simply increases the list of possible targets). No 

new decision curves are needed, and all other behavior remains the same. There are a 

number of obvious consequences to this mild change. First, this approach avoids problems 

caused by two bait pilots communicating to the same hook, which would require additional 

decision logic to resolve. Second, the wingman can get “distracted” by a new target that 

enters its vision field. Third, pilots may misidentify an incoming attacker (the pilots 

identify attackers based on their apparent behavior and proximity, and not in an omniscient 

sense). Fourth, a pilot only makes one ghost, per iteration. If that pilot is pursued by 
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multiple attackers, the location of the ghost can jump around each iteration. Fifth, the only 

major difference between the behavior change cases and the design change cases is that the 

wingman simply turns around to rescue the bait if it isn’t already preoccupied with another 

enemy pilot (in design change cases, it simply flies in a straight line until encountering 

another pilot in its vision cone). Once the hook enters within visual range of an enemy 

attacker, it will resume normal decision-making procedures. Therefore, sixthly, if there are 

multiple enemies in its vision cone by the time it arrives near the bait, the hook may decide 

to pursue an easier target rather than intercept the bait’s attacker. Seventh, the ability to 

“detect a ghost from a distance” may or may not cause the pilots to break formation as they 

fly towards the bait. Eighth, with this communication ability, there is now a small benefit 

to flying in formation. Although the bait and hook do not have the full set of maneuvering 

instructions needed to consistently reproduce the Thach Weave, or even to report incoming 

threats to a wingman as in [185], the statistical significance of this communication is 

expected to be non-negligible, and to produce scenarios that mimic the Thach Weave. 

7.4.2 Experiment Results 

All of the data presented in this subsection is based on a sample of 1,500 

simulations runs per case (5 cases in total), where each run lasts 6,000 iterations each. As 

shown by the box plots in Figure 82 - Figure 83, when the behavior rules are the same 

(WR=B
320), and both teams have the same design (MR=B

321), their performance is barely 

distinguishable. When red team is given a design advantage, its performance relative to 

blue team increases, as expected. However, the behavior change given to blue team 

                                                 
320 As in, the ways (W) are the same (=) for red team (R) and blue team (B). 
321 The means (M). 
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substantially dwarfs the design advantage possessed by red team. The extent to which this 

change affects performance nonlinearly can be seen by the increase in the variance of the 

distributions, and the abundance of outliers. The rule changes do not guarantee that blue 

team will win every battle, but significantly improve its likelihood of doing so. 

Since the ratios are difficult to see in these box plots, the MoM values are 

summarized via the bar plots Figure 84 - Figure 85. When the red team has a design 

advantage, and their rules are the same, the average number of shots fired and landed by 

blue team is substantially lower than those fired by red team: MoM1 ≈ 0.7649, while MoM2 

≈ 0.7575. However, when the means and ways are the same, both teams average the same 

number of opportunities to fire upon one another: MoM1 ≈ 1.0036, MoM2 ≈ 1.0039.322 In 

other words, a 5% increase in maximum speed and maximum turn angle results in a nearly 

25% increase in relative firing opportunities and lethality.323 The ratios of shots fired for 

Cases 1 (Wbait), 2 (WL), and 3 (WL/2) respectively, are MoM1 ≈ 1.491, MoM1 ≈ 1.4239, and 

MoM1 ≈ 1.5145, while the ratios of shots landed are MoM1 ≈ 1.4921, MoM1 ≈ 1.4282, and 

MoM1 ≈ 1.5226. All behavior changes cause the blue team to obtain a roughly 50% 

improvement in its opportunities to fire (and land shots) on red team, despite red team’s 

design advantage. However, of the three behavior changes, the rule to maneuver towards 

the pursuit system position provides the greatest benefit, which supports Hypothesis 3. 

  

                                                 
322 This is consistent with the anticipated exact value MoM1 = MoM2 = 1, which somewhat verifies the model. 

Note that these MoMs were observed to converge to 1 as the number of simulations increases. 
323 Lethality roughly corresponds to MoM2. 
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Figure 82 – Box plot of shots fired per team by simulation type 

 

Figure 83 – Box plot of shots landed per team by simulation type 
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Figure 84 – Bar graph of MoM1 by simulation 

 

Figure 85 – Bar graph of MoM2 by simulation 
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As seen in Figure 86b, when the two teams have the same design and rule set, the 

distribution of shots fired versus distance are the same. Neither team has a tactical 

advantage, therefore, the odds that pilots from either team will fire at any given distance 

are the same. Once red team is given a design advantage, it is able to fire more often from 

a closer range. Thus, the design advantage not only means that red team pilots can obtain 

firing opportunities more often, but also that they can obtain favorable firing positions 

(closer and aft) more often, which directly increases their lethality (as reflected in MoM2). 

The behavior rule change for blue team statistically dominates the design 

advantages available to red team, and fundamentally changes the nature of the dogfighting 

observed in the simulation. As indicated by the histograms in Figure 86c-e, the 

engagements for both teams tend to occur more often over a smaller range of distances than 

in Figure 86a-b. To put these distances into perspective, note that the maximum firing 

distance is 14 units, the “too-close” distance is 8 units, at which point pilots being weighing 

the risk of collision against other threats, and the distance at which pilots stop accelerating 

towards their targets is 10.4 units, at which point the pilots may choose to maintain or 

reduce their speed depending on the other behavior rules. The pilots have a clear preference 

for engagements in the range of 10-11 units, while engagements below this distance occur 

largely due to the pilot’s momentum. No matter the distance, however, blue team always 

finds more firing opportunities than red team, which is precisely why the Thach Weave 

was developed, and supports Hypothesis 3. 

Hypothesis 3 is supported because the best values for both measures of merit occur 

when the blue team pilots are directed to fly towards the center of the pursuit system 

rather than either the bait pilot or the attacker. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 86 – Histogram of shots fired by Red/Blue teams over all simulations (a) 

MR>B WR=B, red design superior (b) MR=B WR=B, same designs/rules (d) MR>B Wbait, 

blue follow bait (e) MR>B WL/2, blue follow system (f) MR>B WL, blue follow attacker 
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7.4.3 Reductionist vs. Non-Reductionist Explanations 

A typical reductionist explanation for the results in Section 7.4.2, mentioned briefly 

at the beginning of Section 7.4, might be that the behavior change works because the pilot 

is leading the target. Overall, the evidence does not support this interpretation because the 

performance substantially increased even when the pilot was aiming for the attacker. Thus, 

one might consider either of the following explanations to be a better alternative: (1) the 

change works because the communication causes pilots that would otherwise leave the 

scene to return immediately resulting in blue team’s pilots being outnumbered less often 

than red team’s, or (2) the change works because the simulation predictably generates 

pursuit systems that have a finite length, and the team that capitalizes on the location of the 

pursuit system will have a tactical advantage over a team that cannot. Both alternative 

explanations are valid, and both are expressed in terms of system-level properties. The first 

explanation implicitly relies on the ratio of combatants that form a multi-pilot pursuit 

system, while the second explicitly references the creation of a new self-organized system 

and its useful properties. Both system-level explanations can be used to write simple 

behavior rule modifications that measurably improve performance. The data generated for 

this test says nothing about whether the behavior rule “always lead the target” would 

enhance pilot performance, but given that the shots land instantaneously, leading the target 

would only serve as a rule for maneuvering, not firing. It is unclear that causing pilots to 

overshoot their targets early on in their attack run would improve their performance. 
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7.4.4 A Remark on Hypothesis Testing 

Recall that, for blue-team, the best-case performance in firing opportunities in 

Figure 82 comes from maneuvering towards the bait (Wbait), the biggest improvement in 

worst-case performance comes from maneuvering towards the attacker, and the best 

average performance comes from maneuvering to the center of the pursuit system. On its 

face, the various statistics present a kind of conflict between the possible conclusions one 

could draw from the data. With regards to Hypothesis 3, it is clear that the term “effective” 

contains an inherent subjectivity, and so the user must be careful to avoid motivated 

thinking when interpreting results. A critical examination of Figure 82 shows that the 

median total shots fired of the blue team with behavior modification is consistently higher 

than the upper quartile of the red team’s results. Thus, there is no pragmatic reason to 

falsify Hypothesis 3. Nevertheless, had a one relied on the best-case or worst-case statistics, 

one could have drawn a very different conclusion. 

7.4.5 A Persistent Ambiguity 

The case where L/2 is communicated brings back the question of whether the 

pursuit system’s position should be treated as the emergent property (rather than length). 

The emergent behavior of the system would be to widen its length over time, but the 

information needed to achieve this goal is the position of the system. This possibility was 

rejected in Section 7.3 on account of the fact that neither MoM can be expressed as a 

meaningful function of the system position. Given that the position of the pursuit system 

requires two variables to describe, while length is only one, there seems to be a potential 

contradiction in the case where the same information can be represented two ways. For the 
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purposes of hypothesis testing, this thesis selects the worst-case scenario (position). 

However, this has a direct impact on Hypothesis 1, and one’s ability to calculate the amount 

of data compressed by self-organization, and should be considered in future studies. 

Another ambiguity (one that affects the discussion in Section 7.4.3) is whether the 

“number of pilots” is a property of the system only, or a property of the pilots as well. In 

this author’s personal experience, it is not uncommon for engineers to assign trivial 

properties to objects whenever some new information suggests the need for generalization. 

For example, one could argue that a boid is a flock where L = 0, and n = 1. This is not 

unprecedented. Tautologies and vacuous truths play an important role in the development 

of a logical framework. The same is true for trivial statements. However, with regards to 

SE, this presents an opportunity for category fallacies that can undermine the rigor of 

decomposition techniques. This thesis treats the “number of elements” exclusively as a 

property of a set, and not a property of the element of a set. There is no need, at this time, 

to settle the question dogmatically, but this ambiguity is likely to make some ontologies 

more effective than others with regards to emergent behavior identification. This thesis 

leans towards driving a hard distinction, with the exception of systems that can be defined 

in a purely recursive manner. In SE, it necessary to make unambiguous statements such as: 

“a set is not an element,” “a set can be an element within another set,” and “an element can 

belong to multiple sets.” It is also necessary to say that “the mass of a proton is distinct 

from the mass of a quark or the mass of a ship,” just as it is important to say “the position 

of a ship is distinct from the position of a fleet.” The same concept can be mathematically 

computed in different ways (as is the case with mass), or serve totally different and 

unrelated functions (as is the case with position).  
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CHAPTER 8. UAV SWARMING CASE STUDY 

In this chapter, the complete method presented in CHAPTER 5 will be applied to a 

simulation of Unmanned Aerial Vehicles (UAVs) flying in a simulated city. The simulation 

environment, called SwarmLab, was developed by Soria, Schiano, and Floreano from the 

Laboratory of Intelligent Systems in Switzerland [254]. This experiment will utilize the 

environment’s ability to simulate swarms of fixed-wing and quadcopter drones navigating 

obstacles according to a set of decentralized behavior rules. The environment offers two 

options for drone decision-making: (1) rules based on work by Vásárhelyi et al. (VEA) 

[255], and (2) rules based on work by Olfati-Saber and Murray (OSM) [256]. 

 

Figure 87 – Sample of SwarmLab GUI with notional settings 
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Figure 87 shows the options available via the SwarmLab GUI. These settings will be used 

in the discussion that follows (only the swarming algorithm / control law is varied). The 

performance metrics tracked by SwarmLab will be discussed in Section 8.3.1. 

The OSM rules are designed to enable drones in a swarm to maneuver individually 

such that the swarm’s collective shape is preserved to the greatest extent possible while 

moving through a space. To achieve this, Olfati-Saber defines a graph that, under certain 

conditions, corresponds to a unique and unambiguous324 swarm formation. Using the 

desired properties of this graph, a so-called “structural potential function” is obtained, and 

the gradient of this potential is used as to derive a smooth, bounded, nonlinear state 

feedback law that ensures “collision-free local stabilization” of the drones in the swarm, 

again, under certain conditions [256].325  

 

Figure 88 – SwarmLab plots of 25 point-mass drones navigating obstacles according 

to OSM control law at various time steps (a) 0.5s, (b) 6.5s, (c) 22s, (d) 44.5s 

                                                 
324 The terms “unique” and “unambiguous” take on a specific mathematical meaning in [311]. However, the 

layman’s definition of these terms is close enough for the purposes of this narrative. 
325 Again, each of these terms has a specific mathematical meaning. See [311] for details. 
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Figure 88 depicts four snapshots of a 25-drone simulation wherein the swarm attempts to 

move from the south side of a simulated city (bottom), to the northeast side (top-right 

corner). The drones are following an implementation of the OSM control laws, and the 

simulation runs for 45 seconds. Figure 88b depicts the swarm pressing into itself as it 

encounters a building obstructing its path. After the swarm slowly maneuvers west and 

north of the building, most it the drones are able to regroup, but ultimately one drone falls 

behind, seen in Figure 88c-d. Aside from the solitary drone, the remaining drones generally 

retain their lattice-like configuration, as intended by the control law. 

 
(a) 

 
(b) 

 
(c) 

Figure 89 – SwarmLab time series plots of min/average/max properties for drones 

following OM rules (a) distance, (b) speed, and (c) acceleration 
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As seen in Figure 89a, the maximum inter-drone distance increases with time due to the 

single drone that fell behind. The average separation between drones remains fairly 

constant near the reference value, however, there is one instance before the 5s mark where 

the minimum separation between drones drops below the threshold, suggesting a collision 

may have occurred. The drone speeds (Figure 89b) and acceleration (Figure 89c) 

repeatedly exceed the desired threshold, suggesting potentially unsafe operation. 

Nevertheless, the swarm covers most of the distance required in the time allotted. 

The VEA control law was designed in response to what the authors perceived as 

“reality gap.” Rather than assuming an idealized shape, as in the OM case, or idealized 

environment with perfect communication between drones, the authors drew on an initial 

rule set derived by Reynolds [188], and then added more rules in order compensate for 

various real-world challenges. The VEA control law contains 11 tuning parameters, and 

used an evolutionary algorithm and 15,000 objective function evaluations to obtain robust 

values. The VEA control law was then tested using a real-world swarm of 30 quadcopters. 

 

Figure 90 – SwarmLab plots of 25 point-mass drones navigating obstacles according 

to VEA control law at various time steps (a) 0.5s, (b) 6.5s, (c) 22s, (d) 44.5s 
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As shown in Figure 90, the swam obeying the VEA rules retains is cohesion better than the 

OM swarm, avoids obstacles as a unit rather than “smearing” across the surface of the 

obstruction, and maintains a greater distance from the obstructions. However, the swarm 

also moves slower, covering only about half the distance the OM swarm travelled. 

 
(a) 

 
(b) 

 
(c) 

Figure 91 – SwarmLab plots time series plots of min/average/max properties for 

drones following VEA rules (a) distance, (b) speed, and (c) acceleration 

The VEA swarm never exceeds the speed or acceleration thresholds, nor does it violate the 

distance threshold. However, unlike the OM swarm, it does not retain a lattice shape, and 

flattens out into a snake-like arrangement when traversing an environment with multiple 

nearby obstacles (see Figure 90c-d). 
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8.1 Pattern Recognition 

This section will examine the behavior of an OM swarm flying three missions: (1) a 

simple patrol around a set of buildings, (2) traversing a small number of buildings directly 

obstructing the swarm, and (3) traversing a narrow passage between buildings. Unlike the 

(adversarial) boids cases, the drones are initially placed in close proximity. Therefore, this 

case will examine disruptions to the swarm shape more so than its formation. 

8.1.1 Simulation Settings and Modifications 

The dynamics of point-mass drones are very different from those of quadcopters 

simulated in SwarmLab. Quadcopter simulations take into consideration the behavior of 

the actuators on the quadcopter, as well as the dynamics and kinematics of the drone.  

(a) 
 

(b) 

Figure 92 – Paths traced by 5-drone swarms visiting four points around a set of 

obstacles within 200 seconds (a) point-mass drones, (b) quadcopters 

Point-mass drones, on the other hand, have their positions updated using a simple Euler 

forward method [254]. As seen in Figure 92b, quadcopter swarms will overshoot waypoints 
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when tracing a path326 around a set of buildings due to their inertia, whereas the point-mass 

drones perform much tighter turns (Figure 92a). Note, also, that the traces in Figure 92 are 

top-down views of 3-dimensional motion. That is, the drones can fly above/below each 

other, so long as they maintain a safe distance, and the swarm remains fairly level. 

 
(a) 

 
(b) 

Figure 93 – Acceleration versus time plots for mission in Figure 93 (a) point-mass 

drones, (b) quadcopters 

In order to achieve these maneuvers, the point-mass drones undergo unrealistic spikes in 

acceleration that exceed their thresholds (compare Figure 93a-b). Despite this, the point-

mass drones do not exhibit any other pathological behavior (the acceleration is too brief to 

cause a collision). Therefore, all remaining simulations in this chapter will use point-mass 

drones and will neglect wind effects in order to reduce simulation run time. Note that the 

quadcopters in Figure 93b also exhibit an unrealistic initial acceleration. This numerical 

                                                 
326 These drones are using the OM control law, and are simply directed to fly towards the points (0,300), 

(300,300), (300,0), and (0,0) in counter-clockwise order. 
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artifact is easily remedied by initializing the swarm with the velocity derived from its 

mission requirements rather than zero velocity. 

 
(a) 

 
(b) 

Figure 94 – Paths traced by 10-drone point-mass swarms (a) across two obstacles in 

120 seconds, (b) through a narrow passage in 160 seconds 

In the remaining missions (Figure 94), the swarms retain their cohesion while navigating 

obstacles. Cohesion, which depends partly on the spacing between obstacles and the 

number of drones in the swarm, is not always guaranteed, as seen in [254]. The paths 

available to the swarm in Figure 94b are just wide enough to be traversed without splitting 

into smaller clusters.  

Unlike the boids case, this chapter will deal with self-organized objects that are 

largely amorphous and flexible in three dimensions. Unlike the (adversarial) boids cases, 

this section will deal with environments that contain obstacles, and consider the impact of 

those obstacles on the robustness of the pattern-recognition process. The SwarmLab 

simulation space is unbounded in the horizontal plane, and semi-infinite in the vertical 

direction. Finally, unlike NetLogo, the drones do not execute their instructions in random 
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order each iteration. The code was extended so that the swarms do execute their instructions 

in random order, but, within each swarm step, the drones will execute their instructions in 

the order determined by their index number. 

8.1.2 Results 

First consider the separation between drones during each mission. In Figure 95, 

below, “PM” stands for point-mass and “Quad.” is simply the abbreviation for quadcopter. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 95 – Inter-drone separation during missions (a) patrol by point-mass (b) 

patrol by quadcopter, (c) obstacle traversal by point-mass, (d) narrow pass traversal 

by point-mass 
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The point-mass swarm exhibits stable behavior for the majority of the patrol mission 

(Figure 95a) due to the absence of obstacles and its ability to change translation directions 

without undergoing a rotation. The initial variation in separation is due to the random initial 

placement of drones. Although they are very close to one-another, they are not in an 

optimally stable formation according to the OM control law, and so they gradually find a 

stable arrangement as they travel to their first waypoint. The separations between drones 

in the stable 5-drone swarm are 9.7m, 10.3m, and 15.4m (10m is the user-defined 

“reference” separation). These values can be used to filter subsequent simulation data, as 

will be discussed towards the end of this section. The 5-drone quadcopter swarm flying the 

patrol mission (Figure 95b) takes much longer to stabilize from its random initialization, 

and the first turn it encounters during its mission (near the 60 second mark) de-stabilizes 

the swarm slightly. For the purposes of real-world self-organization detection, however, 

the quadcopter simulation suggests that a pattern recognition procedure would either 

require some tolerance for small perturbations, or perhaps the use of a moving average.317 

The 10-drone point-mass swarms (Figure 95c-d) show significant perturbations to their 

stable operation as they attempt to avoid obstacles. Upon reaching an obstacle, the swarm 

undergoes a contraction followed by an expansion, until the opportunity presents itself for 

the swarm to re-stabilize. However, as with the patrol mission, most drones are able to 

maintain a separation of less than 15m. 

Figure 96 shows the corresponding pairwise, normalized velocity dot products for 

the various missions. The patrol missions show smooth, parallel flight throughout the 

mission for both point-mass and quadcopter swarms. Thus, the OM control law is able to 

maintain uniformity across drone velocities as they perform simple maneuvers. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 96 – Inter-drone alignment during missions (a) patrol by point-mass (b) 

patrol by quadcopter, (c) obstacle traversal by point-mass, (d) narrow pass traversal 

by point-mass 

For the missions where the swarm must avoid buildings (Figure 96c-d) the alignment 

profiles are significantly more chaotic. This is undoubtedly due to the unrealistic 

accelerations of the point-mass drones. Nevertheless, the deviations clearly indicate 

periods of stable flight punctuated by significant disorder when the swarm encounters a 

building. The initial deviations are very small by comparison. 
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 Since stable swarm motion is associated with the majority of drone distances being 

less than 15m, it is possible to use, say, 14m as a threshold for identifying stable 

“neighborhoods” for each drone (this feature is built in to SwarmLab).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 97 – Graphical representation of swarm adjacency matrix at 30s mark (a) 

patrol by point-mass (b) patrol by quadcopter, (c) obstacle traversal by point-mass, 

(d) narrow pass traversal by point-mass 

With that information, it then becomes possible to identify a graph for the swarm, along 

with its adjacency matrix, that correspond to (meta)stable swarms. This provides a sense 

of structure to what is otherwise an amorphous cloud of points, and one can check that the 
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graph remains connected to determine whether a drone has broken from the group.327 

Graphs for the sixty-second mark during each mission are provided in Figure 97. In 

practice, one would take additional factors into consideration such as communication 

distance, line of sight, and any other sensors the drones can use to maintain contact with 

one-another.328 This additional feature will serve as the “interaction detection” among 

drones, and can be extended to the adversarial case that will be discussed in Section 8.3. 

8.2 Behavior Association 

As with the (adversarial) boids models, this section will examine the swarm speed, 

and heading to determine if they are emergent behaviors. Since the drone movements are 

fully three-dimensional, the pitch and yaw of the swarm will be treated as its headings. 

Since the drones are a point-mass, and the swarm is easily distorted, the roll angle will be 

left for future study. There are at least two ways to compute a characteristic length for a 

swarm. The first can be obtained by computing the shortest path (based on the swarm’s 

distance-weighted adjacency matrix computed using the aforementioned 14m cut-off 

distance) between the two drones whose Euclidean separation is the largest.329 The second 

is the largest separation between any two drones along the swarm’s principal axis (this will 

be referred to as the length of the swarm’s principal axis). If the swarm were a perfect 

sphere, the first length equal half the circumference of the circle inscribed onto a plane 

                                                 
327 An alternative would be k-means clustering, but if the number of clusters is not known a prior, finding 

them using k-means can be cumbersome. 
328 SwarmLab contains some of this functionality. However, since this thesis is focused on self-organized 

structures, it is more meaningful to define neighbors based on stability rather than communication range. 
329 In the unlikely case of a tie in Euclidean distances, the shortest path among the various alternatives will 

be selected. 
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passing through the swarm’s center, and the second length would be the diameter of the 

swarm. Another example is provided in Figure 98. 

 
(a) 

 
(b) 

Figure 98 – Depictions (highlighted in yellow) of (a) the shortest path between the 

furthest points, and (b) line segment corresponding to largest separation along the 

principal axis of a 2-dim set of points 

Properties of the swarm can also be derived from its control laws. This thesis will consider 

the average separation between drones as one such property. 

Vasarhelyi et al. loosely extend the concept of mechanical pressure to swarms of 

drones. This concept was first discussed with respect to large crowds of people [257] [258], 

where individuals may push against one another, thereby exerting a literal force that can 

be averaged over the size of the crowd. Vasarhelyi et al. only use the term to facilitate 

explanations, and do not propose a means for computing this swarm pressure. Any attempt 

to extend the usual thermodynamic or kinematic definitions of pressure to drone swarms 

would require careful study and experimentation. True drone collisions are nothing like the 

simple elastic collisions typically assumed in physics, and the consequences of such 

collisions are incompatible with the models of pressure in physics. Collision avoidance 
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maneuvers are much closer to the physics notion of an (in)elastic collision, but modeling 

them as such depends on the mechanics of the drone itself. That is, a different model would 

have to be created for each type of maneuver, including the number and types of drones 

involved in the collision. Such derivations are outside the scope of this thesis. 

Finally, note that the communication range of each drone also affects the swarm’s 

structure. The de-centralized control laws provided in [254] ensure some kind of local 

stability, which also ensures global stability under certain circumstances (depending on the 

assumption underlying the control law). In the case where the swarm size exceeds the 

communication range of the drones, the swarm will deform into shapes that are everywhere 

locally stable, but not necessarily globally stable. This thesis will consider the simplest case 

where all drones remain within each other’s communication range. Note that SwarmLab 

computes neighborhoods based the drone communication range for the purposes of 

calculating performance metrics such as swarm safety. The code was extended to perform 

an additional adjacency matrix calculation based on the 14m cut-off distance. 

8.2.1 Simulation Settings and Modifications 

The simulation set up is very similar to the boids model. A series of 1,328 

simulations330 was run wherein two 10-drone swarms are set on a collision course in an 

obstacle-free environment. The initial drone distributions were random, and so the swarms 

were spaced far enough apart that each one could stabilize before encountering the 

                                                 
330 The original goal was to run 1,500 simulations. The number of simulations was cut for time, but as of this 

writing, a more efficient way of running the code has been found (i.e. the inefficiency was not due to 

SwarmLab). Nevertheless, since the control laws enable the swarms to remain fairly stable, 900 of the 1,328 

simulations resulted in unbroken swarms. Compare that to 313 unbroken flocks out of 5,000 Boids model 

simulations run for Section 6.2. 
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opposing swarm. Unlike stable flocks of boids, the drones rarely fly at perfectly constant 

velocities, but the variations are small enough that stable flight can be easily identified: the 

magnitude of the maximum acceleration for any drone would drop below 0.5 m/s2 (this 

same criteria was used to help determine when the swarms had finally re-stabilized). The 

swarms were given trajectories that intersect at a variety of (yaw) angles, beginning with 

180°, which is a head-on collision, and decreasing to 90° by increments of 5°. These initial 

trajectories, as well as the swarm initial positions, are then perturbed randomly to produce 

the full 1,328 collision simulations. The swarm positions were perturbed by no more than 

±3m in either horizontal direction (all swarms were initialized at the same elevation). The 

swarm trajectories were perturbed by no more than ±4°. Therefore, some collisions were 

glancing collisions while others were direct. Unlike the boids model, however, the initial 

trajectories of both swarms were varied so that no swarm started at the same yaw angle in 

every simulation.331 Each simulation was run for 30,000 time steps, at 0.01 seconds per 

time step (i.e. 30 seconds of simulated behavior). For most collisions, the drones would 

complete their collision-avoidance maneuvers in less than 20 seconds. 

To achieve this functionality, SwarmLab was extended in two ways. First, the class 

definition for the Swarm object was modified to permit multiple swarm instances with 

different parameters. For simplicity, the same control law, reference distance, and reference 

velocity was used for each swarm, but this need not have been the case. Second, 

SwarmLab’s “spherical obstacle” code was extended so that each drone would perceive 

                                                 
331 While analyzing the data for CHAPTER 6, it was observed that many of the model errors tended to cluster 

around the zero heading. This probably occurred because in all 5,000 simulations, the “red” flock was always 

initialized flying due north, while the blue flock was positioned all around the domain in order to collide with 

the red flock. This introduced a bias in the data, which translated into symbolic regressions that favored small 

final headings. That problem is eliminated in this chapter. 
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drones from the opposing swarm as moving spherical obstacles. The drones are only aware 

of the obstacles size and position. They have no sense of the obstacle’s velocity. The radius 

of the obstacles was set as twice the collision radius of the drones, so that the drones would 

begin maneuvering earlier (the drone collision radius is 0.5m by default). 

 

(a) 

 
(b) 

Figure 99 – (a) Sample drone trajectories for two-swarm glancing collision (b) drone 

acceleration time series indicating collision beginning ~7.5 seconds 
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Figure 99a shows the trajectories of the red and blue swarms that experienced a glancing 

collision. The dots indicate the starting positions of the drones. The circle one-another in a 

clockwise rotation before resuming their initial trajectories. Figure 99b shows the spike in 

drone acceleration that occurs at the onset of the collision. The data in Figure 99b is for the 

red swarm, but both swarms show the same characteristic behavior in every simulation. 

This information was used to detect collisions. 

The output variables tracked in this behavior association test will be the changes in 

swarm speed (∆S), pitch (∆Hp), yaw (∆Hy), shortest path length (∆Lsp), principal axis 

length (∆Lpa), and average drone separation (∆Dsep). In order to avoid obtaining coupled 

functions, these outputs will be related to the initial values of the swarm and/or drone 

properties. For models where the only properties taken into consideration are swarm-level 

properties (referred to as swarm versus swarm, or SvS), the input properties are the initial 

values of the aforementioned outputs for both swarms. These properties are listed in Table 

9. Note that the “1st” swarm is the swarm whose change is being measured, and the “2nd” 

swarm is the opposing swarm. 

Table 9 – Swarm versus swarm input 

properties 

S1, S2  Hp,1, Hp,2 Hy,1, Hy,2 

Lsp,1, Lsp,2 Lpa,1, Lpa,2 Dsep,1, Dsep,2 
 

Table 10 – Swarm versus drone input 

properties 

S1 Hp,1 Hy,1 

Lsp,1 Lpa,1 Dsep,1 

Sd,2 Hp,d,2 Hy,d,2 
 

The initial time is the time step during which any drone in a given swarm first accelerates 

in response to the opposing swarm. The time interval ends when the swarm re-stabilizes.  

For models where individual drone properties (from the opposing swarm only) are used as 

inputs (swarm versus drone, or SvD) the properties are the initial Speed, Pitch, and Yaw 
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of the drone (denoted with the subscript d, in the shaded row) as well as the initial properties 

of Swarm 1. Note that any model exclusively containing Swarm 1 initial properties as 

inputs must be a spurious regression. 

8.2.2 Results 

As shown in Table 11, nearly every property considered was indicted by the 

numerical criteria to be an emergent behavior. That is, the equations describing the effect 

that swarm level properties have on other swarm-level properties are less complex (CT) 

and have lower fitting error (RMSE) than equations describing the effect that properties 

from a randomly selected drone of the opposing swarm will have. 

Table 11 – Summary of Pareto Front comparisons for swarm interactions 

∆S ∆Hp ∆Hy  ∆Lsp ∆Lpa ∆Dsep 

      

Upon closer inspection, however, the sole Pareto optimal result for pitch that renders the 

decision a red “-” is an invalid interaction equation.  

 An interesting result (see Figure 108) is obtained for the change in average drone 

separation. No SvD models were obtained for this property because their extrapolation 

errors were massive. This means that SISSO could not find any drone properties that 

improved its regressions beyond a spurious regression. Only SvS models improved the 

prediction of ∆Dsep above the spurious regressions. While this does not undo the 

falsification result for Hypothesis 2, it does indicate that the underlying concepts and 

measurements have merit. The Pareto optimal equation is given by Eq. (68): 
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SvS: 𝐷𝑠𝑒𝑝1,𝑓 −𝐷𝑠𝑒𝑝1,0 = −0.204 − 2.816
𝑆1,0

𝐷𝑠𝑒𝑝2,0
sin(𝐷𝑠𝑒𝑝1,0) (68) 

Recall that the subscripts 0 and f in Eq. (68) stand for initial and final, respectively. 

 The models for yaw show striking similarities (some being nearly identical), 

SvD P-1: 𝐻𝑦1,𝑓 − 𝐻𝑦1,0 = −0.0017 + 0.050 sin(𝐻𝑦1,0 − 𝐻𝑦𝑑2,0) (69) 

SvS P-1: 𝐻𝑦1,𝑓 − 𝐻𝑦1,0 = −0.0015 + 0.051 sin(𝐻𝑦1,0 − 𝐻𝑦2,0) (70) 

As shown by the Actual versus Predicted plots (Figure 100), the errors of these models are 

much better behaved than the errors obtained for the Flocking Vee model. 

 
(a) 

 
(b) 

Figure 100 – Actual versus Predicted plots for (a) Eq. (69), (b) Eq. (70) 

In fact, many Pareto optimal models appear to be excellent fits. Figure 101 shows examples 

of speed, and pitch. This dramatic improvement is undoubtedly due to the stability of the 

swarms (as enabled by their control laws), and the swarm’s ability to return to its mission 
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(maintain speed and heading) despite encountering a moving obstacle. Comparing pitch to 

yaw, it is clear that the level collisions destabilized drone yaw much more than pitch. 

 
(a) 

 
(b) 

Figure 101 – Sample Pareto optimal regressions for (a) swarm change in speed, (b) 

swarm change in pitch 

The distance metrics regressions fared worse (see Figure 102). The primary cause is 

probably that these metrics experienced much larger relative changes than the swarm’s 

speed and heading since the control law does not strictly enforce values for these properties. 

 
(a) 

 
(b) 

Figure 102 – Actual versus Predicted plots for a Pareto optimal model of (a) change 

in shortest path length, (b) change in average drone separation 
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Considering that the errors in Figure 101b are for a model built from the data of a randomly 

selected opposing drone, it is clear that the control laws had a significant effect on the 

variability of some properties and, by extension, the goodness of fit of the regressions. 
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(a) 

 
(b) 

Figure 103 – Pareto optimal swarm ∆ speed models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 104 – Pareto optimal swarm ∆ pitch models due to interaction and re-

stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 105 – Pareto optimal ∆ yaw models due to interaction and re-stabilization (a) 

training data (b) test data 
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(a) 

 
(b) 

Figure 106 – Pareto optimal swarm ∆ shortest-path models due to interaction and 

re-stabilization (a) training data (b) test data  
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(a) 

 
(b) 

Figure 107 – Pareto optimal swarm ∆ length of principal axis models due to 

interaction and re-stabilization (a) training data (b) test data 
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(a) 

 
(b) 

Figure 108 – Pareto optimal swarm ∆ average drone separation models due to 

interaction and re-stabilization (a) training data (b) test data 
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8.3 Exploitation Analysis 

For this section, SwarmLab is extended once again so that one swarm’s mission will 

be geared toward the manipulation of the opposing swarm’s properties. Rather than simply 

being instructed to maneuver from one fixed location to the next, the swarm’s direction 

and speed will be determined by some mission objective. For the first maneuver, the 

adversarial swarm will remain intact, while in the second maneuver, it will split into two 

sub-swarms which will then act in concert to affect the opposing swarm. 

8.3.1 Measures of Merit 

SwarmLab measures five different swarming-specific performance metrics: (1) 

order, (2) safety among drones, (3) safety with respect to obstacles, (4) union, and (5) 

connectivity. Order is simply the average of the normalized velocity dot products for all 

pairs of drones in the swarm (an aggregate of the same metric used thus far in self-

organization detection). Safety is measured by counting the number of times drones risk 

actual collision (by flying too close to another drone/obstacle) and dividing that by the total 

number of pairs of drones, or the total number of obstacles, respectively (i.e. number of all 

possible collisions). The union metric tracks the number of independent subgroups that 

form during a simulation [254]. The connectivity metric is the algebraic connectivity of the 

graph corresponding to the swarm and is calculated by dividing the second smallest 

eigenvalue of the Laplacian matrix by the number of drones [254]. An example of the 

performance analysis time series generated by SwarmLab for a single simulation is given 

in Figure 109. In this example, most performance metrics are equal to one. 
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Figure 109 – Sample performance analysis plot generated using SwarmLab 

The order of the flock changes dramatically during a collision, as each drone maneuvers to 

avoid its nearest obstacle (typical of interaction and re-stabilization time intervals). 

 
(a) 

 
(b) 

Figure 110 – Minimum safety values for swarm collisions in Section 8.2 (a) inter-

swarm collisions, (b) intra-swarm collisions 
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Histograms summarizing the lowest safety value obtained at any time during simulation 

for all simulations executed in Section 8.2 are shown in Figure 110. Figure 110a shows 

that, for all 1,326 simulations, there were no collisions among drones of opposing swarms. 

Within each swarm, however, Figure 110b shows that in 20% of cases, the safety metric 

equaled 0.9778 (1 collision332), while in 0.94% cases the safety metric equaled 0.9556 (2 

collisions), and in very rare cases the safety metric equaled 0.9333 (3 collisions). 

 
(a) 

 
(b) 

 
(c) 

Figure 111 – Histograms of performance metrics (worst-case value per simulation) 

for swarm collision simulations in Section 8.2 (a) order, (b) connectivity, (c) union 

                                                 
332 Collision values are based on a 10-drone swarm. 
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Figure 111a clearly shows that the swarm’s order is affected by collisions in every 

simulation (as expected). Some very severe head-on collisions even cause the majority of 

the drones in the swarm to briefly reverse course (negative order values). The union is 

rarely affected by collisions, and less than 5% of all collisions affect the swarm’s algebraic 

connectivity. These histograms will be used as reference values for the results in Sections 

8.3.4-8.3.5. 

8.3.2 Sensitivity Analysis 

There are a number of goals one could consider for a swarm. One might choose to 

perform a search mission, in which case the swarm in question is under the control of the 

user, and that user might consider how changing the drone’s actuators or the swarm’s 

control law would affect its search performance. However, the drones simulated here are 

point-masses (no actuators). Furthermore, arguing that a modification to a control law to 

induce a change in an emergent behavior would risk devolving into a circular argument 

under the definitions and methods of this thesis. Therefore, this thesis will instead consider 

an adversarial swarm mission, where one swarm must be directed to affect the swarm-level 

properties of the opposing swarm. This is compatible with the definition of weak 

emergence. Furthermore, if the resulting behaviors result in a significant change to a 

swarm’s measures of merit, that information can be used to infer a purpose (functional 

emergence). For example, if it can be shown that a particular behavior decreases a swarm’s 

safety, that behavior could have combat applications. In the case of an adversarial mission, 

every sensitivity analysis suggests that a “ways” solution is needed. However, after 

deriving some new behavior to serve that purpose, it may become obvious, for example, 
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that the drones cannot move fast enough to achieve the desired maneuver. This would then 

imply that a “means” solution is also needed (some technology improvement, etc.). 

 

Figure 112 – Example of change in swarm yaw (solid blue circles represent drones) 

due to obstacle (yellow curve) 

The first property to consider is the yaw of the swarm (Hy), given by the equations: 
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𝑉𝑠𝑤𝑎𝑟𝑚,𝑦
𝑉𝑠𝑤𝑎𝑟𝑚,𝑥
⁄ ) (72) 

Where 𝑉𝑠𝑤𝑎𝑟𝑚,𝑦 is the y component of the velocity. The time-derivative of Hy is given by, 
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) (73) 

As Eq. (73) indicates (as does common sense), the only way to affect a swarm’s yaw is by 

compelling it to turn. In the case of this simulation, it has already been observed that 

swarms turn when confronted with an obstacle, therefore, the adversary swarm must 

behave like an obstacle. However, it has also been observed that if a swarm is given the 

mission of flying along a particular route, it will resume its original heading after clearing 
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the obstacle. Therefore, the adversary swarm must become a persistent obstacle, which 

indicates that the adversary swarm must also move along with the opposing swarm in order 

to guide it along a heading that it did not intend to go. This immediately suggests a function, 

since changing a swarm’s course can cause it to fail its mission, or benefit its adversary. 

 

Figure 113  - Example of change in LPA1 by displacing drones (solid blue circles) at 

either extreme of a six-drone swarm 

The second property to consider is the swarm’s largest principal axis length (LPA1). 

Obtaining this value, in general, requires performing a principal component analysis to 

obtain a matrix with which to rotate the point cloud of swarm positions to match the 

reference coordinate system. Afterwards, the following equation can be applied: 

 𝐿𝑃𝐴1 = max(𝑃𝑑𝑟𝑜𝑛𝑒,𝑖,𝑃𝐴1) − min(𝑃𝑑𝑟𝑜𝑛𝑒,𝑗,𝑃𝐴1) ∀ 𝑖, 𝑗 ∈ [1, 𝑛] (74) 

Where 𝑃𝑑𝑟𝑜𝑛𝑒,𝑖,𝑃𝐴1 is the component of the position of the ith drone on the principal axis 

(pa), and n is the number of drones in the swarm. For a Cartesian coordinate system, the 

largest principal axis is typically set to be the x-axis. To change LPA1 one must move either 

drone on either extreme either away from the swarm, or back towards its center. 
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 𝑑𝐿𝑃𝐴1
𝑑𝑡

=
𝑑

𝑑𝑡
(max(𝑃𝑑𝑟𝑜𝑛𝑒,𝑖,𝑃𝐴1)) −

𝑑

𝑑𝑡
(min(𝑃𝑑𝑟𝑜𝑛𝑒,𝑗,𝑃𝐴1)) ∀ 𝑖, 𝑗 ∈ [1, 𝑛] (75) 

Eq. (75) is provided for completeness. Since the swarm control law discourages individual 

drones to rush ahead of the swarm, it seems the most effective course of action for an 

adversary swarm would be to compel opposing drones to fly back towards the center of the 

swarm (as in Figure 113). This process can be repeated one drone at a time, but that raises 

a variety of issues. Firstly, said approach reduces to an inefficient and potentially useless 

game of whack-a-mole. Secondly, and related to the first reason, depending on the 

distribution of drones, the principal axis may rotate333 faster than it shrinks, which 

complicates the maneuver required to shrink it. Thirdly, if the maneuver is set up to affect 

one drone at a time, then the system-level interaction has become an indirect effect, rather 

than the direct cause (in engineering terms). Philosophically, of course, the drone-level 

interactions must and will always occur in order to achieve swarm-level changes.334 

However, the overarching goal of this thesis is to develop a method for exploiting system-

level properties, which includes controlling system-level behaviors. Therefore, consider 

the consequences of an entire swarm affecting the principal axis of an opposing swarm: the 

opposing swarm will change shape. Then consider what would happen if the opposing 

swarm’s principal axis were affected from both directions: the swarm would be pinched. 

Since the swarm doing the pinching is an amorphous cloud, it stands to reason that said 

                                                 
333 This would be more obvious had the time derivative been taken on the full equation in the original 

coordinate system, since it would include a rotation matrix from the coordinate transformation. 
334 The extent to which altering, removing, or otherwise affecting a single component impacts the whole 

system depends on how tightly coupled the whole system it, how de-stabilizing the effects are, and how well 

the remainder of the system re-stabilizes after being perturbed. This thesis has not explored the relationship 

between “how coupled” a system’s components are, and “how complex” the system is. This is left for future 

work. It is worth noting that the flock systems of CHAPTER 6 are far less coupled than the pursuit systems 

of CHAPTER 7 and the swarms in this chapter. 
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swarm can pinch the opposing swarm such that it becomes roughly planar 

(“sandwiched”).335 Such a change in structure would require significant maneuvering on 

the part of the opposing drones, and would test the limits of the control law governing 

them. In this case, the focus is less on shrinking the principal axis for its own sake, and 

more on deforming a swarm. The maneuver required to do so is simply a more forceful and 

persistent version of the maneuver required to shrink the principal axis. 

8.3.3 Simulation Settings and Modifications 

As in Section 8.2, two swarms of UAVs will operate in an obstacle-free 

environment. A 10-drone swarm (blue) will be instructed to fly at a constant heading (yaw) 

across the domain, while a 10-drone swarm (red) will be instructed to intercept the blue 

swarm with the goal of affecting either its Hyaw or LPA1. Both swarms have an upper 

velocity threshold of 7m/s, but the blue swarm will cruise336 at 5m/s while the red swarm 

will cruise at 6m/s. Both swarms will have an acceleration threshold of 10m/s2, but since 

the drones are modeled as point-masses, the drones will routinely violate this threshold 

(this can be safely neglected). Both swarms will follow the OSM control law, and have a 

reference distance of 10m. All drones will have a vision radius of 100m, and a collision 

radius of 0.5m. For maneuvering purposes, drones of the opposing swarm will be treated 

as though they have a radius of 1m (i.e. the spherical obstacle radius is 1m). 

Red swarm’s mission will be specified entirely by changing its “migration 

direction” and cruise speed. In other words, the control law is completely preserved. The 

                                                 
335 That is, shrinking the original largest principal axes until the variability along that axis is very small 

compared to the variability along the other two axes. The resulting swarm is effectively two-dimensional. 
336 Its reference velocity (p_swarm.u_ref). 
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only change to swarm behavior is provided through a single velocity term, which is the 

term in the control law that informs the drones of the direction in which they “should” go 

and how fast (provided there is no risk of collision). A total of 1,200 25-second simulations 

will be run for Hyaw and 1,200 34-second simulations will be run for LPA1.
337 The time step 

sizes are 0.01 seconds for all simulations. The changes in Hyaw and L PA1 reported below 

are based on time-averaged initial and final values. The initial values is the average of the 

property over a one-second time interval ending just before the swarms interact. The final 

value of Hyaw is the average angle of the flock trajectory over the last second of the 

simulation. Note that this is not the same as the average heading of the drones, computed 

from their velocities. That is because the control law continues to attempt corrections of 

drone headings. Therefore, although the drone headings may average out to match their 

mission heading at a given time step, the net movement of the swarm over time will not 

reflect that heading. The final value of L PA1 is the average property value over a one second 

interval that begins/ends ±0.25 seconds from the instant at which the blue flock velocity 

along the horizontal plane reaches its minimum value (i.e. the blue flock cannot advance 

because it is being pinched). The time interval is shortened because the blue swarm drones 

move rapidly to avoid the incoming obstacles. This time interval is a slight deviation from 

the interaction + re-stabilization time interval previously discussed in this thesis. There is 

a brief moment of meta-stability when the swarm is nearly arrested, and just before it 

attempts to avoid the red swarm, where the L PA1 can be measured to determine if the red 

swarm has achieved its mission. Technically, however, since the blue swarm is commanded 

to continue advancing, that brief stability gives way to another interaction phase, meaning 

                                                 
337 There were 84 LPA1 cases where the swarms did not complete the maneuver in time. These cases were 

dropped from the results. 
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that the blue swarm has not had the opportunity to fully re-stabilize before responding to 

the next interaction phase. Another deviation from the previous examples in this thesis is 

that the swarm is divided into two halves and manipulated separately. This should be 

thought of as a first step towards generalization of the previous cases to SoS and meta-

stable systems. 

8.3.4 Results: Swarm Yaw Case Study 

In order affect the blue swarm’s yaw, the red swarm is directed to fly as follows: 

(1) if either shortest path to intercept the opposing swarm can be reached at a time greater 

than zero and the separation between the two swarms is greater than a minimum threshold, 

then move along the positive minimum-time-to-intercept path, (2) otherwise, fly to a point 

11.5m ahead of the blue swarm along the trajectory of the blue swarm, match its heading, 

and fly at a speed 5% slower than the blue swarm speed. The second rule causes the swarm 

to behave like a persistent obstruction. This maneuver is depicted in Figure 114. 
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Figure 114 – Screenshots of adversarial swarm mission: change blue Hy. (a) Red en 

route to intercept blue swarm. (b) Red persistently pushing blue swarm. (c) Swarm 

trajectories indicating red nudging blue away from its vertical path. 

As shown in Figure Figure 114a, the red swarm flies to intercept the blue swarm. Figure 

Figure 114b shows how the red swarm flies very closely to the blue swarm, gently nudging 

it off of its trajectory (the full trajectories are shown in Figure Figure 114c). 

 As indicated in Figure 118, the red swarm’s maneuvering slightly increases the 

collision risk of its drones relative to the blue swarm, but there are no collisions between 

drones of opposing swarms. Figure 118c-d indicate that the red swarm can execute this 

maneuver without splitting into smaller sections, and the blue swarm retains its organized 

form.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 115 – Performance statistics (change Hyaw)for red and blue swarms (a) inter-

swarm collisions, (b) intra-swarm collisions (c) connectivity, (d) union, (e) order 
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Figure 118e indicates that the drones in red swarm do not fly as cohesively as the blue 

swarm’s drones do, having to change directions more frequently and, in some cases, fly 

orthogonal to one-another or even in slightly anti-parallel directions. Overall, these results 

indicate that the risks of the maneuver are about as great for the blue swarm as they are for 

the red swarm, but that the red swarm would benefit from increasing the maneuverability 

of its drones (either by changing its control law, or improving drone performance). 

 

Figure 116 – Histogram indicating effectiveness at changing Hyaw 

 Figure 119 clearly indicates that the red swarm was largely successful at redirecting 

the blue swarm. In some cases, the very basic maneuver coded for this thesis resulted in 

deflections approaching 25°. Clearly, a more sophisticated maneuvering procedure can be 

implemented to cause the blue swarm to veer off course even more. This example shows 

that a simple sensitivity analysis can produce useful diagnostic information for means 

versus ways decisions. However, more prescriptive methods are needed. 
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8.3.5 Results: Swarm Principal Axis Length Case Study 

The maneuver to affect the blue swarm’s principal axis length is more involved. 

The red swarm is given instructions to coordinate their behavior as though they were two 

separate swarms. One sub-swarm follows the aforementioned minimum-time-to-intercept 

path to a point 25m ahead of the blue swarm and then matches the speed and heading of 

the blue swarm (see Figure 117a). The second sub-swarm maneuvers behind the blue 

swarm (giving it a wide berth, as shown in Figure 117a) until it reaches a location 15m 

directly aft of the blue swarm, and then matches its speed and heading (see Figure 117b). 

These lengths have been computed so that then the sub-swarms later pinch the blue swarm, 

they arrive at the same location at roughly the same time.  

 

Figure 117 – Screenshots of adversarial swarm mission: change blue L PA1. (a) Red 

swarm splits: half leads blue, half circles behind. (b) Aft red swarm catches up to 

blue while other half loiters. (c) Both red halves pinch blue. (d) Swarm trajectories. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 118 – Performance statistics (change LPA1) for red and blue swarms (a) inter-

swarm collisions, (b) intra-swarm collisions (c) connectivity, (d) union, (e) order 



 357 

Once both sub-swarms report that they are matching the blue swarm speed and heading, 

the forward sub-swarm comes to a halt (see “loiter” in Figure 117b), while the second 

swarm accelerates into the blue swarm. Once the blue swarm is close to the loitering sub-

swarm, that sub-swarm will travel full speed towards the blue sub-swarm, and vice-versa 

(thereby pinching the blue swarm between them as in Figure 117c). The trajectories 

corresponding to these maneuvers are indicated in Figure 117d. 

 As in Section 8.3.4, Figure 118a shows that there are no collisions between drones 

of opposing swarms, but within each swarms the drones do occasionally collide. While 

13.4% of cases in Section 8.3.4 resulted in collisions (total for both swarms), here 38.8% 

of cases resulted in collisions. Once again, the increased risk is fairly evenly distributed. 

The connectivity shown in Figure 118c simply reflects that the two sub-swarms operate as 

separate units far apart from one-another, and the large spike in Figure 118e indicates that 

both sub-swarms fly away from one-another in several missions. 

Figure 119 shows that in most cases, the LPA1 actually grew rather than shrank. This 

is likely caused by the axis rotating and stretching as the blue swarm is flattened into a 

horizontal configuration. While the sensitivity analysis did not prohibit this from 

happening (in fact, it was somewhat expected), the results of that analysis did not indicate 

how to avoid such a behavior. Thus, again, a more prescriptive method is needed. If one 

considers the shortest principal axis, LPA3, rather than the longest it is clear that the red 

swarms succeeded in compressing the blue swarm into a planar configuration in the 

majority of cases, but in 16.4% of cases, the maneuver had no effect, or the blue swarm 

broadened slightly. With respect to LPA3, the swarm performed very well (see Figure 120). 
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Figure 119 – Histogram indicating effectiveness at changing the swarm’s largest 

principal axis length, LPA1 

 

Figure 120 – Histogram indicating effectiveness at changing the swarm’s smallest 

principal axis length, LPA3 
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8.4 Comments on Negative Emergence and Assured Autonomy338 

Another way to interpret the results of the swarm Yaw case is the manner in which it 

serves as negative emergence (undesirable emergence behaviors as discussed in [259]). 

For the “red team,” the ability to force another swarm to maneuver off course is a success. 

However, for the “blue team” it is a serious failure, and an exploit. If the swarm were set 

up to perform a mission autonomously, blue team’s decision-makers would likely test the 

swarm behavior in various non-adversarial contexts, and then deploy it in real-world 

missions (say, to survey a wildfire). Under the assumption of a non-adversarial context, 

blue team’s decision makers might equip the drones to report back its performance using 

the standard performance metrics given in SwarmLab (safety, order, connectivity, etc.). In 

that case, the only metrics that might show unusual behavior would be order and safety. 

Suppose, however, that red team perfected the art of redirecting a swarm safely. The only 

metric remaining that blue team can use to know something is going wrong is the change 

in order. To blue team, changes in order would seem like the swarm is maneuvering around 

a very large, unforeseen obstacle, which they might dismiss as the fire spreading rapidly, 

or a large cloud of smoke, or a sensor malfunction. It might take tens of minutes, if not an 

hour, before the blue team decides to recall the swarm, which gives red team enough time 

to confiscate the swarm. Performing an exploitation analysis like the one described here, 

blue team would have noticed that most of the standard MoMs are insensitive to this 

maneuver, which would have prompted them to consider new MoMs and new requirements 

                                                 
338 This author would like to thank Dr. Domerçant and Dr. Schrage for the insightful feedback that led to this 

section. 
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for their design (e.g. the capability of reporting and responding to deviations from their 

mission). 

This leads to the question of how one can be assured that an autonomous system can 

perform a mission effectively and safely, as discussed in a work published just six months 

ago [260]. While assured autonomy is outside the scope of this thesis, it seems clear that 

the assurance literature is firmly anchored in SE and has not yet advanced beyond the gaps 

cited early in this thesis. The aforementioned document clearly echoes the problems with 

complex/emergent behaviors that inspired this thesis, such as: 

1. “Assurance is context-dependent and not once and for all” [260]. 

2. There is a gap in current capabilities such as the “verification and validation techniques 

that enable the analytical evaluation of novel features such as non-determinism, 

complexity, and uncertainty” [260]. 

3. “The ability to trace the root cause of failures is critical in autonomy” [260]. Later in 

the document, “Because autonomous systems are typically heterogeneous” (as are most 

SoS, see references cited in Section 1.5) “their verification is likely to require a range 

of methods rather than a single unifying tool… The outcomes of these techniques 

should … help eliminate unintended functionality…” [260]. 

Compare those items to: 

1. Kinsner’s observation from 2010 cited in Section 1.6, “Complexity appears to be 

context sensitive, and cannot be defined universally, once and for all” [80].  

2. Kalawsky’s observation from 2013, also cited in Section 1.6 that “Development of 

reliable early detection of undesirable emergent behaviour… especially for Systems of 
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Systems” is one of the Grand Challenges in the Verification, Validation and Assurance 

of extremely complex systems [93]. 

3. The Research Problem of this thesis stated in Section 1.6, which was proposed to the 

committee nearly 18 months ago: “The traditional SE approaches to defining the 

properties and behaviors of a SoS that are distinct from those of its constituent systems 

lacks generality and traceability, and results in designs whose behaviors are only 

partially understood, the remainder of which can be exploited for some unintended 

purpose.” 

These statements by the community researching autonomy demonstrate that the research 

conducted in this thesis is still relevant, and that the problem of emergent behavior 

detection, and exploitation is still cutting-edge research. As illustrated by the adversarial 

boids and drone swarm case studies, the method in this thesis can be used to diagnose 

physically non-decomposable systems (self-organized systems), functionally non-

decomposable systems,339 and to identify opportunities for emergent behavior exploitation.  

                                                 
339 More work is needed to obtain sufficient conditions for emergent behavior detection, but the necessary 

conditions compiled here are a good starting point. 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

The development of a method for emergent behavior detection in SoS has been called 

one of the grand challenges in the verification, validation and assurance of complex 

systems [93], and is one of the major research areas for Systems Science identified by the 

International Council on Systems Engineering [94]. One quality that INCOSE has 

determined to be the opposite of an emergent behavior is a behavior that can be 

decomposed into smaller functions. 

Since the early 2000’s, the Department of Defense adopted a Capabilities-Based 

approach to its acquisition program, and since then has continuously conducted 

Capabilities Based Assessments and Fleet Synthesis Studies (see Section 1.3-1.4), both of 

which are designed to help guide the DoD’s system acquisition decisions. The CBA and 

FSS both depend on the ability to decompose system requirements and capabilities into 

smaller sub-system functions, and sub-functions. However, most acquisitions involve 

complex systems or SoS that exhibit emergent behaviors, which are non-decomposable. 

The presence of unforeseen emergent behaviors, particularly undesirable ones, can make 

systems vulnerable to attacks, hacks, or other exploitation, or can cause delays in 

acquisition program schedules and cost overruns in order to mitigate them. As the DoD 

increases its acquisition of modular platforms, unmanned vehicles, drone swarms, and 

other advanced technology, the influence of emergent behaviors will only increase.  
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The research objective for this thesis is to develop a method for making quantifiable 

SoS emergent behaviors340 traceable to the patterns of interaction of their constitutive 

systems, so that exploitable patterns identified during the early stages of design can be 

accounted for. This objective was chosen upon identifying several gaps in the SE literature: 

1. Standard functional decomposition methods do not extend to emergent behaviors in the 

sense that independent functions at the extremes of the graph (those that can be directly 

controlled) no longer correspond to the coupled functions that directly cause the 

desired (emergent) behavior. 

2. There is no method by which component interactions can be used to predict the 

existence of an emergent system-level property or behavior and traceably attribute a 

quantifiable, system-level property or behavior to that system. 

In layman’s terms, the problem of emergent behavior is like the problem of trying to 

reverse-engineer the properties of a molecule when the only information one has is the 

properties of a few isolated atoms. Unless one can determine how the atoms interact, how 

those interactions cause the atoms to arrange themselves, and how the resulting molecule 

interacts with other molecules, it is impossible to make quantifiable statements about the 

properties of molecules. The same analogy extends to any system exhibiting emergent 

behavior, but this thesis focuses on self-organized systems (e.g. flocks of birds, swarms of 

unmanned quadcopter drones, dogfighting pilots) in order to build a logical argument free 

                                                 
340 Early in the text this problem is stated in terms of “non-decomposable” behavior. Those behaviors are 

simply referred to as emergent behaviors here for clarity and brevity. The definitions are discussed in Sections 

1.5-1.7. 



 364 

of circular reasoning. The literature review revealed that the two aforementioned gaps 

appear to be caused by a confluence of other gaps: 

3. Some acceptable baseline set of definitions for emergent behavior is needed in order to 

build a useful ontology. 

4. An ontology that accommodates emergent behavior and enables falsifiable claims of 

system “existence” is needed as a philosophical foundation for a mathematical method. 

5. There currently exists no single mathematical method that performs all the steps needed 

to satisfy the research objective. 

It is the lack of a mathematical method that prevents two final gaps from being filled: 

6. There is no widely accepted approach for mining data to derive model of emergent 

behavior. 

7. There is no widely accepted approach for qualitatively and quantitatively associating 

emergence with components. 

Without this data mining and behavior association approach, there is no modeling or 

analysis method that will adequately characterize emergent behavior, and thus no decision-

maker will adequately account for said behaviors in a systematic way. Currently, when 

engineers and decision-makers are faced with systems that exhibit emergent behaviors, 

they must rely on their personal education and experience to determine whether and how 

to exploit or avoid that emergent behavior. The current state of the art is often ad-hoc, 

combined with sets of best-practices disseminated via organizations such as INCOSE, or 

research methods limited in their scope. The main advantage of a systematic method, such 

as the one developed here, is that it can be improved incrementally (as opposed to re-
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inventing the methods for each new problem), and its limitations are easier to diagnose and 

remedy because the underlying assumptions of the method are clearly stated and discussed. 

9.1 Summary of Method and Research Findings 

In order to derive a mathematical method for emergent behavior identification and 

exploitation, more information was needed about the two main objects of study: systems 

of systems and the emergent behaviors they exhibit. This led to the formulation of the first 

two research questions: 

 Research Question 1: Which essential features of emergent behavior constitute 

necessary conditions that can be implemented in a mathematical/computational model? 

 Research Question 2: What minimum set of data is necessary to simulate a SoS that 

satisfies the requirements for emergent behavior? 

In order to answer those questions, it was first necessary to identify a set of useful, and 

minimally controversial definitions terms including, but not limited to: system, complex 

behavior, emergent behavior, and complexity. From these definitions, this research built 

an ontology from which it became possible to perform two important tasks (1) to identify 

a behavior in a falsifiable way, identify a system and its components in a falsifiable way, 

and to trace the emergent behavior to that system, and (2) to justify using numerical 

simulations as a test bed for studying emergent behavior. Thus, it was possible to address 

Gaps 3 and 4 from the literature, as well as parts of Gap 2. It should be noted that although 

Gap 1 motivates the research problem, the fact that emergent behaviors are non-

decomposable in the sense presented here is an inescapable reality. Thus, the research 

objective (following Gap 2) is to create a method for addressing non-decomposable 
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behaviors by making them traceable.341 In the process of building the ontology, seven 

necessary conditions were found in the literature to be the answer to Research Question 1, 

and four pieces of required information were found, from the literature, to answer Research 

Question 2 (see CHAPTER 4). 

 The remaining gaps (Gaps 5-7 and the rest of Gap 2) were addressed by the 

development of a mathematical method. This process resulted in three additional research 

questions, each of which is accompanied by an experiment, because without 

experimentation it is impossible to determine that the predictions made by the 

mathematical method actually work in practice, or that the method itself is effective and 

useful. The three research questions were: 

 Research Question 3: How many nontrivial quantitative emergent properties must a 

simulated SoS have? 

 Research Question 4: Which quantitative properties are candidate emergent properties 

of a simulated SoS? 

 Research Question 5: Once identified, how can emergent behaviors be exploited? 

Thus the goals of these questions, and the method itself, was to determine how many 

emergent properties a system would have, how to identify them within a set of numerical 

data, and how to exploit the emergent property once it is found.  

                                                 
341 This is a generalization of decomposability. Traceability enables the identification of cause-effect 

relationships where the cause is collection of coupled component interactions operating over time, rather than 

independent, sequentially executed functions (as it would be if the behavior were decomposable), and the 

effect is an emergent behavior (as opposed to a decomposable behavior). 
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It was found that Research Question 3 could not be answered as stated. Instead, 

Hypothesis 1 formulates an upper bound on the number of emergent properties a system 

can have based on the quantification of a form of data compression associated with the 

structure of the self-organized system. This quantity is calculated during the first major 

step of the method (the pattern recognition step). The tools for pattern recognition used in 

this thesis are found in the literature. 

In order to answer Research Question 4, a set of numerical conditions were 

developed that combined the necessary conditions obtained for Research Questions 1 and 

2, to a set of numerical criteria developed for this thesis. These criteria are part of the 

second major step of the method (the behavior association step). As the name suggests, this 

step associates a specific emergent behavior with a self-organized set of components (i.e. 

a system). By Hypothesis 2, the numerical criteria are considered sufficient conditions for 

emergent behavior detection. 

 

Figure 21 – Essential steps of Emergent Behavior Exploitation Method 
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Research Question 5 is answered using tools from the literature. It is determined 

that a simple sensitivity analysis provides ample information for ways vs. means decisions. 

When combined with simulations, the exploitation analysis, which is the third and final 

major step in the method, determines the impact of the exploit on system performance. 

This information can be used to develop system requirements, or identify a need for new 

measures of merit (if the existing metrics are insensitive to the exploit). The three major 

steps of the method are summarized in Figure 21, reproduced here for convenience. The 

intuitive nature of the sensitivity analysis does not guarantee the effectiveness of the 

exploitation analysis step. Therefore, to demonstrate that the exploitation analysis 

technique, and by extension the method as a whole, is effective, Hypothesis 3 states that 

targeting the system-level (emergent) property will be more effective than targeting the 

system components (component-level properties).342 

 Hypothesis 1 was falsified by experiment. The evidence suggests that either the 

maximum number of emergent behaviors is not a linear function of data compression, or 

that the maximum number of emergent behaviors is not determined at all by the self-

organization of the components. In both CHAPTER 6 and CHAPTER 8, the number of 

possible emergent properties easily exceeded the maximum value predicted by Hypothesis 

1. Upon examination of the arguments and findings in Dr. Vadim Kim’s thesis [59], 

however, it seems that the latter explanation is probably the correct one.  

 Hypothesis 2 was also falsified by experiments in CHAPTER 6. Both a false 

positive was found, and the conditions were determined to be incomplete. Therefore, the 

                                                 
342 This is phrased slightly differently in the main document because the components in question are simulated 

pilots. 
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numerical criteria are not sufficient conditions. However, the ability of the symbolic 

regression tools used in the behavior association step to distinguish data sets where system-

level interactions had taken place from data sets where no interaction had taken place 

suggests that the numerical criteria can be added to the list of necessary conditions, and 

that overall, a robust list of necessary conditions for the identification of emergent behavior 

have been obtained. 

 Hypothesis 3 was supported by experiments in CHAPTER 7 and by example in 

CHAPTER 8. In both case studies, the sensitivity analysis yielded insights for emergent 

behavior exploitation, and the rules designed to target those behaviors had a dramatic 

impact on system performance. However, in CHAPTER 7 it was found that the exploit had 

a significant impact on the measure of merit, while in CHAPTER 8, the exploit had less of 

an effect on the measure of merits despite the fact that the exploit obviously succeeded and 

served a useful function. Thus, the results from CHAPTER 8 indicated that additional 

measures of merit were needed (particularly those related to performing specific mission 

tasks, rather than the more generic metrics common to drone swarm studies).  

Another important consequence of Hypothesis 3 being supported is that the method 

was shown to work, and thereby satisfy the research objective, despite the lack of sufficient 

conditions for emergent behavior identification. Therefore, not only did the exploitation 

analysis step succeed in identifying an exploitable behavior, this behavior was also traced 

to the pattern of component interactions that generate the self-organized system (the trace 

is performed by the method during the first two steps). Therefore, this thesis succeeded in 

developing a method that achieves the research objective. Achieving this research objective 
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addresses the research problem: the method in this thesis is generalizable, and enables the 

identification and tracing of unintended exploitable behaviors to the relevant components. 

9.2 Future Work 

The definitions, ontology, and mathematical method developed in this thesis provide 

numerous opportunities for future study. First, the pattern recognition tools used in this 

thesis rapidly become inefficient as the number of system components increases. Future 

studies can explore the use of a variety of sophisticated machine learning tools for pattern 

recognition in large data sets. Second, while numerous necessary conditions for emergent 

behavior identification have been found, future studies should continue to search for a set 

of sufficient conditions that can identify emergent behaviors in numerical time series data. 

Third, the sensitivity analysis used for the exploitation analysis step is a good baseline, but 

it does not prescribe a specific exploitation approach. Furthermore, more techniques for 

quantifying the performance of exploits, or for suggesting new measures of merit if the 

existing list is insufficient are needed. 

Regarding the ontology in this thesis, the method described here satisfies the research 

objective for simulated self-organized systems and appears to be extendable to other 

system types and real-world experimental data. Nevertheless, future studies are needed 

wherein the method is extended to real-world systems and artificially-organized systems 

(i.e. designed systems) to determine whether there are additional challenges, or whether 

new tools are needed. 

The method in this thesis is limited to properties that are represented by continuous 

numbers (as opposed to discrete or ordinal variables). Extensions of this method (or new 
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methods) that deal with discrete periodic signals may also have to grapple with the well-

known halting problem. This method is also limited to studies of simulations where the 

model is assumed to be valid and efficient. While those assumptions were acceptable for 

this work,343 such assumptions can rarely be made for real systems. More research is 

needed to grapple with the challenges presented by imperfections in the simulation and 

discrepancies between simulated and empirically observed emergent behaviors. 

Furthermore, this method studies simulations with idealized components and idealized 

environments. More research is needed for simulations where the components are not 

idealized, as such simulations are typically needed for generating higher fidelity data. 

Finally, this thesis focused on systems with identical and interchangeable components. 

More studies are needed of systems with varied components. 

It appears that emergent-behavior detection may be a fundamentally semi-empirical 

endeavor. It may be that emergent behavior is to systems engineering what turbulence is to 

fluid mechanics, and nonlinearity is to algebra. It is the set of infinite possibilities that 

follows after the simplest problems are well understood. Like turbulent flows, there will 

probably be some special classes of emergent behaviors that can be predicted and concisely 

modeled by observing that they conform to some simplifying constraint, while the 

overwhelming majority of them may remain areas where a human will have to exercise 

individual judgment. 

Researchers wishing to follow in the philosophical framework of this thesis are 

encouraged to read the following:  

                                                 
343 If the method does not work on the ideal case, it probably will not work on the real case. 
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 “General System Theory” by Hofkirchner and Schafranek [198] 

 “Emergence: logical, functional and dynamical” by Mitchell [144] 

 “Emergence Theories and Pragmatic Realism” by El-Hani and Pihlström [204] 

 “An Information-Theoretic Primer on Complexity, Self-Organization, and 

Emergence” by Prokopenko et al. [206] 

 “Challenged by Instability and Complexity ... Questioning Classic Stability 

Assumptions and Presuppositions in Scientific Methodology” by Schmidt [156] 

 “On the Limits of Bottom-Up Computer Simulation: Towards a Nonlinear 

Modeling Culture” by Richardson [155] 

These are not quite introductory texts, but systems engineers will have already received the 

necessary foundational instruction. Once again, the list of authors given in Section 1.7 is 

recommended: Baas, Ryan, Kubík, Wimsatt, Crutchfield, Abbott, and Minati. Finally, the 

reviews by Kim [59] and Jodoin [118] are thorough, but go in different directions. 

 Referring back to the “non-decomposable” nature of emergent behavior, it appears 

that a simpler analogy would be useful: self-organization is to physical decompositions 

what emergent behavior is to functional decompositions. Physical decompositions 

graphically depict components and their interactions. Some of those interactions take on 

the added significance of enabling a new arrangement of components. This new 

arrangement (if stable) becomes a system in its own right, and so should be depicted as a 

latent node in the original physical decomposition (see Appendix for additional discussion 

on latent node representations). Functional decompositions graphically depict actions 

(functions) undertaken by the objects at various levels of abstraction, and the relationships 
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between lower-level actions and higher-level actions. Some of the relationships between 

actions take on the added significance of becoming a new process. This new process (if 

exploitable) becomes an action in its own right, and so should be depicted as a latent node 

in the original functional decomposition. This may prove to be a more fruitful 

contextualization of the problem going forward. 

 

Figure 121 – (a) Complex system taxonomy adapted from [81], (b) modified 

taxonomy demarcated by decomposability rather than simplicity 

As shown in Figure 121, it is possible to extend the complex system taxonomy first 

developed by Balestrini-Robinson [81], to a new categorization demarcated by the 

decomposable/non-decomposable dichotomy used in this thesis. Some slight changes to 

the classification of certain systems occurs. In this new taxonomy, systems that have 

coupled complexity would include most living biological systems, as well as many 

chemical systems. This taxonomy builds on the findings of this research, as well as the 

arguments by V. Kim [59] so that a system can be self-organized without exhibiting 

emergent behavior. In this taxonomy, systems that are physically complex but not 

functionally complex, or vice versa, no longer have a 1:1 mapping between component and 
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function (see Stair Climber example in Section 1.6, and the latent node discussion in the 

Appendix). Other ways to cast the problem that may facilitate future research include: 

 Emergent behaviors as the direct analogy of self-organization (as stated above): 

consider a set of functions arranged sequentially (decomposable), and compare that 

to a set of functions arranged simultaneously, arranged in parallel, or coupled 

together. Search for new functionality obtained as a consequence of the process in 

which the functions participate (“process” being the name for the arrangement of 

functions). In other words, consider the relationship between how coupled a 

system’s functions are and how complex the resulting system is (in terms of new, 

system-level functionality). 

 Emergent behaviors in association with data compression: consider a mapping that 

takes data compression measured in terms of information entropy and/or 

Kolmogorov complexity, rather than model time complexity, as an input and 

outputs the number of new functions obtainable as a result of the compression. 

 Non-reductionist modeling: in keeping with Kitto’s thesis, re-write the governing 

equations so that interactions and behaviors are the central “object” of the equation, 

as opposed to the physical components of the system. Then, just as patterns can be 

found in self-organized systems, patterns can be found in this new set of equations. 

That data compression could then map directly to the number of new 

behaviors/interactions since the pattern is based on a set of behaviors rather than a 

set of physical component properties. 
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Clearly there is much more work to be done on the subject of emergent behavior. While 

this thesis hopes to have made a useful contribution to the topic, it is only one of many 

more studies to come.  
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APPENDIX A. SUPPLEMENTAL MATERIAL 

Topics briefly mentioned in the document are discussed here. 

A.1 On Hypergraphs 

Consider the Stair Climber example again, but this time represented using a 

hypergraph344 wherein the higher level behavior exists because of the interactions of lower-

level systems, but is not attributable to any a single or aggregated lower-level behavior 

[67].345 In a typical physical decomposition (as in Figure 2-Figure 3 “phy” plots), one can 

represent entities (e.g. a system) as a node, and interactions between entities as edges 

connecting nodes. To create a hypergraph, a higher-level node can be made up of multiple, 

interacting, lower-level elements that, combined, enable the higher-level node to interact 

with some other entity via a behavior that is unique to the higher level node. That is, an 

edge connecting higher-level nodes can be created because a collection of interactions 

between lower-level nodes (contained entirely within a single higher-level node) exist that 

collectively enables the interaction346 (see Figure 122). In this example, the Pull, Push, and 

Attach nodes are collected into the Lift node, and Move is depicted as interacting with Lift. 

The Move and Lift nodes are collected into the Climb Stairs node. Note that, unlike the 

hypergraphs in Figure 2-Figure 3, this graph does not have matching supply / demand 

nodes. 

                                                 
344 A heterarchical structure could also be represented using a hypergraph, but would require permitting 

lower-level nodes to be members of multiple higher-level nodes and edges connecting nodes of different 

levels (a highly coupled hypergraph). An alternative would be a cyclical layered graph. 
345 Grisogono uses “emergence” in a sense nearly interchangeable with “complexity” as used here. 
346 Though not referred to as a hypergraph, an example of this can be found in Figure 2 of [284]. 
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Figure 122 – Cyclical Layered Graph (Figure 8) redrawn as Hypergraph 

That scheme was inspired by the “capabilities supplied / demanded” convention used in 

Grand Challenge work tangential to this thesis [261], and is intended for ease of use within 

a CBA/FSS context. In those figures, the hypergraph itself denotes causation: the nodes 

denote objects, the edges denote interaction between objects, and the collection of nodes 

with edges into a higher-level node denotes causation. If all lower level interactions occur 

at the right times, then the higher level nodes is caused to exist. Figure 7-Figure 122, on 

the other hand, draws from the convention used in [71] wherein the edges denote causation. 

Regardless of the convention used, it is clear in Figure 122 that the Lift function is a node 

of nodes, and that Move must cause Lift in order to create the Climb Stairs function. This 

convention is revisited in Section 2.3. 

A.2 Additional Arguments on Simulated SoS 

The following comments are extensions of the discussion in Section 2.2.2, and are 

not necessarily sequential. 

Once the simulation is expanded to include a SoS, the simulated SoS necessarily 

possesses the same types of uncertainty as a real SoS. There are, however, two sources of 

epistemic uncertainty that a simulated SoS cannot possess. The first is the epistemic 
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uncertainty caused by the discrepancies between the simulation and reality. In a real-world 

experiment, the simulation never perfectly captures reality. The second cause of epistemic 

uncertainty is the engineer’s limited knowledge of the environment. Both issues has been 

eliminated by Assumption 1. More importantly, limited knowledge of the environment can 

be eliminated using the fifth idealization. 

Clearly, it is within the power of the programmer to eliminate component-related 

idealizations. For example, (1) a programmer uses procedural generation to define 

component properties and sub-components ad nauseum, which eliminates simplicity and 

indivisibility, (2) components can be programmed to delete under certain conditions, 

eliminating persistence, and (3) machine learning techniques are so sophisticated that their 

resulting behaviors routinely surprise their programmers,347 thereby eliminating 

predictability. The key concept is that when a programmer does implement these 

idealizations, the system cannot automatically inherit them (just as real systems built by 

engineers cannot inherit them). In simulations, a system is always divisible. If the system 

exhibits complex behavior, it is no longer predictable, and even when it does not, its cause-

effect relationships may be contingent on multiple, simultaneous component interactions, 

which eliminates any clean, one-to-one cause-effect mapping. Finally, whether the system 

is persistent is no longer trivial. Persistence in a system context typically implies some 

form of stable operation. Interactions among components or with the environment can 

disable the system, and so, in a functional sense, the system may no longer persist.348  

                                                 
347 For example [180] discusses a simulated game of hide and go seek, where the ABM agents develop 

“surprising” strategies. Thanks to James Pagan for suggesting http://openai.com/blog/emergent-tool-use/. 
348 This is where the campfire versus pile-of-sticks contrast becomes meaningful. For example, is a dead 

battery still a battery? For nominal purposes, yes, but functionally, no it is not. In informal military jargon, 

this also refers to the concept of an operational kill, which is outside the scope of this thesis. 
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The theoretical maximum number of levels of abstract interaction between 

simulated components, systems, and SoS, however, are a function of all possible 

combinations of components (without replacement), and all possible combinations of 

systems (without replacement) with the rule that every system must contain at least two 

components, and every SoS must contain at least two objects (system/component 

combinations being permitted).349 This massive number350 says nothing of the number of 

properties that exist at each level (some levels could be empty351). Finally, there is the 

assumption that components only operate within a single environment. If the mind is 

abstractly represented as an environment unto itself (an abstraction permitted by the 

observation that humans can respond to ego threats and physical threats similarly [262] 

[263]), then the argument can be made that intelligent agents operate in two environments 

simultaneously (one perceived, one real), that are coupled together via the body. Such 

considerations fall outside the scope of this work. 

It is worth noting that the challenges of emergent behavior present in SoSE also 

exist within a simulation. First, SoS boundaries (in the SE sense) are not always obvious 

because patterns of interaction can shift over time leading to different configurations of 

systems and/or components, as discussed in [183].352 Within a SoS simulation, it is possible 

for the definition of a particular SoS to become meaningless before the simulation 

terminates (i.e. the systems or interactions no longer persist, or their interactions change). 

                                                 
349 This is based on the assumption that any pairwise, ternary, etc., interaction of components can become a 

system unto itself (leading to pairwise, ternary, etc., interactions among systems, becoming a SoS). This 

generalizes to SoSoS… 
350 Szabo and Teo also remark on how rapidly the number of candidate properties of a complex system can 

grow from just a few basic components [96]. See also Kim’s discussion of bottom-up simulation [58]. 
351 Again, there is no one-to-one correspondence between physical and functional decompositions. 
352 Note also that they use weighted, labeled multigraphs (not hypergraphs). 
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This raises the question of whether the new configuration has become a different SoS with 

properties unrelated to the previous configuration. It may not be possible to answer this 

question in a simulation of fixed scale (much like it cannot be answered in a real experiment 

with limited observations). Second, since systems do not inherit the idealizations of their 

components, partial or collective system behaviors/interactions are not necessarily 

attributable to the SoS. For example, systems that are assigned to a SoS may not have 

operational envelopes that overlap.353 If only a subset of the systems participate in an 

activity, is that truly a behavior of the SoS? It certainly cannot be an emergent behavior of 

the SoS, since it is inherited directly from its constitutive systems (and falling outside the 

scope of this study). Similarly, the failure of a real SoS to behave as expected may require 

component-level or system-level redesign rather than SoS-level redesign. Thirdly, consider 

cases with systems that possess partially or completely redundant behaviors 

(interchangeable systems). If systems are physically interchangeable but functionally 

equivalent,354 which can happen with ships in a fleet or subsystems on a modular ship, then 

the systems are indistinguishable by their functional decompositions. However, the 

seemingly minor differences between systems can produce wildly different emergent 

behaviors at the SoS level. Since the purpose of a functional decomposition is to distinguish 

objects via their behaviors, this approach creates a paradox wherein two SoS are only 

distinguishable by their emergent behaviors, which can be very difficult to 

                                                 
353 Suppose a SoS is made of 5 systems. Sometimes 3 systems will operate together, sometimes all 5, 

sometimes all 5 will operate independently, sometimes 2 systems will cause 1 system to fail, etc. 
354 This forms part of the basis of evolutionary SoS. 
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detect/predict.355 This same issue occurs in practice. Thus, many of the challenges of SoSE 

remain present in SoS simulations. 

A.3 Equation-Free Modeling 

Beginning in 2000, Equation-Free Modeling (also called Equation-Free Multiscale 

Computation) has been proposed as an alternative method to emergent property or behavior 

identification (termed macroscopic property/behavior) using component-level simulation 

data (termed microscopic) [264] [265]. Essentially, this technique creates two samples 

from a single data set of simulated low-level components. One sample is taken over very 

short time steps, and a second “coarse grain” sample taken over much larger time steps. By 

comparing the dynamics of both samples, this method attempts to extract higher-level 

property information from low-level data by filtering out long-term trends that are distinct 

from short-term behaviors without ever generating an explicit equation that relates the two 

sets of properties. Thus, the method relies on three assumptions: (1) a model356 exists that 

relates the microscopic properties to macroscopic properties, i.e. upward causation is 

occurring, (2) a macroscopic property exists and, in general, is known in advance, (3) the 

proper length and time scales are known in advance, which dictates the time steps for 

sampling the data. In many applications, researchers derive the macroscopic properties 

from experiment, and so the time scales are known in advance (i.e. the duration of 

simulation needed for some macroscopic property to appear can be estimated in advance) 

[195] [265]. In this case, the main challenge left to the researcher is to select the time step 

size. The specific steps are more involved, and present additional challenges, but this 

                                                 
355 Thus evolutionary SoS taxonomies can fall victim to the fallacy that a velociraptor is an archaeopteryx 

which is also a pigeon depending on the level of detail of their functional decompositions. 
356 Not a simulation, which would be trivial, but a formal mathematical model of some kind. 
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characterization suffices to distinguish the capabilities of the equation-free method from 

the scope of work in this thesis at a philosophical level. 

First, this thesis will not assume that a model exists relating high-level behavior with 

low-level behavior throughout a simulation because, in general, this assumption does not 

hold with regards to emergent behavior. The ultimate reason for this, as argued in Section 

2.2.2, is that systems and SoS, when simulated, are not persistent, indivisible, or 

predictable. Since the macroscopic property is the property being sought, if the SoS 

possessing that property does not persist, then the property does not persist, therefore, the 

model becomes undetectable once the SoS vanishes. If the object is divisible (while 

retaining its definition, as flocks are commonly thought to be), then there can be multiple 

simultaneously occurring instances of a system, which will confound measurements and 

complication the process of finding a model. Finally, the need for predictability goes 

without saying. For example, in a simulation that runs for a long period of time, it is very 

possible that a macroscopic property will appear in the data at multiple distinct points in 

time, and last for different intervals of time, and that the majority of the simulation time 

will correspond to the formation, dissolution, and non-existence of that property.357  

Second, imagine that a molecular dynamics simulation could be executed for a drop 

of water left outside on the pavement during winter, and the simulation generated data 

representing 24 hours of behavior. Over the course of that day, under the right weather 

conditions, that drop of water can grow (due to precipitation), shrink (due to evaporation), 

or freeze (due to the cold). If the desired macroscopic property is the Young’s Modulus of 

ice, it makes no sense to sample the data when the water is in liquid or gaseous phase (lack 

                                                 
357 The analogous argument to this research can be made by replacing the terms “macroscopic property” with 

“emergent behavior” or “property of higher-level object” or SoS, etc. In other words, if the SoS breaks during 

a simulation, then whatever model of high-level behavior there may have been becomes invalid for the rest 

of the simulation. So, while there may have been such a model, it does not make sense to assume one can 

take meaningful measurements of the properties in question throughout the simulation. Once the SoS breaks, 

the model breaks too. 
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of persistence). Furthermore, the Young’s Modulus becomes difficult to measure when the 

drop is experiencing a phase change or when snow or rain comes into contact with the 

frozen ice on the ground (lack of indivisibility, and predictability). Only when the water is 

frozen, and left in relative isolation, can one say safely assume that “a model exists” that 

relates microscopic to macroscopic properties.358 This a major hurdle within unstable, non-

equilibrium simulations, and illustrates why the second assumption (that a macroscopic 

property exists and is known in advance) cannot be expected to hold for emergence.  

Third, in general, there are no grounds for selecting any particular time step or 

simulation duration a priori, particularly when the macroscopic behavior in question is 

unstable and nonlinear.359 This helps explain why researchers that utilize experimental 

observations have had success using equation-free modeling [264] [195], but also why 

prior knowledge of macroscopic properties is not a sufficient condition for the equation-

free method to succeed [265]. When Samaey, Holvoet, and De Wolf applied the equation-

free approach to simulated data exhibiting self-organization360 to discover unknown 

macroscopic properties, they were able to successfully identify “aggregative properties” 

(in this case, expected values and standard deviations) [195].361 By the definitions in this 

thesis, Samaey et al. identified non-emergent properties of a self-organizing collective. 

While their work was a success by the goals of their research, and other researchers have 

introduced additional analysis tools to improve the method’s efficacy, the authors 

nevertheless warn, “One conclusion is that the application of equation-free analysis is by 

far a non-trivial exercise. The iterative application of the technique however proves helpful 

                                                 
358 This assumes a stable model (within the context of patterns and self-organization). A terribly nonlinear 

model may also exist, but unambiguously identifying that model would require that only two levels of 

abstraction exist throughout the simulation, which is not guaranteed. 
359 Self-organized criticality [194] [291] shows that slowly organized phenomena can cause sudden and 

severe changes in an environment (e.g. earthquakes). 
360 Since the macroscopic properties were not known in advance, he dubbed this an exploration for emergent 

properties. 
361 While emergent properties are nonlinear, a high level object can certainly have linear properties. 
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in thoroughly understanding the link between microscopic and macroscopic behaviour” 

[195]. While equation-free modeling is a promising approach, the form of analysis it is 

designed to facilitate is outside the scope of this thesis. 

A.4 Periodicity Revisited 

In the case of periodic behavior, however, the behavior itself provides two key pieces 

of information that can be used to derive an appropriate time step size and simulation 

length: they are the period and amplitude of the periodic function. To the extent that 

emergent behaviors can be traced to patterns, there is no reason to believe that an emergent 

behavior can be properly observed over a time scale smaller than one period of oscillation. 

To empirically confirm that an emergent behavior is taking place, at least two periods are 

required (otherwise, there is no way to confirm that the first oscillation was periodic), 

which determines a lower-bound on the required simulation time. Furthermore, the extent 

to which the pattern measurably manifests as a macroscopic property at some larger time 

scale is influenced by the amplitude of the oscillation. Suppose the periodic behavior is a 

mechanical vibration (like a weight on an undamped spring). The amplitude of oscillation 

becomes a minimum length scale as well as a maximum perturbation. The manner in which 

that perturbation propagates throughout the system depends on a variety of factors, but 

under the right circumstances, the effect can be damped out so that, upon “zooming out” 

far enough, the overall behavior appears stable. This can be treated using order of 

magnitude analysis techniques such as those common in [160], and in this way, periodic 

behavior can provide a mathematically rigorous basis for associating resolution with scope 

and scale, as discussed in Section 1.7 In short, following the example provided, there are 

two intervals in question here, and the largest of the two is the smallest interval needed to 

observe emergence: (1) time: twice the period of oscillation; space: greater than the length 

of the oscillation, or (2) time: the time between stabilized configurations of self-organized 

objects, whose pattern was perturbed by some outside entity; space: the length/area/volume 
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interval over which the self-organized object transitions from one stable configuration to 

the next in addition to the space needed to observe the object causing the perturbation. 

Although Ryan does not make this exact mathematical case, he similarly argues, “[a novel 

emergent property] arises from structure that is extended over the scope of the system… 

There is a difference between local and global structure in any system that exhibits 

emergent novelty. This explains why emergent novelty cannot be understood or predicted 

by an observer whose scope is limited to only one component of a system” [111]. To the 

extent that metastable pattern compression is lossy, this also means that the impact of 

information loss may scale, or, at the very least, that it will impede the observation of the 

cause of some emergent behaviors at higher levels. In the case of chaotic behaviors, which 

are inescapably lossy, it is still possible to apply the aforementioned scaling techniques, 

but scales would be based on the bounds of the chaotic behavior, which may be visited 

very rarely compared to periodic oscillations.  

One more implication of periodicity is that if the oscillation repeats for a time interval 

orders of magnitude larger than the period, then the probability density function of the 

amplitude will become sharply multimodal (the simplest case is the so-called inverted Bell 

curve observed for y = sin x), which can be used as the basis for simplifying assumptions. 

Although these features will not be used on the canonical study at hand (because the 

periodic function is the constant function), they provide important information for time 

scale selection. 

A.5 A Canonical Example of Emergence 

This section is provided for completeness, however, this example is too far removed 

from the intended application of this thesis to serve as a numerical experiment. The 

narrative from the previous section is resumed in CHAPTER 4. Conway’s Game of Life 

(GoL) is a zero-player game where a user can instantiate a white grid with black squares 
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(thereby switching them “on”), and then run the game to observe what other grid squares 

switch on or off as a result of the GoL rules [266] [267] [268]. A sample set of rules are 

given in Figure 123.  

 

Figure 123 – Conway’s Game of Life Progression of Self-Organization – images and 

rules excerpted from [266] [267] [268] 

Users of the software have observed that some initial configurations will result in self-

perpetuating patterns. In fact, some configurations will appear to move across the screen 

indefinitely (such as the Glider shown in [266]). Clever users later noticed that certain 

initial patterns could be distributed in space such that the patterns they generate interact to 

form new infinite patterns (commonly known as Gosper’s Glider Gun shown in [266], and 

in Figure 123 simply as “Glider Gun”). Over the course of several years, more researchers 

were drawn to build increasingly complicated mechanisms [269] until, in 2010, Paul 

Rendell created a full-blown Turing Machine inside of the GoL [267] [268], which is to 

say: a computer in a game in a computer. On their surface, nothing about the GoL rules 

indicates that a programmer can instantiate a Turing Machine. It took a substantial amount 

of time, curiosity, and human ingenuity to observe the patterns, identify their geometric / 
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organizational properties (e.g. center of gravity and velocity), and then space them out in 

such a way as to make other patterns that can interact to perform more complicated 

functions beyond merely self-perpetuating and moving.362 

 Finally, it is worth noting that this example illustrates emergence by design, which 

is not a topic explored in this thesis. This thesis relies on self-organization so that the 

criteria and methods given in CHAPTER 4-CHAPTER 7 can be tested objectively. 

A.6 Time-series using SISSO 

Although SISSO was not designed with time-series data in mind, there is a very 

straightforward workaround: simply replace the labels in the “materials” column with time 

stamp labels such as “ts5” for time step 5).  

 

(a) 

 

(b) 

Figure 124 – Time series of 2D SISSO descriptor trained on DoE #1661 and 

extrapolated to (a) NetLogo DoE #2394, and (b) NetLogo DoE #4787 

                                                 
362 It is a near impossibility to derive the Turing Machine from a random initialization. Once again, we see 

that emergence is highly sensitive to initial conditions. 
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If the user wishes to have SISSO treat time as an independent variable, an extra column 

would have to be added to the train.dat file with the appropriate time step values for each 

row of data. Figure 124 depicts a model363 produced by SISSO that was trained (regressed) 

on the time series corresponding to simulation #1661 (out of 5,000 simulations of flock 

interactions in the DoE), and then used to predict the time evolution of the same flock-level 

property in simulation #2394 and #4787 (i.e. extrapolation). In Figure 124a, the model 

extrapolates very well, fitting the Netlogo time series indicated by blue circles. In Figure 

124b, the model reproduces the trend of the actual simulation in a qualitative sense, but 

consistently underestimates the true value after roughly 10 time steps. 

 Unlike Approach 1, Approach 2 relies on path-dependent models. The value of the 

property at the next step in time is related to the value at the previous step. In Figure 124, 

the data was modified such that the initial condition was subtracted out from every point 

in time (the model of “Vy(t)” was fitted to the data of “Vy(t) – Vy(t=0)” and then plotted by 

reintroducing the initial condition of the simulation). There are many ways to obtain such 

a model, and in the field of Econometrics, it is common to use a special recursive function 

called an auto-regressive model (AR model).364 Many well-known functions have closed-

form AR models.365 For example, 

 𝑌(𝑡) = sin(𝜋𝑡 10⁄ )

𝑌(𝑡) = 2 cos(𝜋 10⁄ ) 𝑌(𝑡 − 1) −  𝑌(𝑡 − 2)
 ] [270] (76) 

                                                 
363 The term “2D descriptor” means that the model is a linear combination of two terms (e.g. 𝑦 =  3𝑒𝑥  +
 5.2𝑠𝑖𝑛(𝑥)/𝑥 +  0.12). Usually those two terms are nonlinear. 
364 The models in Figure 124 are not AR models. 
365 The interested reader is referred to [356] [356] [356] for accessible introductions to AR models. 
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 𝑌(𝑡) = 1.1𝑡

𝑌(𝑡) = 1.1𝑌(𝑡 − 1), 𝑡 > 0
 ] (77) 

AR models such as Eq. (77) are an example of auto-correlated functions. When studying 

auto-correlated functions in search of causal mechanisms (property x directly “causes” 

property y to change) a number of statistical issues arise beyond the problems associated 

with common goodness of fit measurements. For example, just as the function is auto-

correlated, the error of a regression on the data can be auto-correlated, which will bias the 

results and typically requires a correlogram to identify. Furthermore, although a variety of 

tools exist for studying AR models, many of the approaches that use these tools assume 

that major trends in the data are not explanatory in a useful way (such as seasonality in data 

[271]), or that the underlying variables are random [272], neither of which apply to this 

thesis. Also, note that the AR models in Eq. (76)-(77) are exclusively functions of time. 

This form essentially strips all obvious causal information from the model, so that now 

each time step is predicted based solely on the data of the previous time steps and the 

coefficients of the equation. In many real-world problems (e.g. climate change studies), 

this is an inescapable limitation of the data. In this thesis, it is tantamount to removing the 

causal information in order to apply statistical techniques that hopefully recover the same 

causal information. Finally, this thesis is tasked with the challenge of replacing a valid, 

obvious causal model (models of upward causation), with an elusive causal model that 

requires justification (models of emergent behavior). It is unclear that AR models and their 

associated tools will be any more or less effective than regressions in obtaining or justifying 

the emergent behavior model. Therefore, after some investigation, AR models and their 

associated tools have been excluded from this thesis. 
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A.7 Property Down-Selection Considerations 

Once a set of properties have been generated and mapped to a set of inputs using 

SISSO, candidate property equations that are inaccurate (per the statistics in Section 5.1.1) 

or computationally inefficient can be filtered out. However, the remaining list may still be 

long. Although the experiments for this thesis are based on the aforementioned metrics, it 

is worthwhile to discuss three more qualitative features that have received little attention: 

dimensions (as in, units of measurement), saliency, and sensitivity to perturbation (of the 

property, not the self-organized structure). 

In terms of units, an argument can be made that the units of the candidate property 

should be consistent with the units of the properties of the self-organized group (e.g. the 

length of the flock is the sum of the inter-boid displacements, therefore one derives its units 

from the other). However, many equations in physics have coefficients with units that 

resolve the incompatibility between the units of the output and the units of the inputs (for 

example, Newton’s equation for gravity has the constant G). Therefore, there is no 

guarantee that the units of the two entities will correspond or have some kind of linear 

relationship (e.g. the intermolecular distance of water crystals largely determines the 

volume of ice). Nevertheless, in the absence of such correspondence, one might wish for a 

compelling reason to accept the statistical correlation between two quantities. Finally, note 

that SISSO does account for units when generating algebraic combinations of terms366. 

A stronger quality, of course, would be saliency. The more often a particular property 

appears in various interactions, the better the chances that it is meaningful. Another way of 

                                                 
366 At least two symbolic regression tools emphasize this feature in their documentation. It is likely a standard 

expectation at this point. See Appendix. 
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defining saliency would be to run the simulation under multiple initial conditions to ensure 

that the relationship between the high-level property and the interaction is reliably 

predictive. Doing so does not serve the purpose of testing hypotheses in this thesis, and so 

it will not be used. Nevertheless, studies of cause and effect367 (e.g. model discovery 

studies) would do well to consider saliency as an important constraint. 

This leads to the third quality, which is sensitivity. It is not unreasonable to expect that 

higher level properties are insensitive to lower-level fluctuations (in general), but this is 

not always the case. Cases where the higher level property may be vary dramatically can 

result in a form of instability at the higher level of organization. That may lead to disruption 

of the high-level self-organization, or the instability be the driver for the next form of 

emergence. For example, one might consider micro-fractures in a metal beam to give rise 

to plastic deformation. Destruction of low-level self-organization gives rise to permanent 

changes in the self-organization of the beam, which is then reflected in the value of its 

high-level property (the Young’s Modulus). Too much stress, however, and the part will 

break. On the other hand, in animal muscle tissue, micro-fractures signal the body to heal 

and strengthen the tissue, leading to increased overall strength, which can result in a change 

to the behaviors that the organism is capable of exhibiting (e.g. gymnastics, martial arts). 

A.8 Brief Review of Time-series Analysis Using Granger Causality 

If a collection of time series are represented as AR models, it is possible to use 

Granger Causality (GC) to determine if the trends occurring in one time series are likely to 

consistently foreshadow similar trends in another time series. Despite the name, GC is not 

exactly a test for causation (see [273] and the Appendices), and it cannot be used as a stand-

                                                 
367 “Cause and effect” are used here in the engineering sense of the term (e.g. a force “causes” a mass to 

accelerate). This is an example of terminology that causes confusion between philosophers and scientists. 

Another example discussed Section 1.7 regarding the “existence” of a “physical object.” 
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alone test. Following the procedure outlined by Econometrician Dr. Dave Giles [274], 

testing for GC must be performed in conjunction with two tests for stationarity (one to test 

against false positives, and the other against false negatives), and a test for co-integration 

in order to verify its results (co-integration in a time series implies Granger causation, but 

the converse does not hold).368 This requirement presents numerous difficulties for this 

thesis. First, standard co-integration tests require estimating the order of integration of the 

time-series by repeatedly differencing the data until stationarity is achieved [275] [276]. 

Differencing will only render a time series stationary if the underlying trend is a finite 

polynomial. While it is true that many functions can be approximated over finite time 

intervals using truncated polynomials, this is extremely problematic because finite 

polynomial interpolations are notoriously bad at extrapolation, which means that the 

residuals are almost guaranteed to contain biased estimates due to an incorrect mean trend. 

Furthermore, this thesis strives to make statements about existence, not merely regressions 

on the data. Therefore, the estimated trend must be as accurate as possible (nonlinearity 

cannot be swept under the rug). Second, more powerful methods have appeared in the 

literature for treating time-series with non-polynomial trends using multiple approaches 

[277] including Fourier series [278]. While this would certainly better capture nonlinear 

trends, it raises the question of what it means to compute an order of integration since the 

Fourier series can be extended to fit nearly any data set. Furthermore, connections between 

this approach and GC tests are not readily available in the literature (as would be needed 

for a non-expert practitioner such as this author). More importantly, however, is the fact 

                                                 
368 Dr. Giles recommends using the Johansen test. An alternative is the Engle-Granger test. The Matlab 

Econometrics toolbox [368] implements these tests (cointegration, stationarity, and GC) as independent 

functions. Some expertise is required to implement Dr. Giles’ procedure, and it is unclear that an arbitrarily 

designed AR models can be supplied to the Matlab functions. 
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that a FS trend is only meaningful if the underlying trend is truly periodic, which need not 

be the case with regards to emergent behaviors.369 Finally, the biggest drawback of GC 

(despite its association with emergence in parts of the literature [219] [279]) is that the time 

series of the causal variable and the time series of the effect variable must exhibit a 

significant lag in time between correlated trends. If the causation is genuinely 

instantaneous370 (as it is for the cases studied here371), GC does not apply. Therefore, after 

careful consideration, it has been excluded from this thesis. 

As stated in Section 5.1.1, there is one line of research that merges data compression 

measures with AR models to test for causality [220]. Although the authors show their 

results are superior to the standard Granger causality test (and Transfer Entropy 

calculations, as in [280]), and the compression framework has parallels with the 

discussions in CHAPTER 3, their work will not be utilized in this thesis since AR models 

are not being used. 

A.9 Reasons for No Emergence or Surprise (in Simulation) 

There are a number of reasons why an emergent behavior may never materialize or 

defy the expectations of an analyst. In the case of no emergence: 

 If the components in a simulation all self-organize into one massive system so that there 

is nothing left in the simulation with which to interact, emergence will be undetectable 

(this limits the scale of properties that a simulation can predict). 

                                                 
369 The periodic nonlinearities are found in the self-organized structure, not necessarily the emergent property 

(the equation based on upward causation) or the equation describing the interactions that involve emergent 

properties (the equations relating high-level properties to each other). 
370 Some data sets may appear to have instantaneous causes due to insufficient sampling [365]. 
371 As an ABM expands in scope (literally including more agents and more space for them to interact in) the 

timescales will increase, including the time required for a cause to have a recognizable effect. 
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 The external components and system have no means by which to observe and act on 

the emergent properties of the new system (e.g. a chameleon changing color means 

nothing to a color-blind predator). 

 There are too few components, oversimplified components, or an oversimplified 

environment, and so no self-organization occurs. 

 The behavior is rare and the design space has not been sufficiently explored. 

 The time-scale over which the behavior makes a noticeable impact on the system is 

significantly longer the time interval over which the data is obtained. 

In the case of surprising emergence (simulated emergence inconsistent with experiment): 

 Incorrect rules for component behavior. 

 Numerical approximation in simulations of highly unstable nonlinear models. 

 Errors in the code. 

If the necessary interaction exists in the simulation, however, data mining tools and modern 

computing power provide the ability to search the space of simulated properties efficiently 

for good candidates. Once a set is found, the association between the property of a system 

and property of an entity external to that system can be made 

A.10 Comments on Causation and Graphs 

Graphs are very powerful mathematical representations. Just as they can be used to 

model physical and functional decompositions of systems, and have been successfully used 

to map system decompositions and interactions to computable models that quantitatively 

predict system behavior (system dynamics is precisely that [281] [282]), they have more 

recently been honed into specialized methods for extracting causal information from 

numerical data. Fantastic, accessible introductions are available in [283] [284]. Dr. Judea 
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Pearl’s work has gained wide recognition recently [285]. The text by Kline [286] provides 

a much broader introduction to the field (including Pearl’s work). These causal graphs are 

powerful to the extent that they can inform and guide experimentation, but beyond that, 

they are a purely mathematical approach to knowledge discovery that will face the same 

fundamental limitations any mathematical approach will face. Systems engineers should 

note that much of the work on these causal graphs has been done in fields that cannot 

perform experiments in the philosophical tradition of Karl Popper (e.g. social sciences, 

econometrics, etc.). The challenge faced by those fields is that they can rarely change the 

variables they are studying (see Chapter 17 of [284]).372 That challenge extends to 

emergent behaviors, but to a lesser degree: the variables cannot be directly controlled,373 

but they can be systematically influenced via lower-level functions, and the resulting trends 

can be analyzed. 

As suggested by Sections 1.6-1.7, the inspiration for this thesis was the realization 

that standard decomposition graphs cannot represent emergent behavior without a 

contradiction in notation, or a form of indeterminacy. If an edge represents the interaction 

between two objects (as in physical decompositions, where the nodes are the objects), then 

it cannot also represent the membership of some nodes within a higher-level node. If a 

node represents a function, and edges represent one function causing another (as in 

functional decompositions), then when multiple, coupled functions also collectively cause 

a higher-level function, it is impossible to determine from the diagram which function 

                                                 
372 This extends to military planning, as discussed in the first sections of CHAPTER 2. 
373 For two fixed levels of abstraction (the system and its components) emergent behaviors can exist as latent 

variables within a complex system (either unforeseen high-level functions, or unforeseen intermediate 

behaviors/functions that affect known high-level functions). Corollary: the representation as latent variables 

(like the hypergraph) attests to the “objective unpredictability” of emergence. Even after being discovered, 

it is still an intermediate node (or a higher-level node in a hypergraph, etc.). See Figure 126. 
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comes first, or how many functions happen simultaneously, or how long the coupled 

process must occur before giving rise to the higher level behavior, etc. (indeterminacy). 

This is the sense in which emergent behaviors are not decomposable. The challenge worked 

through in this thesis was the challenge of formulating the approach for overcoming this 

non-decomposability using the knowledge obtained by academic disciplines that are all 

asking different questions. Philosophy asks “How do we define what is real, and understand 

real causation?” Engineering and medicine ask “How do we best interact with reality to 

influence its outcome?” This is a subtle but significant shift in focus, because it reveals that 

engineers make many assumptions about the nature and existence of reality. The social 

sciences can be said to ask similar questions to those posited by engineers and doctors, but 

often cannot validate their answers with direct experimentation. Thus, another challenge 

for this thesis was to collect the right answers to the right questions, and construct a method 

for data mining and experimentation using the right tools (summarized in Figure 21). 

Before proceeding to a variety of important tools that can be used to build on the 

work in this thesis, the philosophical question of how causation is characterized within the 

context of mathematical models must be addressed. Although there are many avenues for 

stating the problem and ways to address it (see [287]) the simplest version with regards to 

emergent behavior is perhaps Gödel’s Incompleteness Theorem.374 In short, GIT was a 

response to an old aspiration: If all quantifiable knowledge in the universe can be expressed 

using mathematical concepts whose validity can be proven using the appropriate set of 

assumptions (axioms), then the discovery of all knowledge is a simple matter of finding 

the complete set of axioms and deriving all knowledge from those axioms. Gödel proved 

                                                 
374 See also Kitto’s review of the “Foundations of Mathematics” [73]. 
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this to be impossible. According to his theorem, mathematics is faced with one of two 

alternatives: either the list of axioms is complete and contains a contradiction (thus, 

anything can be proven, including fallacies), or the list of axioms is incomplete and there 

exists some true statement that cannot be deduced from the axioms. Therefore, there will 

never be such a thing as a complete, contradiction-free mathematical modeling of all 

knowledge. This includes any mathematical construct that aspires to be causal. There will 

always be the potential for confirmation bias, and all of the usual misleading fallacies in 

any approach. That is not to say causal inference schemes are futile, of course. It simply 

means that “causal inference cannot be reduced to a collection of recipes for data analysis” 

[283]. To repurpose the phrase by Dr. Laughlin, emergent behavior discovery requires 

“constant hand-shaking between theory and experiment” [75]. 

In their attempt to implement a causal inference computational framework (now 

available as an open-source python package [288]), Microsoft writes plainly about the 

challenges that motivated the development of their code library [289]:  

 Empirical causal inference is “daunting” despite the knowledge available in the 

literature [289] 

 Ensuring that underlying assumptions are properly identified and validated is also 

“daunting” [289] 

 Causal inference depends on the estimation of unobserved quantities, which itself 

depends on assumptions about the data-generation process [289] 

Although their code streamlines this process a bit, it does not inherently solve the 

fundamental problems in causal inference. As with all mathematics, the validity and 
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breadth of one’s underlying assumptions determines one’s ability to properly identify 

causation and model the effects that follow. Unfortunately, the use of assumptions is 

inescapable (otherwise, it is impossible to scope an investigation). These remarks by 

Microsoft, a well-resourced institution of talented scientists and engineers, temper our 

expectations regarding causal inferencing in general, as well as the ability to generalize 

any bottom-up modeling technique that explains causation across multiple levels of 

abstraction. Microsoft’s observations are consistent with arguments by Schmidt [156] and 

Richardson [155] that despite any framework’s ability to represent interacting components, 

only careful and thoughtful iterative experimentation will ultimately determine a model’s 

validity,375 and it will not always be possible to validate a model in a straightforward 

manner, even when the model is valid.376  

Within causal inference studies, selecting the right variables is paramount. The 

same is true for model discovery.377 This thesis, however, is not geared towards model 

discovery. Therefore, the questions in this thesis are not, “What is the true model?” but 

rather, “Do models of high-level behavior built with high-level variables explain more of 

that behavior than models built with low-level variables?” In this thesis, the simulation 

serves as the true model, and so the burden of finding an “equally true” emergent behavior 

model is lighter than it might otherwise be in other applications. CHAPTER 7 and 

CHAPTER 8 will study the extent to which it is possible to get away with emergent 

behavior exploitation in the absence of the true emergent behavior model by targeting 

                                                 
375 Readers interested in the subject of empirical validation are referred to a great article by Dougherty [268]. 
376 Models of chaos theory are typically valid in this sense. It is difficult to faithfully reproduce a simple, 

empirically observed chaotic trajectory in a computer, and impossible to do so for all trajectories. 
377 To an engineer, there is little difference between model discovery and causal inference, but that is partly 

because the causal linkages are usually the responsibility of the engineering professional, rather than being 

built into the mathematical notation of the model and structure of the model formulation process. 
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component properties as well as properties associated with the self-organized collection. 

The essence of this argument is that it is easier to identify an emergent behavior than it is 

to accurately model one (to derive the governing function describing the interaction, 

whatever its form may be). One can determine that a property is emergent if an adequate 

set of approximate models is found. However, if model discovery were the goal, or even if 

emergent behavior design were the goal, an experimentation step would be required to 

validate the model on a real system,378 and a broader set of model generation tools would 

be needed to explore the space of candidate functions. 

 Thanks to efforts by researchers around the world to provide open-source tools over 

the past 10-15 years, it is now relatively easy to create a very powerful, executable SE 

modeling environment for complex behavior, and SoS modeling. Physical and functional 

decompositions can be created using Python code that is open source and UML/SysML 

compliant [290]. The limitations of standard decompositions can be overcome with any 

one of several hypergraph libraries (HALP is in Python [291], and others can be found at 

[292] [293] [294] [295]). Those hypergraphs can then be interfaced with modeling software 

as well as causal inference methods [288] using Graph Neural Nets [296] (also an open 

source Python package [297]). A variety of simulation-based inference methods are 

reviewed in [298]. The System Dynamics Society provides links to open-source system 

dynamics models in R and Python [299]. A Discrete Event Simulator is also available in 

Python [300]. For simulations of objects that obey known physical laws, see also [301]. 

Graph nets can be used in a workflow to produce symbolic regressions as in work by 

                                                 
378 Again, “validation” here may be limited to a more qualitative sense. For example, the model predicts 

chaotic behavior, and the real system exhibits chaotic behavior that conforms to that same model (although 

it is impossible to validate the coefficients of that model with infinite accuracy). 
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Cranmer [302] (see Appendix for discussion of symbolic regression). The methods in this 

thesis are readily incorporated into such a workflow to mine the data for emergent behavior 

(using even more sophisticated pattern recognition algorithms, see Section 5.2 and [303] 

[304] [305]) as part of a larger system modeling and simulation environment. The pattern 

recognition and behavior association steps of this thesis would be performed on the output 

of simulation data, which would then alert decision makers to the presence of self-

organization and candidate emergent behaviors. Furthermore, a feedback mechanism can 

be built into the environment to update the SysML diagrams whenever self-organization 

and/or emergence are identified (this would require merging the SysML and hypergraph 

capabilities). The data throughput of such an environment can be made more efficient using 

any number of surrogate modeling, data compression, and machine learning techniques, 

and design considerations can be incorporated by mapping requirements to a constrained 

optimization algorithm module. The exploitation analysis step would be interfaced with 

the optimization scheme to provide recommendations for ways to modify system design 

(the approach for exploitation analysis will be illustrated in CHAPTER 7-CHAPTER 8). 

While this opportunity is exciting, it represents an additional 12-24 month code 

development process, and so, it is future work. Readers considering taking on this or a 

similar approach are referred to guidance on MBSE by Hause [306]. 

A.11 Brief Review of Other Symbolic Regression Tools 

The standard approach in regressions since at least the 1970’s was to assume the 

form of the function and fit the coefficients of the function to the available data until a 

suitable model is found (for example, entire methods have been built on cases where a 

polynomial can adequately fit a region of data [307]). Shortly thereafter, universal 
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approximators such as artificial neural networks gained wide use [308], with the 

philosophy being that if the true form of the function need not be known, then it is better 

to have a flexible function that can approximate any data set. Note, however, that an ANN 

achieves its flexibility through repeated application of linear combinations and 

compositions of the same function. Now that computers are powerful enough, researchers 

have shifted to studying the alternative to these approaches: rather than assuming a 

particular functional form and fitting the coefficients, consider instead a variety of 

functional forms (ranging from closed-form expressions to partial differential 

equations379). This approach has been called symbolic regression. PySINDy appears to be 

intended well suited for long time-series and produces partial differential equations as 

outputs [309] (the time-series in this thesis vary in length, but are generally much shorter 

than the examples given for PySINDy). Work by Cranmer [302] incorporates deep learning 

to guide the symbolic regression process. Both AI Feynman v1.0 [310], and 2.0 [311] 

produce a wide range of symbolic regressions, while AI Poincaré [312] generates symbolic 

regressions for conservation laws (as does work by Schmidt & Lipson [313]). Most 

notably, AI Feynman considers the time-complexity of the expression in its model-

selection scheme as well. However, their computation of bit complexity assumes finite 

precision representations, and counts parametrized terms within equations along with the 

operators themselves (e.g. in their kinetic energy example, the mass and velocity variables 

are counted along with the multiplication and division operations).380 

                                                 
379 It does not yet seem that any work has been done towards fitting integral equations to a set of data. 
380 A study comparing the various information theoretic and algorithmic complexity approaches is warranted, 

but outside the scope of this work. 
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A.12 Contrasting with Other Behavior Association Studies (Extended) 

Dr. Balestrini-Robinson’s PhD thesis [81] provides an interesting review of 

Complexity Science as well as a thorough review of the state of M&S. While his work 

references self-organization and emergence, he does not tackle the topics individually. 

Rather, his discussion centers largely on the concept of “organized complexity” and how 

this distinguishes complex systems from disorganized systems amenable to statistical 

mechanics (massive numbers of atoms) or “simple systems” with few systems and few 

variables (the discussion leans on work by Weaver; see [81]). His thesis then turns towards 

determining whether useful information about the behavior of large, complex systems can 

be obtained without a complete simulation of the system’s components and their 

interactions, and, if such a simulation is needed, determining which components are the 

most important to simulate and which behaviors are the most important to model in detail. 

To do this, Balestrini-Robinson relies on knowing the functional decomposition a priori (a 

graph that he shows to be layered, directed, and cyclical). Furthermore, he envisions an 

approach that is iterative where his Digraph modeling technique (DiMA) can be used to 

identify a lack of information in the simulation environment, which decision-makers can 

then use to modify said environment. His approach could be used in conjunction with the 

environment by Cummings, and makes the contribution of helping decision-makers avoid 

running unnecessary simulations. However, DiMA does not provide guidance on how 

many new behaviors have been omitted, or how to identify/derive them. 

Work by John Collier [314] provides a list of sufficient (and necessary) conditions 

for emergence as well as a strong rebuttal to Kim’s causal exclusion argument. He 

characterizes emergent properties as “not … reducible to the binary relations among [the] 
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components, [and] unpredictable from the properties of their compositional substrate, and 

to show new or novel properties that do not exist in their substrate” [314]. Although these 

appear to be similar to the concepts in this thesis, Collier’s condition of unpredictability 

seems a bit too strong, since it requires that the emergent property not be numerically 

computable. Collier associates emergence with dissipative systems, which is a common 

theme in the literature on emergence (see review by Kitto [73]). This quality has been 

omitted from this thesis because it is largely taken for granted in engineering. Furthermore, 

it is unclear how a non-dissipative (and non-physical) construct like a perpetual motion 

machine would impede self-organization and emergence.250 He then goes on to list five 

sufficient conditions for emergence: 

1. The system must be nonholonomic, implying the system is nonintegrable 

(this ensures nonreducibility) 

2. The system is energetically (and/or informationally) open (boundary 

conditions are dynamic) 

3. The system has multiple attractors 

4. The characteristic rate of at least one property of the system is of the 

same order as the rate of the non-holonomic constraint (radically non-

Hamiltonian) 

5. If at least one of the properties is an essential property of the system, the 

system is essentially non-reducible; it is thus an emergent system [314] 

The condition of non-integrability, once again, seems too strong.381 That the system is open 

is trivial in all real engineering applications except maybe quantum computing. Collier 

considers condition 3 to be debatable, and so it will not be discussed further. The fourth 

condition may serve as a useful condition, except that it assumes at least one property of 

the system has the same units of measure as the non-holonomic constraint. This imposes a 

                                                 
381 It may be a simple confusion due to semantics, but a partial differential equation that cannot be 

“integrated” is an equation that has no solution. To an engineer, an equation that has no solution is equivalent 

to a non-physical equation (an equation that is wrong / incompatible with reality). 
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strong criterion on the system of equations describing the system. Future mathematical 

derivations will prove whether this overly constrains the system of equations. Regarding 

the fifth condition, Collier does not elaborate on what it means for a property to be “an 

essential property of the system,” but it appears to be analogous to the direct interaction 

criterion discussed in Section 4.3.4. Furthermore, Collier’s example of an emergent 

property is the fact that Mercury is caught in a 3:2 spin-orbit resonance due to the Sun. 

Collier does not explain how this numerically or phenomenologically impacts any other 

part of the solar system (or object within the solar system), and so his exposition does not 

have a clear tie to functional emergence. Collier’s example is much closer to self-

organization than emergence, by the definitions in this thesis. 

An interesting paper by Moyal, Fekete, and Edelman [315] on the study of human 

cognition as an emergent behavior describes their Dynamical Emergence Theory. While 

the data and metrics discussed by the researchers are too far beyond the expertise of this 

author to scrutinize in detail,382 the concepts and tools they employ are consistent with the 

overall approach in this thesis. The researchers write, “we seek… a functional and 

computational understanding of the relationship between the structure of a system’s 

collective dynamics … and that of the [emergent behavior] it is capable of producing” 

[315]. A particularly noteworthy argument is the reiteration that their definitions383 (as 

those in this thesis) “suggest a natural … partitioning of any nontrivially structured 

dynamical system into functional levels of organization, based on the extent to which 

information about some components’ time series is encoded in others” [315]. They then go 

                                                 
382 A more thorough review of this paper is also handicapped by time constraints. 
383 It has already been demonstrated throughout this thesis how many articles use the same terminology to 

describe different phenomena. Time does not permit a thorough disambiguation. 
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on to reference algorithms one can use to quantify causal influence in nonlinear systems as 

well as time-series motif identification384 (the interested reader is encouraged to review 

those, as they are mostly distinct from the methods listed thus far in this thesis). While their 

work outlines necessary conditions for emergence, only one is of interest here (the other 

two are in direct relation to consciousness itself): “Effectiveness: … [an emergent 

behavior] is a functional (as opposed to epiphenomenal) trait … its states and transitions 

are causally and predictively effective” [315]. This is essentially a refutation of Kim’s 

causal exclusion argument. To an engineer, the equivalent would be: there is no problem 

with saying that an unbalanced force causes a mass to accelerate, whether that mass is a 

quark or a car, and whether the force is the strong/weak force or the friction between the 

road and the tires. In each case, the assumption is the same: the idealized basic component 

is an indivisible body with simple properties that are predictable and persistent (see Section 

2.2.2). In each case, the assumption will fail if pushed beyond its intended use. Both levels 

of abstraction contain equally valid descriptions of causation. The researchers strongly 

indicate that their method assumes self-organization precedes emergence (as understood in 

this thesis), and then proceed to justify their behavior association step by arguing for the 

predictive effectiveness of their quantitative metrics.385 Without delving into the details, 

this is an example of subject-matter experts positing the properties of their higher-level 

object and then creating the link between those properties and the dynamics of the self-

organized object (the physical brain). Within the context of this one paper, their approach 

                                                 
384 The aforementioned Matrix Profile is one such algorithm. “Motifs” are patterns that appear frequently in 

time series, which have clear application in the identification of self-organized structures. See also [392]. 
385 For clarity, the metrics are: representational capacity, amount of experience, and nature of experience. 

They’re stated here so the critical, well-informed reader can determine if a mistake was made in the arguments 

provided above. 
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does not outline a systematic method for emergent-behavior discovery,386 but proceeds to 

argue that the associations they find between brain electrochemical dynamics and their 

three high-level metrics characterize the functional essence of human awareness. In order 

to do this, they perform experiments wherein they stimulate the brain and associate 

measurable changes in the brain’s electrical activation with states of awareness, as 

represented by their quantitative metrics. That is, they search for evidence of interactions, 

as in this thesis, but in their case, the external stimulus is affecting the quantitative 

properties of awareness rather than attempting to model how the quantitative properties of 

awareness correspond to actions undertaken by the human being possessing it.  

 

Figure 125 – Behavior association conceptual diagram (simplified Figure 21, step 2) 

If their metrics do not completely map to awareness, or if they map to other traits in addition 

to awareness, then their theory runs the risk of producing an association fallacy. That risk 

is inherent in every study of emergent behavior. More importantly, by positing the 

                                                 
386 They authors may have done so elsewhere. 
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quantifiable properties of the emergent behavior in question the researchers attempt to 

manually overcome387 the modeling challenges of emergent behavior discovery,388 which 

will be discussed for the remainder of this subsection. 

Real “components” in isolation have many behaviors that are unobservable, and 

therefore unknowable,389 outside of a specific context. For example, a bee studied in near-

total isolation (e.g. the vacuum of space) would die quickly, and nothing about its behavior 

would be learned from observation, except a process by which it dies. Now suppose we 

have idealized390 components with finitely-many, known properties (depicted in Figure 

125 as yellow circles), and a similarly-idealized system external to those components 

(represented by a red square). The idealized objects can be anything (atoms and a molecule, 

birds and a flock, etc.). The structure of the red square is neglected for convenience. If the 

circles are studied in isolation (dotted yellow circle), the only information that can be 

obtained is that they each have a set of properties P(●). No emergent behavior can be 

detected within such a limited scope. Similarly, the red square has properties P(■). Now 

suppose a simulation is constructed such that three circles can interact. Due to their two-

way interaction rules391 and under the right circumstances, they self-organize into a system 

indicated by a dotted blue triangle. This system has a set of properties, P(▲), which, in the 

worst case, contains infinite properties. Since nothing else is known about the system, all 

                                                 
387 All subject matter experts do. This author is no exception. 
388 To this author’s knowledge, no other work has named the problem thus. 
389 Within the confines of modern science. 
390 See Section 2.2.2. Note, however, that the empirical equivalent of an idealized component is the set of 

measurable properties taken in a physical experiment (based on the availability and precision of measurement 

devices, choice of control variables, and other experimental limitations). 
391 The two-way interaction serves no purpose in this example other than to illustrate the kinds of interactions 

that exist. Examples of two-way interactions include interatomic forces, and social bond. 
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of its properties are arbitrary.392 Within this scope (the dotted triangle) it is impossible to 

observe any emergent behaviors. Furthermore, there are at least multiple, if not infinitely-

many, possible functions, f, that map those system-level properties to component level 

properties, P(●). So, the first of the modeling challenges with emergent behavior discovery 

is that before any emergence has occurred, the self-organized object already possesses 

infinitely many arbitrary properties.  

The remaining challenges stem from issues common to all regressions, but take on 

special significance in this context. Recall that the presence of interactions is the strongest 

evidence a simulation can provide for the existence of an emergent behavior. Now, 

consider a simulation with a large enough scope to detect emergence (the red dotted box), 

where the triangle is exposed to the red square and can interact with it. This means that 

functions, g, can now be written that map changes in the red square’s properties over time 

to the properties of the triangle (and there may be infinitely many such functions). In 

principle, this turns the emergent behavior discovery problem into an inverse design 

problem, where any property in P(▲) can be found by taking the inverse function of the 

interaction equation involving some property in P(■).393 However, it is unlikely that the 

functions will be invertible.394 Then, for any finite data set (i.e. all practical data sets) there 

                                                 
392 Depending on the properties of the components, any number of high-level properties can be constructed: 

geometric, graph-theoretic, spectral, biological, mechanical, chemical, etc. 
393 Most upward causation models are not invertible because they are multivariate. 
394 In fact, this provides another simple explanation for why so many researchers have associated emergent 

behavior with the element of surprise / unpredictability: since the mapping between form and function is not 

1:1, the emergent behavior models are not invertible. Since they are not invertible, it is very difficult, if not 

impossible, to predict what the emergent behavior will be from the knowledge of the behavior of the 

components. However, surprise, in and of itself, is not a genuine quality of emergence. Once the emergent 

behavior is observed, it can certainly be reproduced / predicted, for the same reason that a function can be 

rendered piece-wise invertible (so to speak) by carving the domain into compact intervals where the function 

is 1:1 over the interval. Furthermore, a very clever person can certainly envision some emergent behaviors. 

Every inventor in history certainly has. 
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will always be a set of deceptive functions that relate the red square properties to the blue 

triangle properties with arbitrarily small, non-zero error that will be very difficult to 

distinguish from models that are essentially causal but contain some small fitting error.395 

Finally, if there exists some exact model396 relating the red square properties to the 

properties of multiple yellow circles, this raises the question of whether one must accept 

that function as a property of the blue triangle, regardless of whether it conforms to some 

known property or not. In other words, the question is: should all exact models of red square 

interactions with multiple simultaneous yellow circles be attributed to the blue triangle? A 

simulation, alone, can only answer to the affirmative because it has no alternative 

hypothesis to test against.397 This will probably contradict human experience and intuition 

more often than not. The question can only be settled empirically. In short, the main 

modeling challenges with emergent behavior detection are:  

1. A self-organized object can have infinitely many arbitrary properties 

2. There are infinitely many functions that map an arbitrary property to the time-rate-

of-change of a known system property (i.e. interaction equations can be written to 

arbitrary accuracy, whether or not they are truly causal) 

3. A single simulation (regardless of how many times it is executed) attributes all 

multi-component interactions to the system made up of those components 

The first two challenges demand more than a goodness of fit to make the argument that the 

property of a self-organized object is truly emergent (not arbitrary). CHAPTER 4 of this 

                                                 
395 Here, a deceptive model is equivalent to a nonlinear model containing the wrong variables yet have low 

error, as opposed to a model that contains the right variables but is not quite correct in its form or coefficients. 

This presupposes that true causal information exists within the data set. See Assumption 1 in Section 2.2. 
396 “Exact” meaning that its predictions hold for all extrapolations. 
397 Properties defined this way fall under the strict distinctiveness criteria in Section 4.3.3. 
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thesis provides conditions to help filter down this list of possible candidates, whereas in 

the work by Moyal, Fekete, and Edelman [315], the researchers implicitly address these 

challenges by positing a set of three quantitative properties attributable to awareness (based 

on their knowledge and experience) and then test it empirically. Note that although the 

third challenge is attributed to simulations, it can be extended to experiments as well 

(multiple experiments for each property are needed to test against false positives / 

negatives). 

A.13 Emergence and Self-Organization as Latent Nodes 

Rather than rely on long philosophical arguments, engineers may find it intuitive to 

simply extend the concept of latent variables to physical and functional decompositions, 

and from those graphs identify where the useful information is obtained.398 First, consider 

a few analogies. In mathematics, the classes of problems that are best understood are linear 

problems (be they linear systems of algebraic equations, linear partial differential 

equations, etc.), but the majority of problems are nonlinear. Similarly, in engineering, the 

best understood fluid mechanics problem are laminar flows, but most real flows are 

turbulent. In SE, the best understood systems are decomposable in their functions. So if the 

expectation is that most systems are complex (the majority of natural systems certainly 

are), what complicating feature do their graphical decompositions possess that standard 

systems do not have? Building on the concept of latent variables, perhaps the expectation 

should be that every decomposition will likely contain one or more latent nodes (i.e. every 

                                                 
398 The reader is referred to [398] for a more sophisticated use of latent nodes. This thesis can proceed with 

a human-in-the-loop approach due to the nature of the hypotheses presented. To render these ideas compatible 

with SE current practices, a couple of starting points are [399] [286] [57] and their references. To place these 

steps within the broader CBA see [56] and her references, as well as Slide 5 in [400]. 
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decomposition is assumed to be incomplete until proven otherwise). For physical 

decompositions, these nodes represent latent objects (the structures caused by self-

organization), while in functional decompositions, these represent latent functions 

(emergent behaviors). In this sense, a primary task in every system design project is to root 

out the latent nodes. An example of this concept is given in Figure 126. 

 

Figure 126 – Notional physical and functional decompositions as directed, layered 

graphs with latent nodes 

Figure 126 depicts a physical decomposition that contains a self-organized system, and a 

functional decomposition that contains two emergent behaviors.399 Suppose System I is the 

system the engineer intended to design using components A, B, and C, while System II is 

the system that arises when components B and C self-organize. Here, System II is treated 

as a component of System I because the complete set of components is always attributed 

to the intended system by convention.400 System II possesses emergent behaviors, depicted 

                                                 
399 A textbook functional decomposition would include an “and” node (called an “and gate” [408]) for 

coupled functions. The interested reader is referred to Melançon’s very informative Master’s thesis [407]. 
400 It is not difficult to imagine a notation where the intended system as well as the unintended self-organized 

systems are all placed at the same level in the graph (provided they’re made of the same components). 
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on the right in Figure 126 (clearly these behaviors are also attributable to System I, but this 

need not be the only convention). Those emergent behaviors (e I, II) are also latent nodes, 

and those emergent behaviors make a direct contribution to one of System I’s primary 

functions (Function I). The faded gray arrows indicating the association of emergent 

behaviors with the self-organized system are provided for exposition only. Component-

level functions are denoted f A, f B, f C, and f D. Lower level function fB is depicted as 

influencing functions fA and fC. The latent nodes and the edges associated with them are 

dotted. The dashed nodes are latent systems in the physical decomposition, and latent 

behaviors in the functional decompositions. Some edges are dashed to help distinguish 

their meaning from the standard edges in each graph. In the physical decomposition, a 

dashed edge means interaction while a solid edge means membership. In the functional 

decomposition, a dashed edge means coupled cause, while a solid edge means independent 

cause. It is supposed that the emergent behaviors are independent causes for the sake of 

this example. 

 The concept of the latent node is an extension of the following argument. Systems 

that are physically decomposable are those where the arrangement of the components is 

either irrelevant or unique. Therefore, a system that is not physically decomposable is one 

where different arrangements result of components result in markedly different systems. In 

this way, self-organization results in a latent node in the physical decomposition. 

Analogously, systems that are functionally decomposable are those where the arrangement 

of functions (in time) is irrelevant or unique. This corresponds to cases where the functions 

are executed independently and sequentially. However, if the functions are “arranged” into 

different processes (they become coupled, executed concurrently, etc.), that new process 
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may result in a new higher-level function that would not otherwise exist. Such a function 

would be an emergent behavior, that it would be a latent node in a functional 

decomposition. 

A.14 Additional Comments Relating to Tests of Hypothesis 2 

Given the concept of modeling the emergent behavior put forward in this chapter, 

the concept of weak emergence raises one important question: if the only way to accurately 

observe emergence is by running the full simulation, how can one expect to accurately 

model it using some function other than the simulation itself? Perhaps this contradiction is 

purely a superficial one. For example, macroscopic temperature is only meaningful when 

the system components are in a quasi-equilibrium or true equilibrium state. If they are not, 

it is physically and mathematically impossible to accurately estimate a useful mean value 

(recall that temperature is a local mean value). So we see that, if the underlying conditions 

are correct, history shows it is possible to make a useful model that predicts a certain class 

of system-level behavior and the interactions between that system and other systems that 

contain related properties (pressure, density, etc.). What the equations of thermodynamics 

cannot do is predict their own failure (this is a job typically relegated to the engineer, 

medical professional, etc.). There is no information within the classical thermodynamics 

equations that predicts when the atoms in the substance are no longer in quasi-equilibrium, 

because the continuum assumption has discarded that information. Therefore, if the 

question we are asking is “What causes emergent behavior X?” or “When/how can we 

observe the manifestation of emergent behavior X?” then we absolutely must use the 

bottom-up simulation, because only the simulation can predict all possible behaviors of the 

components and predict when those components will settle into a stable-enough form to 
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yield useful system-level quantifiable properties.401 Simply put, macroscopic laws cannot 

say anything about emergence (with respect to their own components) because they assume 

the emergence is always present. In this sense, macroscopic laws are a kind of curve-fit 

that bring with them the information loss engineers have come to expect from all 

regressions.402 

A number of ways to test Hypothesis 2 were considered. The tests in Section 5.5.2 are 

special cases of the ways considered below. Due to their simplicity and effectiveness, the 

tests were restricted to those special cases. For the sake of completeness, the full discussion 

is provided below. One can falsify Hypothesis 2 by: 

1. Attempting to fool the numerical criteria using nonlinear transformations of the 

properties of a single component within a system 

2. Attempting to fool the numerical criteria by treating the properties of a single 

component contained within a system as interchangeable with those of the system 

3. Critical examination of the predictions of the numerical criteria under “normal” 

operations 

Recall that weak emergence merely requires that the simulation be run in order to recognize 

and quantify the property in question.403 All properties associated with self-organized 

                                                 
401 Furthermore, if this were not the case, artificial neural networks could not be called “universal 

approximators.” 
402 In defense of continuing the use of emergent behavior terminology, perhaps “information loss” is too 

strong a term. It would be more accurate to say “information trade-off” where the macroscopic dynamics 

becomes readily understood at the expense of lower-level details, and vice-versa. 
403 Referring to the example by Abbott [72], the simulation does not need to be run to determine that the 

interior angles of a triangle sum to 180 degrees. However, it does need to be run to observe that the 

components sometimes arrange themselves into a triangle, and then to determine that one or more of those 

angles are significant in some way. 
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entities satisfy that criterion. This trivial consequence of self-organization inspired the 

“relaxed distinctiveness” definition in Section 4.3.3. The relaxed distinctiveness definition 

makes it impossible to define a single-component system in the naïve sense. However, the 

relaxed distinctiveness definition does permit a single-component system if the system-

level properties are arbitrary nonlinear functions of the properties of a single component. 

This is an absurd situation and defeats the purpose of making a distinction between low 

levels and high levels.404 Furthermore, the simulation would no longer be needed because 

the properties can be computed from the values of the component properties, which violates 

the definition of weak emergence. Take, as a simple example, the x-coordinate of a boid in 

a simulation 𝑃(𝐴)  =  𝑥. If something as trivial as the square of that value satisfies the 

numerical criteria, as in 𝑃(𝑆𝑜𝑆)  =  𝑥2, then there is a contradiction and the hypothesis is 

false. The potential for this exists in both the strict and relaxed definitions. Therefore, this 

test would see if the criteria can be fooled using nonlinear operations on the properties of 

a single component. The intention of the distinctiveness criteria was to ensure at least one 

system-level property was a mathematical function of multiple component properties at 

once. In this way, no single component constitutes the basis for every system-level 

property, and so it becomes meaningful to distinguish between the two levels (the 

expectation being that, in practice, most quantifiable system properties will require 

multiple component inputs). However, this test cannot proceed effectively without firm 

knowledge of the upper bound on the number of emergent behaviors a system can have 

(i.e. Hypothesis 1 would have to be proven true beyond doubt). Once Hypothesis 1 (or 

                                                 
404 The intention was that the number of systems in the definition be n > 2, but since it was not clearly stated, 

the opportunity for confusion exists, hence the experiment. Furthermore, this presents the opportunity to 

study whether merely imposing n > 2 resolves the fallacy, or whether a deeper issue exists. 
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some equivalent formula) is proven valid, then it will be possible to search for meaningful 

distinctions between a handful of arbitrary nonlinear properties and an equal number of 

apparently meaningful emergent properties, in order to create stronger criteria. 

 The approach would attempt to fool the numerical criteria by probing the 

limitations of the definition of association. There are some cases (typically linear 

properties) where an emergent property can become quantitatively equal to the property of 

a component (for example, if the heading of a flock is defined as the mean of the headings 

of its birds, then when their headings are constant, the values are equal). To a numerical 

algorithm performing behavior association, the two time series would be largely 

indistinguishable. Therefore, the question becomes, “can the numerical criteria be fooled 

by cases where the property assigned to a stable system is numerically equivalent to the 

property assigned to its components?” This question is nullified by the distinctiveness 

criteria in CHAPTER 4. Since swapping the variables would not work at every iteration in 

the time series for all simulation, it suffices that the equations used to compute properties 

be different, even if the name of the property is the same or the values occasionally match. 

 All of these tests rely on the implicit assumption that if an interaction occurs 

between a higher level object and anything else in the simulation405 then the properties in 

that equation are performing a function. However, it is unusual for engineers to attribute a 

function such as collision avoidance to a flock (as opposed to the birds themselves). 

Logically, the two can be conflated in this thesis because of Assumption 1 (every behavior 

                                                 
405 The focus here is on objects comprised of dynamic agents. The math in this thesis would have to be altered 

slightly to accommodate obstructions that are typically classified as part of the environment (such as 

buildings). 
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of the flock is bona fide). Practically, and more importantly, the two can be conflated 

because if an interaction is predictable it is also exploitable and, in this way, creates a latent 

function that the engineers may not have intended (see Appendix for more information on 

latent node representations). The ability to make this claim in this thesis is due to 

Assumption 2 (there are no missing variables that would make exploitable behaviors in a 

simulation unattainable in reality). Therefore, when claiming that an interaction has been 

identified, this thesis will operate as though that suffices to claim that a higher level 

function has been identified. If this tacit assumption becomes problematic, it will be 

discussed in the appropriate results section. Again, to clarify: this generosity towards the 

validity of the model is permissible only because the numerical criteria cannot work in a 

real-world case if they do not first work in a simulation. 

 The third approach is broader than a simple check for a logical fallacy or deceitful 

statistic. While keeping in mind that Hypothesis 2 is a sufficient condition, the third 

approach will place the emphasis on whether or not the numerical criteria seem trustworthy 

(for lack of a better term). Clearly, “seeming trustworthy” is deeply subjective. 

Nevertheless, since the properties considered in this thesis will mostly be geometric 

properties of the self-organized shape (many of which are linear combinations of 

properties), asserting that those properties are emergent is not outlandish. Therefore, the 

problem of trustworthiness406 lies in the whether or not the conclusions drawn from the 

data are robust. For that, this thesis can extend a non-controversial way of testing a data set 

for trustworthiness based on best-practices within engineering and computer science [247]. 

Specifically, the interaction models obtained on one data set can be extrapolated to other 

                                                 
406  That is, one of the problems considered here. 
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data sets to see if the variation in error changes the outcome of the analysis. Since this 

feature seems essential to any regression technique, checking for bad extrapolation was 

built in to the behavior association step. 
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