12 research outputs found

    Unmanned aerial vehicle-aided cooperative regenerative relaying network under various environments

    Get PDF
    This paper studies a cooperative relay network that comprises an unmanned aerial vehicle (UAV) enabling amplify-and-forward (AF) and power splitting (PS) based energy harvesting. The considered system can be constructed in various environments such as suburban, urban, dense urban, and high-rise urban where the air-to-ground channels are model by a mixture of Rayleigh and Nakagami-m fading. Then, outage probability and ergodic capacity are provided under different environment-based parameters. Optimal PS ratios are also provided under normal and high transmit power regimes. Finally, the accuracy of the analytical results is validated through Monte Carlo methods

    SURE: A Novel Approach for Self Healing Battery Starved Users using Energy Harvesting

    Get PDF
    Radio Frequency (RF) energy harvesting holds a promising future for energizing low power mobile devices in next generation wireless networks. Harvesting from a dedicated RF energy source acquires much more energy than simply harvesting from ambient RF sources. In this paper, novel Self-healing of Users equipment by RF Energy transfer scheme is introduced between the network operator and battery starved users to heal and extend their battery life time by sending dedicated energy from different sources in order to be aggregated and harvested by starved users. This approach depends on the concept of Energy as a Service where the network operator delivers energy to battery starved users in the next generation networks. A mixed integer non-linear optimization problem is formulated and solved efficiently using three heuristic algorithms. Simulation results prove that sufficient amounts of energy can be delivered to starved users while minimizing their uplink power requirements and guaranteeing a minimum uplink data rate
    corecore