93 research outputs found

    Reordering all agents in asynchronous backtracking for distributed constraint satisfaction problems

    Get PDF
    Distributed constraint satisfaction problems (DisCSPs) can express decision problems where physically distributed agents control different decision variables, but must coordinate with each other to agree on a global solution. Asynchronous Backtracking (ABT) is a pivotal search procedure for DisCSPs. ABT requires a static total ordering on the agents. However, reordering agents during search is an essential component for efficiently solving a DisCSP. All polynomial space algorithms proposed so far to improve ABT by reordering agents during search only allow a limited amount of reordering. In this paper, we propose AgileABT, a general framework for reordering agents asynchronously that is able to change the ordering of all agents. This is done via the original notion of termination value, a label attached to the orders exchanged by agents during search. We prove that AgileABT is sound and complete. We show that, thanks to termination values, our framework allows us to implement the main variable ordering heuristics from centralized CSPs, which until now could not be applied to the distributed setting. We prove that AgileABT terminates and has a polynomial space complexity in all these cases. Our empirical study shows the significance of our framework compared to state-of-the-art asynchronous dynamic ordering algorithms for solving distributed CSP

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far

    Theories for Session-based Governance for Large-scale Distributed Systems

    Get PDF
    PhDLarge-scale distributed systems and distributed computing are the pillars of IT infrastructure and society nowadays. Robust theoretical principles for designing, building, managing and understanding the interactive behaviours of such systems need to be explored. A promising approach for establishing such principles is to view the session as the key unit for design, execution and verification. Governance is a general term for verifying whether activities meet the specified requirements and for enforcing safe behaviours among processes. This thesis, based on the asynchronous -calculus and the theory of session types, provides a monitoring framework and a theory for validating specifications, verifying mutual behaviours during runtime, and taking actions when noncompliant behaviours are detected. We explore properties and principles for governing large-scale distributed systems, in which autonomous and heterogeneous system components interact with each other in the network to accomplish application goals. This thesis, incorporating lessons from my participation in a substantial practical project, the Ocean Observatories Initiative (OOI), proposes an asynchronous monitoring framework and the process calculus for dynamically governing the asynchronous interactions among distributed multiple applications. We prove that this monitoring model guarantees the satisfaction of global assertions, and state and prove theorems of local and global safety, transparency, and session fidelity. We also study and introduce the semantic mechanisms for runtime session-based governance and the principles of validation of stateful specifications through capturing the runtime asynchronous interactions.EPSRC grants EP/G015481/1; Queen Mary University of Londo

    Service substitution : a behavioral approach based on Petri Nets

    Get PDF
    Service-Oriented Computing is an emerging computing paradigm that supports the modular design of (software) systems. Complex systems are designed by composing less complex systems, called services. Such a (complex) system is a distributed application often involving several cooperating enterprises. As a system usually changes over time, individual services will be substituted by other services. Substituting one service by another one should not affect the correctness of the overall system. Assuring correctness becomes particularly challenging, as the services rely on each other, and each of the involved enterprises only oversees a part of the overall system. In addition, services communicate asynchronously which makes the analysis even more difficult. For this reason, formal methods to support service substitution are indispensable. In this thesis, we study service substitution at the level of service models. Thereby we restrict ourselves to service behavior. As a formalism to model service behavior, we use Petri nets. The first contribution of this thesis is the definition of several substitutability criteria that are suitable in the context of Service-Oriented Computing. Substituting a service S by a service S0 should preserve some behavioral properties of the overall system. For each set of behavioral properties and a given service S, there exists a set of behaviorally compatible services for S. A substitutability criterion defines which of these behaviorally compatible services of S have to be preserved by S0. We relate our substitutability criteria to preorders and equivalences known from process theory. The second contribution of this thesis is to present, for each substitutability criterion, a procedure to decide whether a service S0 can substitute a service S. The decision requires the comparison of the in general infinite sets of behaviorally compatible services for the services S and S0. Hence, we extend existing work on an abstract representation of all behaviorally compatible services for a given service. For each notion of behavioral compatibility, we present an algorithmic solution to represent all behaviorally compatible services. Based on these representations, we can decide substitutability of a service S by a service S0. The third contribution of this thesis is a method to support the design of a service S0 that can substitute a service S according to a substitutability criterion. Our approach is to derive a service S0 from the service S by stepwise transformation. To this end, we present several transformation rules. Finally, we formalize and we extend the equivalence notion for services specified in the language WS-BPEL. That way, we demonstrate the applicability of our work
    • …
    corecore