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Abstract

Service Substitution
A Behavioral Approach Based on Petri Nets

Service-Oriented Computing is an emerging computing paradigm that supports
the modular design of (software) systems. Complex systems are designed by
composing less complex systems, called services. Such a (complex) system is
a distributed application often involving several cooperating enterprises. As a
system usually changes over time, individual services will be substituted by other
services. Substituting one service by another one should not affect the correctness
of the overall system. Assuring correctness becomes particularly challenging, as
the services rely on each other, and each of the involved enterprises only oversees
a part of the overall system. In addition, services communicate asynchronously
which makes the analysis even more difficult. For this reason, formal methods to
support service substitution are indispensable.

In this thesis, we study service substitution at the level of service models.
Thereby we restrict ourselves to service behavior. As a formalism to model service
behavior, we use Petri nets.

The first contribution of this thesis is the definition of several substitutability
criteria that are suitable in the context of Service-Oriented Computing. Substi-
tuting a service S by a service S′ should preserve some behavioral properties of the
overall system. For each set of behavioral properties and a given service S, there
exists a set of behaviorally compatible services for S. A substitutability criterion
defines which of these behaviorally compatible services of S have to be preserved
by S′. We relate our substitutability criteria to preorders and equivalences known
from process theory.

The second contribution of this thesis is to present, for each substitutability
criterion, a procedure to decide whether a service S′ can substitute a service S.
The decision requires the comparison of the in general infinite sets of behaviorally
compatible services for the services S and S′. Hence, we extend existing work
on an abstract representation of all behaviorally compatible services for a given
service. For each notion of behavioral compatibility, we present an algorithmic
solution to represent all behaviorally compatible services. Based on these repre-
sentations, we can decide substitutability of a service S by a service S′.

The third contribution of this thesis is a method to support the design of a
service S′ that can substitute a service S according to a substitutability criterion.
Our approach is to derive a service S′ from the service S by stepwise transforma-
tion. To this end, we present several transformation rules.
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Finally, we formalize and we extend the equivalence notion for services specified
in the language WS-BPEL. That way, we demonstrate the applicability of our
work.
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Kurzfassung

Service-Oriented Computing is ein vielversprechendes Paradigma der Software-
konstruktion, das den modularen Entwurf von (Software-) Systemen unterstützt.
Komplexe Systeme werden durch Komposition weniger komplexer Systeme, Ser-
vices genannt, entworfen. Solch ein (komplexes) System ist eine verteilte An-
wendung, die oft mehrere kooperierende Unternehmen einschliesst. Da ein Sys-
tem gewöhnlich zeitlichen Änderungen unterworfen ist, werden einzelne Services
durch andere Services ausgetauscht. Der Austauch eines Service gegen einen an-
deren sollte dabei nicht die Korrektheit des Gesamtsystems verletzen. Korrekt-
heit zuzusichern ist nichttrivial, weil Services voneinander abhängen und jedes
involvierte Unternehmen nur einen Teil des Gesamtsystems überblickt. Zudem
kommunizieren Services asynchron. Das erschwert die Analyse noch weiter. Aus
diesem Grund ist der Einsatz formaler Methoden zur Austauschbarkeit von Ser-
vices unabdingbar.

In der vorliegenden Dissertation studieren wir Austauschbarkeit von Services
auf der Modellebene. Dabei beschränken wir uns auf das Verhalten von Services.
Wir verwenden Petrinetze, um das Verhalten von Services formal zu fassen.

Der erste Beitrag dieser Dissertation ist die Definition mehrerer Austauschbar-
keitskriterien, die im Rahmen des Service-Oriented Computing anwendbar sind.
Der Austausch eines Service S gegen einen Service S′ sollte bestimmte Verhal-
tenseigenschaften des Gesamtsystems bewahren. Zu jeder Menge von Verhaltens-
eigenschaften und einem Service S existiert eine Menge von Services, die ver-
haltenskompatibel zu S sind. Ein Austauschbarkeitskriterium definiert, welche
dieser zu S verhaltenskompatiblen Services der Service S′ bewahren soll. Wir
erarbeiten den Bezug unserer Austauschbarkeitskriterien zu Quasiordnungen und
Äquivalenzen aus der Prozesstheorie.

Als zweiten Beitrag dieser Dissertation präsentieren wir zu jedem Austauschbar-
keitskriterium eine algorithmische Lösung um zu entscheiden, ob ein Service
S gegen einen Service S′ ausgetauscht werden kann. Um Austauschbarkeit zu
entscheiden, müssen die beiden im Allgemeinen unendlichen Mengen verhaltens-
kompatibler Services der Services S und S′ miteinander verglichen werden. Wir
erweitern Vorarbeiten zur abstrakten Repräsentation aller verhaltenskompatibler
Services und erarbeiten für jeden Begriff von verhaltenskompatibel eine algorith-
mische Lösung, um alle verhaltenskompatiblen Services zu repräsentieren. Mit
Hilfe dieser Repräsentationen können wir entscheiden, ob ein Service S′ einen
Service S austauschen darf.

Der dritte Beitrag dieser Dissertation ist eine Methode, um den Entwurf eines
Service S′ zu unterstützen, so dass S′ einen Service S bezüglich eines Aus-
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tauchbarkeitskriteriums austauschen kann. Dazu verfeinern wir den Service S
schrittweise zu einem Service S′. Zu diesem Zweck präsentieren wir mehrere Ver-
feinerungsregeln.

Unsere Ergebnisse ermöglichen es uns, den Äquivalenzbegriff für Services, die in
der Sprache WS-BPEL spezifiziert sind, zu formalisieren und zu erweitern. Damit
zeigen wir die Anwendbarkeit unserer Ergebnisse.
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1. About This Thesis

In this chapter, we introduce services and the service-oriented world. We identify
service substitution as an important and interesting research problem that we
will address in this thesis. Finally, we describe the main results of our work and
outline the organization of this thesis.

1.1. Background

In this section, we give a brief overview of the emerging computing paradigm
Service-Oriented Computing.

1.1.1. Service-Oriented Computing

Since the early days of computer science, it is well-known that mastering the
complexity of large (software) systems is a major challenge. One very successful
approach for handling complexity is modularization. The principle of composition-
ality is one of the most desirable requirements for modular systems: A collection
of modules that are properly connected to each other should behave as one module
itself. During the last decade, modularization is considered as the most important
feature of a system design.

The trend towards modularization is driven by enterprises being faced with the
challenge of rapidly changing their systems. On the one hand, today’s systems
are highly complex, run in heterogenous environments, and are often distributed
over several enterprises. On the other hand, the ever-changing market conditions,
regulations etc. require enterprises to act very flexibly. Systems are subject
to ongoing changes, but the integration of these changes should not take much
time. Hence, enterprises need an IT infrastructure that can cope with these
requirements.

Service-Oriented Computing (SOC) [Pap07] is a novel computing paradigm
that aims to “support the development of rapid, low-cost and easy composition
of distributed applications even in heterogeneous environments” [PTDL08]. It
follows the idea to create a complex system by connecting modules, called services.
Therewith, SOC reuses old ideas from component-based design [McI68, Szy98] or
from programming-in-the-large [DK75], for instance.

A service encapsulates some functionality, which can be accessed via its inter-
face. The interface of a service consists of a set of message channels and is used to
communicate with other services via asynchronous message passing. To this end,
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1. About This Thesis

services are composed by connecting their message channels. Hence, interaction
is a first-class citizen in SOC.

SOC follows the paradigm to separate the functionality from the interface in
a service. This separation has two advantages. On the one hand, a service is
independent of applications and the computing platforms on which it runs. On the
other hand, a service can be connected to other services without having knowledge
of their technical details; services are loosely coupled. That way, SOC helps to
reduce the complexity of integrating services within and across organizational
boundaries.

One of the most prominent technologies based on SOC are Web services.
A Web service is a service that can be accessed via the Internet. The inter-
face of a Web service is specified using the Web Services Description Language
(WSDL) [CMRW07]. For message exchange, standard-based protocols, such as
SOAP [ML07], are used.

The key technology to design and to execute systems according to the paradigm
of SOC is a Service-Oriented Architecture (SOA). An SOA provides an IT infras-
tructure for publishing services of an enterprise via the Internet [ABH+07]. These
published services can then be automatically found and used by other enterprises.
That way, an SOA enables interoperability between systems and hence reduces
complexity of systems.

1.1.2. Service composition

According to the SOC paradigm, services are composed to form more complex
services. Hence, a service is usually stateful. A service has a definition. This
definition describes the behavior and the interface of the service. The behavior of
a service is described by a partially-ordered set of activities. An activity is the
atomic unit of work in a service. The execution of an activity is either internal to
the service or yields the sending or the receiving of a message. In the literature,
the term business protocol [Pap07] is used as a synonym for service behavior. A
service can be executed; that is, an instance of this service is created. An instance
can execute activities. Figure 1.1 illustrates these terms.

activity

channel channel

interface
service definition service definition

service definition

interface

activity
message

Figure 1.1.: Illustration of a service composition showing the main terms used for
describing a service.
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1.1. Background

activity

channel

interface
service definition

activity

Figure 1.2.: Illustration of a service orchestration.

There exist two different service descriptions in the literature [Pel03]. A service
orchestration describes the behavior of a service composition from the point of
view of a single service of this composition. In contrast, a service choreography
describes the behavior of a service composition from the perspective of all services.
As a further difference, a choreography shows usually only the message exchange
among the services in the composition and abstracts from implementation details,
whereas an orchestration usually provides implementation details. Prominent
service description languages are WS-BPEL [Alv07] to specify an orchestration
and WS-CDL [KBR+05], Let’s dance [ZBDH06], and BPEL4Chor [DKLW07] to
specify a choreography.

As an illustrating example, the service composition in Figure 1.1 is a service
choreography, as it describes the whole service composition. In contrast, Fig-
ure 1.2 depicts an orchestration of the service definition on the left hand side in
Figure 1.1.

A service definition covers various aspects of a service. We distinguish the
control-flow perspective, the data perspective, and the resource perspective. The
control-flow perspective focuses on the ordering of the activities of the service. The
way in which data is presented and utilized in a service is described by the data
perspective. The resource perspective specifies who actually executes an activity.
A resource is either a human or a non-human.

We illustrate the three aspects of a service by the help of a credit approval
of a bank. The control-flow perspective describes that the bank first receives
documents from the customer, and based on these documents the bank decides
whether the credit will be approved or not. The data perspective specifies how
the customer’s documents are stored. Finally, the resource perspective describes
whether the decision is made by a customer consultant, by the bank manager, or
by the computer system.

A business protocol focuses mainly on the control-flow perspective of a service,
but it may also contain data and resource information. A service orchestration
usually provides information about all three perspectives, whereas a service chore-
ography does not specify data and resources in general.

An important property of a service composition is compositionality; that is,
the composition is again a service. To achieve compositionality, a service com-
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1. About This Thesis

position must be compatible. Compatibility is focussing on four aspects of a
service: its interface, its semantics, its behavior, and its quality of service (QoS).
Interface compatibility ensures that pairwise connected message channels have
the same message type. Semantical compatibility guarantees that messages and
their content are correctly interpreted. Behavioral compatibility is devoted to
exclude behavioral errors, such as deadlocks and livelocks. Finally, QoS compati-
bility ensures some quality parameters—for example, throughput time or security
standards.

1.1.3. Research challenges in Service-Oriented Computing

The realization of SOC is still in its infancy. There are a lot of research challenges
to be solved to make the idea of SOC come true. In [PTDL08], leading researchers
in the area of SOC define the “grand challenges” in SOC research. These chal-
lenges are classified in four research themes: service foundations, service-oriented
engineering, service management, and service composition.

The first research theme, service foundations, provides technologies to realize
an SOA. To this end, a middleware is needed that allows to connect heterogeneous
services, to dynamically bind services, to publish services via the Internet, and to
find published services.

Service-oriented engineering covers the design and the deployment of services.
Although the SOC paradigm reuses known ideas from component-based design,
it requires novel methods for specifying, designing, and monitoring services.

Service management contains all tasks regarding controlling and monitoring of
services. As services are executed in highly flexible environments, they should
contain functionality for self-healing, self-adapting, and self-optimizing.

The forth theme is service composition. It covers the design of complex systems
from services. Research challenges in this theme include:

• Expanding services: To automatically find compatible pairs of services, ser-
vices need to know each other (to some degree). Hence, enterprises need to
provide sufficient information about their published services. On the one
hand, this information must allow to analyse for compatibility; that is, it
must contain facts about the service interface, about the service behavior,
about the service semantics, and about QoS properties of the service. On
the other hand, enterprises do not want to reveal their trade secrets. In
other words, providing the complete service definition is not an issue. Con-
sequently, one open problem is to identify what information an enterprise
has at least to publish about its service.

• Finding a compatible service: Information about published services will be
stored in a service repository. Other services will search service repositories
to find compatible pairs of services. Hence, efficient techniques to search
in a repository are crucial. Otherwise, the idea of automatically finding
services cannot be realized.
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• Composing services using adapters: Services are usually designed by differ-
ent enterprises. So a pair of services may not necessarily be compatible.
One method to approach this problem is to calculate an adapter; that is, a
service that can resolve the incompatibilities between the services. Clearly,
an SOA should provide techniques to automatically calculate adapters.

• Service substitution: The modular design of services makes changes of the
overall service more easy; that is, one service may be substituted by another
service. However, this substitution must not affect the compatibility of the
overall service.

In this thesis, we address the last research challenge, service substitution.

1.2. Problem description and problem statement

Systems inevitably evolve over time; for example, some new functionality is added,
or some quality parameter of some functionality is improved. In monolithic sys-
tems, even small changes often cause much integration work in the overall sys-
tem. In contrast, the modular design of (composed) services enables enterprises
to substitute periodically individual services by better ones. Technically, such a
substitution is supported by the loose coupling of services.

Substituting one service by another one should preserve compatibility of the
overall service. Service substitutability—that is, deciding whether a service can
substitute another service—is considered to be one of the most notable SOC
research challenges for the near future [PTDL08].

In this thesis, we restrict ourselves to changes of the service behavior, which
are also known as business protocol changes [Pap08]. This restriction implies that
we assume that QoS properties and semantical properties are not violated when
changing a service S to a service S′. That means, we mainly focus on the control-
flow perspective of services, and we abstract from resources and consider only
data/message types and not their content. For that reason, service substitutability
will guarantee only behavioral compatibility of the overall service in this thesis.

Service substitutability is particularly challenging, as the services in a com-
position rely on each other. Furthermore, we cannot assume that an enterprise
that substitutes an individual service has knowledge about the overall service
composition—for example, if the individual services belong to different enter-
prises. Hence, a procedure to decide substitutability must be independent of
the actual service composition. Moreover, services communicate asynchronously
making the decision procedure even more complex [Alo08]. Asynchronous com-
munication is non-blocking. After a service has sent a message, it can continue its
execution and does not have to wait until this message is received. Furthermore,
the order in which the messages are sent is not necessarily the order in which they
are received.
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A service S′ can definitively substitute a service S if every service that inter-
acts with S cannot distinguish between S and S′. In practice, however, more
general substitutability criteria are relevant; for example, S′ may guarantee a
stronger termination criterion than S. In general, when substituting S by S′ the
composition of S′ and a service S∗ preserves some behavioral properties of the
composition of S and S∗.

Service substitutability focuses on two different aspects: static business proto-
col evolution and dynamic business protocol evolution. The latter is also known
as instance migration. As the main difference, static business protocol evolution
assumes that the service S has no running instances. Dynamic business protocol
evolution, in contrast, assumes that there exist running instances of S, and hence
one is interested in migrating a (running) instance of the service S to an instance
of the service S′. Deciding dynamic business protocol evolution is particularly
important if the service S has long running instances—for example, in case of
a life insurance. In this thesis, we restrict ourselves to static business protocol
evolution. As dynamic business protocol evolution builds on static business pro-
tocol evolution, this thesis can be seen as a basis for studying dynamic business
protocol evolution; see the work on projection inheritance [AB02], for instance.

In the rest of this section, we identify with multiparty contracts and service
improvement two application scenarios of service substitutability in the context of
SOC. For each scenario, we describe the problem and identify research questions.

1.2.1. Application 1: Multiparty contracts

An SOA enables an enterprise to publish services via the Internet. These services
can then be automatically found and used by other enterprises. According to
the SOC paradigm, interorganizational cooperation among enterprises should be
realized in such a way. However, this approach has not become accepted in
practice, because there is no accepted standard that can cope with all four aspects
of service compatibility (see Section 1.1.2). An additional and the main limiting
factor is that enterprises usually cooperate only with enterprises they already
know.

Therefore, in practice a more pragmatic approach is used instead. The parties
that will participate in an interorganizational cooperation specify together an
abstract description of the overall service. This description is a choreography. The
choreography consists of a set of activities. Each activity is assigned to one party.
A connection between two activities is either internal—that is, both activities
belong to the same party—or external—that is, both activities belong to different
parties. A party’s share of the choreography (i. e., its public view) is then the
projection of the choreography to the party’s activities. The choreography serves
as a common contract among the parties involved in the cooperation.

The challenge of the contract approach is to balance the following two conflict-
ing requirements: On the one hand, there is a strong need for coordination to
optimize the flow of work in and among the different parties. On the other hand,
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contract

private view public view
implementation

Figure 1.3.: Illustration of the contract approach. Each of the four public views
is substituted by its corresponding private view yielding the overall
implementation.

the parties involved in the cooperation are essentially autonomous and have the
freedom to create or modify their services at any point in time. Furthermore, the
parties do not want to reveal their trade secrets. Therefore, it has been proposed
in [AW01, Aal03] to use a contract that defines “rules of engagement” without
describing the internal services executed within each party.

After the parties have specified the contract, each party will implement its
public view on its own. The implementation, the private view , will usually deviate
significantly from its public view. Obviously, these local modifications have to
conform to the agreed contract. This is, in fact, a nontrivial task, because it
may cause global errors, such as deadlocks, as shown in [AW01]. As all parties
are autonomous, none of them owns the overall service (i. e., the implemented
contract). Therefore, none of the parties can verify the overall service. As a
result, an approach is needed such that each party can check locally whether its
private view guarantees global correctness of the overall service.

The basic idea of the contract approach is illustrated in Figure 1.3. The starting
point is a contract partitioned over the four parties involved. The public view of
each of the four parties is illustrated in the figure as a fragment of the contract.
Based on the public view, each party implements its private view. Hence, the
actual implementation of the contract consists of the four private views glued
together as shown in the top-right corner in Figure 1.3.

Based on these considerations, we identify the following problems related to
service behavior.
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How can we decide locally correctness of a private view? We need an algorithm
to decide locally whether the public view of a party can be substituted by its
private view such that correctness of the contract is guaranteed.

How can we design a private view that is correct-by-construction? Each party
involved in a contract has to design its private view. This is, however, a nontrivial
and error-prone task even for experienced service designers. Hence, it is desirable
to support the design of a private view that is correct-by-construction.

Checking correctness of a public view and supporting the design process of
correct private views is not a particular strengths of Business Process Management
(BPM) tools currently available on the marketplace. For example, the service
description language WS-BPEL offers a standard to model public and private
views. It also defines an equivalence between a private view and its public view.
As a limiting factor, these equivalence is defined on the syntax of services and
does not consider the behavior of services. Consequently, the design of a private
view is unnecessarily restricted.

1.2.2. Application 2: Service improvement

Today’s enterprises consider themselves to be exposed to intense competition.
Reasons are among others the ever-changing markets, the ongoing development
of new technologies, and coping with the increasing requirements of the customers.
To operate successfully, enterprises have to increase their profit wherever possible.
Service improvement aims at revising services such that they become more prof-
itable. To this end, weaknesses of this service, such as bottlenecks or unprofitable
lines of business, have to be figured out. In addition, the quality and the reliability
of the service is improved, or new features are provided to attract the customers.
The approach is restricted to improvement rather than optimization, because the
complexity of services makes it in general impossible to find an optimum.

On the level of service behavior, service improvement usually leads to restruc-
turing of services (i. e., reordering of activities), to adding new functionality (i. e.,
adding activities), or to deleting functionality (i. e., deleting activities). As in the
context of service contracts, improving a service S according to some criterion
yields a service S′ that shall substitute S. Beside financial or performance as-
pects, the correctness of the service behavior of S′ is indispensable, because even
small local changes in a service model may cause global errors, such as deadlocks.
In addition, we need to check whether the newly designed service S′ implements
the expected functionality. From these considerations, we identify the following
two problems related to service behavior.

How can we specify service behavior? When a service S is improved, some
behavior of S is identified, which has to be preserved in an improved version S′

of S. We need to formally specify this behavior.
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How can we decide correctness of an improved service? We need an algorithm
to decide whether an improved version S′ of a service S preserves the desired
behavior of S.

Similar to multiparty contracts, checking correctness of an improved service
is also not a particular strengths of BPM tools currently available on the mar-
ketplace. For that reason, we identified with multiparty contracts and service
improvement two interesting and practical relevant research questions that we
will address in this thesis.

1.3. Thesis overview

In this section, we present an overview of our achieved results and outline this
thesis.

1.3.1. Results overview

In this thesis, we study the question whether a service S′ can substitute a service
S. We present substitutability criteria for services, and we develop algorithms to
decide substitutability according to a substitutability criterion. We also develop
a method to construct a substitutable service S′ for S.

open net N open net N’

Representation 
of all strategies 

of N

Representation 
of all strategies 

of N’

Refinement

Decide 
Substitution

Refinement

BPEL BPEL

contract implementation

Figure 1.4.: Illustration of the thesis’ results.

Figure 1.4 illustrates the results of this thesis. As shown, we will study service
substitution on the level of service models. As a formal service model, we use
open nets [MRS05], a subclass of Petri nets tailored towards the modeling of ser-
vices. Suitability of this model has been demonstrated by open-net semantics for
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various languages, such as BPMN, WS-BPEL, and BPEL4Chor [Loh08, OVA+07,
LKLR08, DDO08, LVD09].

In the following, we present an overview of our achieved results.

Substitutability criteria

Substituting a service S by another service S′ should preserve behavioral com-
patibility of the overall service. In this thesis, we consider several notions of
behavioral compatibility, which are combinations of

• deadlock freedom (i. e., the service cannot get stuck),

• weak termination (i. e., the possibility to always reach a final state),

• ensuring that all activities of the service can be potentially executed, and

• a criterion to restrict final states.

A service S communicates with other services; hence, we define the semantics of
S by the set of all services R such that the composition of S and R is behaviorally
compatible. We call R a strategy of S according to the notion of behavioral
compatibility. With the help of strategies, we define two substitutability criteria:
conformance and preservation [SMB09]. Conformance is used in the setting of
multiparty contracts. It guarantees that no strategy of S can distinguish between
S and S′; that is, every strategy of S is a strategy of S′. Preservation is used for
service improvement. It is a less restrictive notion than conformance and requires
that S′ preserves a subset of the strategies of S.

As the notion of conformance is a classical preorder, we relate it to preorders
known in process theory. In case of deadlock freedom, we show that conformance
coincides with the stable failures preorder. In case of the stronger termination
criterion weak termination, we identify fair testing as the closest known preorder
for conformance and prove under which condition they coincide [MSV09].

Finite representations of sets of services

To decide service substitutability, we have to compare the two in general infinite
sets of strategies of S and of S′. For that purpose, this thesis contributes in the
development of a finite representation of the in general infinite set of strategies of
a service; see Figure 1.4.

In case of deadlock freedom, it has been shown that the set of all strategies
of a service S can be characterized by an automaton-based representation, the
operating guideline of S. There exist an algorithm to calculate the operating
guideline of S and an algorithmic solution to check containment of a service in
the operating guideline of S.

In this thesis, we extend the notion of an operating guideline and define an-
other five representations that characterize the set of all strategies for behavioral
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compatibility different from deadlock freedom. In particular, we represent all
strategies of a given service in case of weak termination. For each finite repre-
sentation, we present a construction algorithm and a procedure to check contain-
ment [SW08, WSOD09].

Deciding service substitutability

For each substitutability criterion, we present an algorithm to decide substi-
tutability. The decision procedure is nontrivial, because we have to compare
two in general infinite sets of strategies. As these sets of strategies can be rep-
resented in a compact manner, we compare their respective finite representations
instead. This is shown by the box Decide Substitution in Figure 1.4.

A service S′ conforms to a service S if every strategy of S is also a strategy of S′.
Hence, given the finite representations of all strategies of S and of S′, the decision
procedure reduces to an inclusion check on these finite representations. For two
of the six finite representations, we provide an algorithm to decide inclusion and
hence to decide conformance [ALM+09, SW09a].

In case of preservation, only a subset S of the strategies of S has to be pre-
served by S′. We define the intersection of two sets of strategies based on their
finite representations. Intersection is used to calculate a finite representation that
characterizes the restriction of the strategies of S to S. So, the procedure to de-
cide preservation reduces to an inclusion check of S in the set of all strategies of
S′, which can be done on their finite representations. As this decision procedure
reduces to decide conformance, we present a decision algorithm only for two of
the six finite representations (like for conformance). However, if the set S is finite,
we present a solution, for each of the six finite representations [SMB09].

Constructing substitutable services

Besides algorithms for deciding substitutability, this thesis also contributes in the
construction of substitutable services.

We define several conformance-preserving transformation rules [ALM+08].
These rules allow for removing, for adding, and for reordering of activities. They
can be used to derive a service S′ from a service S by stepwise transformation such
that each transformation step preserves every strategy of S. This is illustrated
by the Refinement box in the center of Figure 1.4.

The service description language WS-BPEL defines an equivalence relation be-
tween a service specification (i. e., abstract process) and a service implementa-
tion (i. e., executable process). This equivalence relation is, however, only de-
fined on the XML syntax of services. We formalize this equivalence relation
in terms of strategies. By reformulating our transformation rules, we provide
a sufficient condition to decide whether two services specified in WS-BPEL are
equivalent [KLM+08]; see the topmost Refinement box in Figure 1.4.
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1. About This Thesis

Most parts of this thesis have been published at international conferences and
in international journals. We will indicate this in the beginning of each chapter.

For a proof-of-concept, most of the algorithms and strategy representations we
will present in this thesis have been prototypically implemented in the service
analysis tool Fiona1 [MW08]. The core developers of Fiona are Peter Massuthe
and Daniela Weinberg. The implementation work of the results presented in this
thesis has been mainly done by Robert Danitz, Leonard Kern, and Janine Ott.

1.3.2. Road map

This thesis has five parts.

Part I continues in Chapter 2 with an introduction to the formalisms that are
used for the modeling and the verification of service behavior.

Part II formalizes substitutability criteria for multiparty contracts and for service
improvement and presents four compact representations for in general in-
finitely many services. In Chapter 3, we define the two notions conformance
and preservation, and we relate conformance to known process preorders. In
Chapter 4, we classify behavioral compatibility and present, for each class of
behavioral compatibility, a finite representation of all strategies for a given
service.

Part III describes methods to decide service substitutability in the setting of mul-
tiparty contracts and service improvement. In Chapter 5, we present a
method to decide inclusion of two infinite sets of services based on their fi-
nite representations. Inclusion is used to decide conformance. In Chapter 6,
we define the intersection of two infinite sets of services based on their re-
spective finite representations. Intersection is used to restrict the strategies
of a service to those strategies that have to be preserved by the substitution
under preservation.

Part IV describes a method to construct substitutable services. In Chapter 7,
we present transformation rules to incrementally transform a service S into
a service S′ such that all relevant properties are guaranteed by construc-
tion. These transformation rules can be applied in the setting of multiparty
contracts. In Chapter 8, we apply our theoretical results on service sub-
stitutability to the service description language WS-BPEL. We formalize
behavioral equivalence of WS-BPEL processes and present a decision pro-
cedure based on transformation rules.

Part V concludes this thesis. In Chapter 9, we compare the results of this thesis
with existing work. Finally, we summarize the results of this thesis and
discuss open problems (strongly related to the topics of this thesis) and
future research (loosely related to the topics of this thesis) in Chapter 10.

1available at http://www.service-technology.org/fiona
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2. A Formal Model for Service
Behavior

In this chapter, we introduce the formalisms used for the modeling and the ver-
ification of service behavior. In particular, we introduce open nets, which refine
classical place/transition Petri nets by an interface to model asynchronous mes-
sage passing, and service automata, which basically model the transition system
of the internal states of open nets. Open nets and service automata can be used
to model the behavior of a service in isolation as well as to model the behavior of
a service composition.

In Section 2.1, we introduce transition systems and equivalence notions for
transition systems. In Section 2.2, we define Petri nets. Afterwards, we intro-
duce open nets in Section 2.3. In Section 2.4, we present a notion of interface
compatibility and formalize open-net composition. A special service composition
are multiparty contracts, which we formalize in Section 2.5. Subsequently, we de-
fine behavioral properties of open nets and present several notions of behavioral
compatibility of open nets in Section 2.6. In Section 2.7, we introduce service au-
tomata. Finally, we discuss in Section 2.8 the restrictions of our proposed models
and show how services being specified in industrial service description languages
can be automatically translated into open nets.

2.1. Transition systems and equivalence notions

In this section, we introduce labeled transitions systems as a basic formalism to
model the behavior of a system. We also define several equivalence notions for
labeled transition systems.

Definition 2.1.1 (labeled transition system (LTS)).
A labeled transition system (LTS for short) TS = (Q,Σ, δ, q0) consists of

• a countable set Q of states;

• an alphabet Σ of visible actions; the internal action is denoted by τ /∈ Σ;

• a transition relation δ ⊆ Q× (Σ ∪ {τ})×Q on states; and

• an initial state q0 ∈ Q.

An LTS is deterministic iff, for all q, q′, q′′ ∈ Q, a ∈ Σ, (q, τ, q′) implies q = q′ and
(q, a, q′), (q, a, q′′) ∈ δ implies q′ = q′′. It is finite iff Q is finite. Whenever neces-
sary, we extend an LTS by a set Ω ⊆ Q of final states, i. e., TS = (Q,Σ, δ, q0,Ω).y
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Figure 2.1.: Four LTSs: Q and S simulate P ; Q and S are bisimilar; Q and R are
branching bisimilar.

The transition relation δ reflects state changes of an LTS. For any two states
q and q′ and any action a ∈ Σ ∪ {τ}, we write q a−→ q′ if an a-labeled transition
exists from q to q′. We write q a−→ if there exists a q′ such that q a−→ q′. By
q
∗−→ q′, we denote that there exists a (possible empty) sequence q a1−−→ . . .

an−−→ q′

of transitions from q to q′ and say that q′ is reachable from q.
If B is a set, then B∗ denotes the set of all lists over B; ε denotes the empty

list, and lists are concatenated by juxtaposition. For w ∈ Σ∗, w==⇒ is the least
relation satisfying:

• q ε=⇒ q ;

• q w==⇒ q′ ∧ q′
a−→ q′′ ⇒ q

w a===⇒ q′′ , for any action a ∈ Σ;

• q w==⇒ q′ ∧ q′
τ−→ q′′ ⇒ q

w==⇒ q′′ .

We write q w==⇒ if there exists a q′ such that q w==⇒ q′.
The difference between the two relations −→ and =⇒ is that −→ considers

sequences of actions including τ , whereas =⇒ only considers sequences of visible
actions.

When the behavior of a service is analyzed, we will consider strongly connected
components of an LTS.

Definition 2.1.2 (strongly connected component (SCC)).
Let TS = (Q,Σ, δ, q0) be an LTS. Two states q, q′ ∈ Q of TS are mutually
reachable iff q

∗−→ q′ and q′ ∗−→ q. Mutually reachability is an equivalence relation
on states of an LTS, and its equivalence classes are strongly connected components
(SCCs). An SCC S is a terminal strongly connected component (TSCC) iff no
state of another SCC is reachable from any state of S. y

Figure 2.1 shows four LTSs; for example, R has five states r0, . . . , r4 and r0
a b===⇒

r3. Each state of R is an SCC; states r3 and r4 are TSCCs.
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Given two LTSs P and R, we are interested whether they are equivalent. Many
preorders and equivalence notions to relate P and R exists in the literature—see
the work of Van Glabbeek [Gla93, Gla01], for instance. We introduce the well-
known relations of strong simulation [Mil89], strong bisimulation [Par81], and
branching bisimulation [GW96].

A strong simulation relation (simulation for short) of P by R demands that
every transition of P can be mimicked by an equally-labeled transition of R. A
simulation treats τ -actions like any other action.

Definition 2.1.3 (simulation, bisimulation).
Let P = (Q,Σ, δ, q0) and R = (Q′,Σ′, δ′, q′0) be LTSs. A binary relation % ⊆ Q×Q′
is a simulation relation of P by R iff

• (q0, q
′
0) ∈ %;

• for every (q1, q
′
1) ∈ %, a ∈ Σ ∪ {τ}, q2 ∈ Q such that q1

a−→ q2 in P , there
exists q′2 ∈ Q′, such that q′1

a−→ q′2 in R and (q2, q
′
2) ∈ %.

R simulates P iff there exists a simulation relation % of P by R. If, P and R are
LTSs with final states and, for all (q, q′) ∈ %, q ∈ ΩP iff q′ ∈ ΩR, then % respects
final states. If % and %−1 are simulation relations (that respect final states), then
% is a bisimulation relation (that respects final states). y

Consider again Figure 2.1. The LTS Q simulates the LTS P using simulation re-
lation % = {(p0, q0), (p1, q1), (p2, q1), (p3, q2), (p4, q3)}. Furthermore, S simulates
P, Q simulates S and vice versa, and no other simulation relation holds. In fact,
the LTSs Q and S are even bisimilar. As a counterexample, P does not simulate
Q: We had to relate states (q0, p0), (q1, p1), and (q1, p2); however, q1

b−→ and
q1

c−→ , but p1 6 c−→ and p2 6 b−→ .
There may exist several simulation relations of P by R. Throughout this thesis,

we shall always confine to a particular one that we call the minimal simulation
relation. It restricts P and R to their reachable states. This relation is only
uniquely defined for the case where R is deterministic. For example, S simulates
Q, but there is no unique minimal simulation relation of Q by S, because the
transition (q1, b, q2) can be mimicked by two transitions of S, viz., (s1, b, s2) and
(s1, b, s3).

Definition 2.1.4 (minimal simulation).
A minimal simulation relation % of P by R is the smallest simulation relation of
P by R, i. e., % ⊆ %′, for all simulation relations %′ of P by R. y

An equivalence notion weaker than bisimulation is branching bisimulation.
Branching bisimulation distinguishes (in contrast to bisimulation) visible actions
from τ -actions. We define a branching bisimulation relation that respects final
states.
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Definition 2.1.5 (branching bisimulation).
Let P = (Q,Σ, δ, q0,Ω) and R = (Q′,Σ′, δ′, q′0,Ω

′) be LTSs with final states. P
and R are branching bisimilar iff there exists a symmetric relation % ⊆ Q × Q′
such that

• (q0, q
′
0) ∈ %;

• for all q1, q2 ∈ Q, q′1 ∈ Q′ and for all α ∈ Σ ∪ {τ} such that (q1, q
′
1) ∈ % and

q1
α−→ q2 in P implies

– α = τ and there exist q′3, q
′
2 ∈ Q′ such that q′1

ε=⇒ q′3 ∧ (q′3
τ−→ q′2 ∨ q′3 =

q′2) and (q1, q
′
3), (q2, q

′
2) ∈ %; or

– α 6= τ and there exist q′3, q
′
2 ∈ Q′ such that q′1

ε=⇒ q′3 ∧ q′3
α−→ q′2 and

(q1, q
′
3), (q2, q

′
2) ∈ %.

• for each final state q1 ∈ Ω with (q1, q
′
1) ∈ % implies there exists q′2 ∈ Ω′ such

that q′1
ε=⇒ q′2 and (q1, q

′
2) ∈ %. y

The LTSs Q and R in Figure 2.1 are branching bisimilar, but also the LTSs R
and S. Suppose Q has final states q2 and q3. Then, Q and R are only branching
bisimilar if R has final states r3 and r4

2.2. Basic definitions on Petri nets

Petri nets [Rei85, Mur89, DR98] consist of two kinds of nodes, places and transi-
tions, and a flow relation on nodes. Graphically, a place is represented by a circle,
a transition by a box, and the flow relation by directed arcs between them. Whilst
transitions represent dynamic elements—for example, an activity of a service—
places represent static elements—for example, a condition to perform an activity
of a service. A state of a Petri net is represented by a marking, which is a dis-
tribution of tokens over the places. Graphically, a token is depicted by a black
dot.

Definition 2.2.1 (Petri net).
A Petri net N = (P, T, F,m0) consists of

• two finite and disjoint sets P of places and T of transitions;

• a flow relation F ⊆ (P × T ) ∪ (T × P ); and

• an initial marking m0, where a marking is a mapping m : P −→ N. y

When referring to several Petri nets we use indices to distinguish the con-
stituents of different Petri nets whenever necessary; for instance, PN refers to the
set of places of a Petri net N .

Let x ∈ P ∪T be a node of a Petri net N . As usual, the pre-set of x is denoted
by •x = {y | (y, x) ∈ F}, and the post-set of x is denoted by x• = {y | (x, y) ∈ F}.
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The sum m1 +m2 : P −→ N of two markings m1,m2 of a Petri net N is defined
by (m1 + m2)(p) = m1(p) + m2(p), for all p ∈ P . We canonically extend the
notion of a marking of N to supersets Q ⊇ P of places; that is, for a mapping
m : P −→ N, we extend m canonically to the marking m : Q −→ N with m(p) = 0,
for all p ∈ Q \ P . Analogously, a marking can be restricted to a subset Q ⊆ P of
the places of N . For a mapping m : P −→ N, the restriction of m to the places in
Q is denoted by m|Q : Q −→ N. We extend this restriction also to sets of markings.
Let M be a set of markings of N and Q ⊆ P , then M |Q denotes the restriction
of markings m of M to the places in Q. Finally, the set of all possible markings
of a Petri net N is denoted by M(N).

A marking of a Petri net N is changed by the firing of a transition of N . A
transition t is enabled at a marking m if there is a token on every place in t’s
pre-set. The firing of an enabled transition t yields a new marking m′, which
is derived from m by consuming (i. e., removing) a token from each place of t’s
pre-set and producing (i. e., adding) a token on each place of t’s post-set.

Definition 2.2.2 (behavior of Petri nets, step).
Let N = (P, T, F,m0) be a Petri net. A transition t ∈ T is enabled at a marking

m, denoted by m t−→ , iff m(p) > 0, for all p ∈ •t. If t is enabled at m, it can fire,
reaching a marking m′, where

m′(p) =

 m(p)− 1, if p ∈ •t \ t•,
m(p) + 1, if p ∈ t• \ •t,
m(p), otherwise.

The firing of t is a (t-)step of N and denoted by m t−→ m′. y

The behavior of a Petri net N can be enhanced from single steps to potentially
infinite sequences of steps. A finite or infinite sequence of steps m1

t1−−→ m2
t2−−→

. . . is a run of N if mi
ti−→ mi+1 is a step of N , for all i > 0. A marking

m′ is reachable from a marking m, denoted by m
∗−→ m′, if there exists a finite

(possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and m′ = mk. Let
RN (m) = {m′ | m ∗−→ m′} be the set of markings reachable from a marking m
of N . The set RN (m0) contains all markings of N that are reachable from the
initial marking m0. It can be represented as a graph, called reachability graph of
N , with the set RN (m0) as its nodes and the transitions between these markings
as its labeled edges. A reachability graph can be represented by an LTS.

An example of a Petri net is illustrated in Figure 2.2. In its initial marking
m0 = [p0] the transitions t0 and t1 are enabled. The firing of transition t0 yields
the marking [p1]. So [p0] t0−→ [p1] is a run of N, and the marking [p1] is reachable
from the marking [p0].

Next, we define some properties of Petri nets. The first property refers to the
structure of N , whereas the other three properties refer to the behavior of N .

Definition 2.2.3 (Petri net properties).
A Petri net N = (P, T, F,m0) is
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Figure 2.2.: An example Petri net N.

• acyclic iff the reachability graph of N is acyclic.

• b-bounded (or bounded for short) iff there exists a b ∈ N such that, for every
reachable marking m ∈ RN (m0), m(p) ≤ b, for all p ∈ P .

• live iff, for every reachable marking m ∈ RN (m0) and transition t ∈ T ,
there is a reachable marking m′ ∈ RN (m) such that m′ enables t.

• quasi-live iff, for all transitions t ∈ T , there is a reachable marking m ∈
RN (m0) such that m enables t. y

Boundedness of a Petri net is equivalent to have a finite set of reachable mark-
ings. Liveness ensures that, for every reachable marking m and every transition
t, there exists a run from m0 to a marking m′ that enables t. A weaker prop-
erty than liveness is quasi-liveness, which ensures that every transition is at least
enabled in a reachable marking. These properties can be verified using standard
state-space verification techniques [CGP00].

The example Petri net N in Figure 2.2 contains a run [p0] t1−→ [p2] t4−→ [p4] t3−→
[p2]. Thus, N contains a cycle. The Petri net N is 1-bounded and quasi-live, but
it is not live.

2.3. Modeling service behavior with open nets

A service consists of a control structure describing its behavior and of an interface
to communicate asynchronously with other services. An interface is a set of (input
and output) channels. In order that two services can interact with each other,
an input channel of the one service has to be connected with an output channel
of the other service. Asynchronous message passing means that communication
is non-blocking; that is, after a service has sent a message it can continue its
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execution and does not have to wait until this message is received. Furthermore,
messages can ‘overtake’ each other; that is, the order in which the messages are
sent is not necessarily the order in which they are received.

We model services as open nets, which have been introduced as ‘open workflow
nets’ in [MRS05]. An open net is a Petri net as defined in the previous section. As
Petri nets have proved to be successful for the modeling of business processes and
workflows (see the work of Van der Aalst [Aal98, AH02], for instance), open nets
can adequately model the control structure of a service. The set of final states of
a service—that is, the states in which it may successfully terminate—is modeled
by a set of final markings. The service interface is reflected by two disjoint sets
of input and output places. Thereby, each input (output) place corresponds to
an input (output) channel. An input place has an empty pre-set and is used for
receiving messages from a distinguished channel, whereas an output place has an
empty post-set and is used for sending messages via a distinguished channel.

Definition 2.3.1 (open net).
An open net N = (P, T, F, P I , PO,m0,Ω) consists of a Petri net (P, T, F,m0) and

• an interface (P I ∪ PO) ⊆ P defined as two disjoint sets P I of input places
and PO of output places such that •p = ∅, for any p ∈ P I and p• = ∅, for
any p ∈ PO; and

• a set Ω of final markings.

We further require that in the initial and the final markings no interface place is
marked; that is, we demand m(p) = 0, for all m ∈ Ω∪{m0} and all p ∈ P I ∪PO.y

Graphically, we represent an open net like a Petri net with a dashed frame
around it. The interface places are depicted on the frame. Final markings have
to be described separately.

On the first sight, it might not be intuitive that a final marking of an open
net may enable a transition. However, a restriction to final markings that do not
enable any transition would not affect our theory. Therefore, we decided to be as
general as possible in our definition.

As our running example, consider the open net Bank in Figure 2.3 with the
initial marking m0 = [p0]. The set of final markings is defined as Ω = {[p1], [p3]}.
The open net Bank has input places P I = {ap, i} and output places PO =
{as, req}.

In this thesis, we restrict ourselves to the service behavior. Hence, open nets
model only the service behavior and abstract from other important aspects of
services, such as quality of service or semantical aspects. In addition, we also
abstract from data, because open nets are low-level Petri nets with undistinguish-
able black tokens. We will discuss these restrictions at the end of this chapter in
more detail.

Open nets are a generalization of Van der Aalst’s workflow nets
(WFNs) [Aal98]. A WFN is a Petri net that is specially tailored towards the
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Figure 2.3.: An open net Bank modeling an online bank service. Bank either sends
a customer his annual statements (t0) or it requires the customer
to make an appointment with his bank consultant (t1). It accepts
additional information being sent by the customer (t4), but it always
reminds him to make an appointment (t3). If the customer agrees on
an appointment (t2), Bank terminates.

modeling of workflow processes. A WFN has a distinguished initial place and a
distinguished final place, and every place and transition belongs to some path from
the initial to the final place. Open nets do not follow those structural restrictions.
A set of final markings is a more convenient way to model expected successful
termination of a service. As a fundamental difference, WFNs do not have an
interface. Martens extends the formalism of WFNs with an interface [Mar05].
The resulting class of Petri nets is called workflow modules. As workflow modules
follow the structural restrictions of WFNs, open nets also generalize workflow
modules.

Petri nets with an interface have also been considered in [Vog92, Che93, Kin97],
for instance.

An open net N usually has transitions that are connected to an interface place
and transitions that are not. The set T IO = {t | ∃p ∈ P I ∪ PO : t ∈ •p ∪ p•}
defines the set of interface transitions of N , and T \T IO defines the set of internal
transitions of N .

If an open net N has an empty interface (i. e., P I = PO = ∅), then N is a
closed net . A closed net can be used to model a service composition, for instance.

Definition 2.3.2 (inner subnet).
Let N = (P, T, F, P I , PO,m0,Ω) be an open net, and let P Int = P \ (P I ∪PO) be
the set of internal places of N . The inner subnet of N is defined by inner(N) =
(P Int , T, F ∩ ((P Int × T ) ∪ (T × P Int)), ∅, ∅,m0|P Int ,Ω|P Int ). y
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Figure 2.4.: Customers of Bank in Figure 2.3. Cust1 receives either the annual
statements (t7) or an request for an appointment (t6). He always
replies to such a request by sending some information to its customer
consultant (t9) in the hope of receiving his annual statements even-
tually (t10). Cust2 either receives the annual statements (t11) or
terminates immediately (t12). Cust3 receives either the annual state-
ments (t13) or the request (t14). In case of a request, he makes an
appointment with his customer consultant immediately (t15).

The inner subnet defines the Petri net that results from removing the interface
places and their adjacent arcs from N . The behavior of N is basically the reach-
ability graph of the inner subnet of N . Clearly, inner(N) and N coincide if N is
a closed net.

To decide boundedness of an open net, we assume arbitrary many tokens on
each input place of N such that the enabledness of a transition of N does not
depend on the interface places. Consequently, an open net is bounded if and only
if its inner subnet inner(N) is bounded.

Two open nets N1 and N2 may have the same set of interface places—that is,
P I1 = P I2 and PO1 = PO2 . In this case, they are interface equivalent .

The inner subnet inner(Bank) of the open net Bank in Figure 2.3 is the Petri
net N in Figure 2.2. As this Petri net is bounded, the open net Bank is bounded
as well.

Now we complete our running example by introducing three customer services:
the open nets Cust1, Cust2, and Cust3. The three open nets are depicted in
Figure 2.4. As their sets of final states, we fix the singleton sets ΩCust1 = {[p9]},
ΩCust2 = {[p11]}, and ΩCust3 = {[p14]}, respectively. Each open net has input
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places P I = {as, req} and output places PO = {ap, i}; that is, the three customers
are interface equivalent.

2.4. Composition of open nets

The general idea of SOC is to use services as building blocks for designing com-
plex services. To this end, services have to be composed; that is, pairs of input
and output channels of these services are connected. Communication between
these services is achieved by exchanging messages via these connected channels.
Composing two open nets is modeled by fusing pairwise equally labeled input and
output places. Such a fused interface place models a connected channel, and a to-
ken on such an interface place corresponds to a pending message in the respective
channel.

For the composition of open nets we assume that all sets of transitions are
pairwise disjoint and every internal place of an open net is not contained in the
set of places of any other open net. This can be achieved easily by renaming. In
contrast, the interfaces intentionally overlap. For a reasonable concept of compo-
sition of open nets, however, it is convenient to require that all communication
is bilateral and directed; that is, every interface place p of N has only one open
net that sends into p and one open net that receives from p. Thereby the sending
open net has the output place, and the receiving open net has the corresponding
equally labeled input place. We refer to open nets that fulfill these properties as
interface compatible.

Definition 2.4.1 (interface compatible open nets).
Let N1 = (P1, T1, F1, P

I
1 , P

O
1 ,m01,Ω1) and N2 = (P2, T2, F2, P

I
2 , P

O
2 ,m02,Ω2) be

two open nets with T1 ∩ T2 = ∅, P Int
1 ∩ P2 = ∅, and P Int

2 ∩ P1 = ∅. If only input
places of one open net overlap with output places of the other open net, i. e.,
P I1 ∩ P I2 = ∅ and PO1 ∩ PO2 = ∅, then N1 and N2 are interface compatible. y

We compose two open nets N1 and N2 by merging input places of N1 with
equally labeled output places of N2 (and vice versa); that is, composition corre-
sponds to place fusion, which is well-known in the theory of Petri nets. Therein,
bilateral and directed communication between N1 and N2 is guaranteed. Com-
position of N1 and N2 results in an open net again.

Definition 2.4.2 (composition of open nets).
Let N1 = (P1, T1, F1, P

I
1 , P

O
1 ,m01,Ω1) and N2 = (P2, T2, F2, P

I
2 , P

O
2 ,m02,Ω2) be

two interface compatible open nets. The composition N = N1 ⊕ N2 is the open
net (P, T, F, P I , PO,m0,Ω) defined as:

• P = P1 ∪ P2;

• T = T1 ∪ T2;

• F = F1 ∪ F2;
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Figure 2.5.: Composition of open nets Bank and Cust1. The interface place ap
becomes internal in the composition, but it is never marked.

• P I = (P I1 ∪ P I2 ) \ (PO1 ∪ PO2 );

• PO = (PO1 ∪ PO2 ) \ (P I1 ∪ P I2 );

• m0 = m01 +m02; and

• Ω = {m1 +m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2}. y

The initial marking of the composition is the sum of the initial markings of
N1 and N2, and the set of final markings of the composition is the Cartesian
product of the sets of final markings of N1 and N2. This is reasonable, because
Definition 2.3.1 ensures that the only shared constituents of N1 and N2, the
interface places, are not marked in the initial or final markings.

In the example, each of the customers in Figure 2.4 is interface compatible with
the online bank in Figure 2.3. Hence, we can compose each customer with the on-
line bank by merging equally labeled interface places. The resulting composition
for Bank and Cust1 is the closed net in Figure 2.5.

The definition of final markings of the composition may result in unreachable
final markings. As an example, the composition in Figure 2.5 has a final marking
[p3, p9]. This marking is not reachable.

To apply composition to an arbitrary number of open nets, we require these
open nets to be pairwise interface compatible. This requirement ensures bilateral
communication, as for a third open net N3, a communication taking place inside
the composition of open nets N1 and N2 is internal matter.

Open net composition is commutative and associative. Thus, composition of a
set of open nets can be broken into iterative pairwise composition.
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Figure 2.6.: Motivation for b-limited communication: Although N1 and N2 are
1-bounded open nets, their composition N1 ⊕ N2 is unbounded due
to place p.

Lemma 2.4.3 (composition is commutative and associative).
For (pairwise) interface compatible open nets N1, N2, and N3 holds:

• The composition of open nets is commutative, i. e., N1 ⊕N2 = N2 ⊕N1.

• The composition of open nets is associative, i. e., N1 ⊕ N2 ⊕ N3 = (N1 ⊕
N2)⊕N3 = N1 ⊕ (N2 ⊕N3). y

In this thesis, we will often consider interface compatible open nets N1 and N2

such that their composition results in a closed net. We refer to those open nets as
partners. The notion of partners is also known as syntactical compatibility [Mar05]
or strong structural compatibility [DW07].

Boundedness of an open net concerns the inner subnet of an open net. The
composition of two bounded open nets may, however, result in an unbounded open
net, because tokens may accumulate on the prior interface places. An example
is illustrated in Figure 2.6. To achieve a bounded open-net composition, we
have to restrict the number of tokens at those interface places. To this end, we
define a notion of boundedness for interface places, which has been introduced
in [LMW07b].

Definition 2.4.4 (b-limited communication).
Let N = (P, T, F, P I , PO,m0,Ω) be an open net with N = N1 ⊕ N2, and let
b ∈ N. Open net N has b-limited communication iff, for all reachable markings
m ∈ RN (m0), m(p) ≤ b, for all p ∈ (P I1 ∪ P I2 ∪ PO1 ∪ PO2 ) ⊆ P . y

If two open nets N1 and N2 are bounded and their composition N has b-limited
communication, then N has only finitely many reachable markings.

As an example, each customer in Figure 2.4 is a partner of the online bank in
Figure 2.3, and the composition of any of the three customers and the online bank
has 1-limited communication.

2.5. Modeling multiparty contracts with open nets

In Section 1.2.1, we introduced the notion of a (multiparty) contract as a specifi-
cation of an interorganizational cooperation among multiple parties. A contract
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Figure 2.7.: A contract for a credit request that involves three parties: a client
Client, a broker Broker, and a credit institute Credit.

corresponds to the ‘rules of engagement’ the parties agreed on. As in case of a
service, we restrict ourselves to the behavioral aspect of a contract and abstract
from all other aspects. The resulting contract models the basic interaction struc-
tures among different parties. In this section, we formalize contracts with open
nets. The formalization follows [ALM+09].

Basically, we see a contract as a closed net N , where every transition is assigned
to one of the involved parties A1, . . . , Ak. We impose only one restriction: If a
place is accessed by more than one party, it should act as a directed bilateral
communication place. This restriction reflects the fact that a party’s public view
of the contract is a service again. A contract N can be cut into parts N1, . . . , Nk,
each representing the agreed public view of a single party Ai (1 ≤ i ≤ k). Hence,
we define a contract as the composition of the open nets N1, . . . , Nk.

Definition 2.5.1 (contract for k parties, public view).
Let A = {A1, . . . , Ak} be a set of parties. Let {N1, . . . , Nk} be a set of pairwise
interface compatible open nets such that N = N1⊕· · ·⊕Nk is a closed net. Then
the closed net N is a contract for A. For i = 1, . . . , k, open net Ni is the public
view of Ai in N . y

An example contract is illustrated in Figure 2.7. The closed net models a
credit request. It involves three parties: a client who requests at a broker for a
credit; a broker who receives the client’s credit request, forwards it to a credit
institute, and sends the bill to the client; and a credit institute, which sends
information to the client if it is interested. The three parties are modeled by the
three open nets Client, Broker, and Credit. The dotted swimlanes in the figure
show the partitioning of transitions over the parties involved in the contract.
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Figure 2.8.: Public view and private view of the credit service in Figure 2.7.

The respective interface places are depicted along the swimlanes. The set of
final markings of the open nets is defined to be ΩClient = {[p2], [p3]}, ΩBroker =
{[p7, p8]}, ΩCredit = {[p11]}, and according to Definition 2.4.2 for the Contract
Ω = {[p2, p7, p8, p11], [p3, p7, p8, p11]}.

A private view N ′ is an implementation of a public view N . Technically, N ′ is
an (arbitrary) open net such that N and N ′ are interface equivalent.

Figure 2.8(a) recalls the public view of the service Credit in Figure 2.7. A
possible private view Credit′ of this open net is shown in Figure 2.8(b). The
service decides to be more customer-oriented. It receives the client request (t9),
then gathers information (t10), and finally sends information to each client (t11).
The set of final markings of Credit′ is defined as {[p15]}. Credit′ and Credit are
interface equivalent.

For the sake of simplicity, this example is rather atypical in the sense that a
private view usually tends to have much more activities than the public view.
However, Credit′ is less restrictive to the client than Credit, as it will always send
information.

2.6. Behavioral compatibility of open nets

So far we defined composition of open nets and provided with the notion of in-
terface compatibility a syntactical criterion for describing a correct composition.
Interface compatibility is only a necessary condition for correctness of a composi-
tion. In addition, a composition has to be behaviorally compatible—for example,
deadlock-free or sound [HSV03]. If a composition is both, interface and behav-
iorally compatible, then it is compatible.
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In Section 2.6.1, we introduce some behavioral properties for open nets. In
Section 2.6.2, we combine these properties and define several notions of behavioral
compatibility.

2.6.1. Behavioral properties of open nets

We introduce with deadlock freedom, weak termination, covering of open-net
nodes, and strict termination four behavioral properties of open nets.

Deadlock freedom and weak termination

A minimal requirement to termination is the absence of deadlocks in an open net
N . However, the absence of deadlocks does not guarantee that an open net will
eventually terminate, because it does not exclude livelocks.

Definition 2.6.1 (deadlock, livelock).
Let N = (P, T, F, P I , PO,m0,Ω) be an open net.

• A reachable, non-final marking m ∈ RN (m0) \ Ω of N is a deadlock iff no
transition of N is enabled at m. If N has no deadlock, then it is deadlock-
free.

• Open net N has a livelock iff there is a reachable marking m ∈ RN (m0) of
N such that every marking m′ ∈ RN (m) is not a deadlock and not a final
marking. y

The composition Bank⊕Cust1 in Figure 2.5 is deadlock-free for the defined set
ΩBank⊕Cust1 = {[p1, p9], [p3, p9]} of final markings, but it contains a livelock. In
the marking [p2, p7], only the infinite run [p2, p7] t9−→ [p2, p8, i] t4−→ [p4, p8] t3−→
[p2, p8, req] t8−→ [p2, p7] . . . is enabled, and hence neither a deadlock nor a final
state is reachable from the marking [p2, p7]. The reason is that Cust1 always
replies to each request of the Bank with the sending of additional information in
the hope that these information satisfy the customer consultant. This is, however,
never the case. Transition t10 cannot be enabled at any reachable marking of
Bank ⊕ Cust1. The composition Bank ⊕ Cust3 is deadlock-free as well, whereas
Bank⊕ Cust2 can reach a deadlock [p2, p11, req] from its initial marking.

Deadlocks and livelocks in a reachability graph (i. e., LTS) can be characterized
by the help of SCCs (cf. Definition 2.1.2). In fact, a deadlock or livelock is a
TSCC which does not contain a final state. If this TSCC is a singleton state
without a self-loop, we have a deadlock; otherwise, we have a livelock.

In the sequel, we define weak termination, a termination criterion that guar-
antees the absence of deadlocks and of livelocks in an open net N . In the com-
putation tree logic (CTL) [CE82, CES86], weak termination can be expressed as
AGEF mf , mf ∈ Ω; that is, from every reachable marking of N , it is always pos-
sible to reach a final marking of N . Weak termination coincides with the notion
of soundness [HSV03] that has been introduced for workflow nets.
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Definition 2.6.2 (weak termination).
An open net N weakly terminates iff, for all reachable markings m ∈ RN (m0),
there is a marking mf ∈ ΩN with m

∗−→ mf . y

Only the composition of the online bank Bank and the customer Cust3 weakly
terminates; Bank ⊕ Cust2 may deadlock, and Bank ⊕ Cust1 in Figure 2.5 may
livelock.

Weak termination is a stricter termination criterion than deadlock freedom, as
it excludes livelocks. For bounded open nets, a livelock corresponds to a cycle in
the reachability graph. Hence, for bounded and acyclic open nets in the sense of
Definition 2.2.3 (i.e., open nets with an acyclic reachability graph), the notions
weak termination and deadlock freedom coincide.

Lemma 2.6.3 (relating deadlock freedom and weak termination).
Let N be an acyclic and bounded open net. N weakly terminates iff N is deadlock-
free. y

Covering open-net nodes

Besides termination it is obviously desirable that the functionality of a service can
potentially be used by other services. In other words, we want that a (sub)set of
activities of a service is not dead. On the modeling level, we require that certain
open-net nodes can be covered.

Definition 2.6.4 (cover open-net node).
Let N = (P, T, F, P I , PO,m0,Ω) be an open net. Let an α-run be a run that
starts in the initial marking m0 of N . Open net N covers a

• place p ∈ P iff some α-run of N includes a marking m with m(p) ≥ 1;

• transition t ∈ T iff some α-run of N includes a t-step;

• set Y ⊆ P ∪ T iff, for each y ∈ Y , there is an α-run that covers y. y

The idea of covering open-net nodes is inspired by the notion of classical sound-
ness for workflow nets [Aal98]. Classical soundness ensures that a workflow net
weakly terminates and each transition is covered. Definition 2.6.4 allows to cover
arbitrary nodes of an open net. An open net N that covers all its transitions is
by Definition 2.2.3 quasi-live.

As an example, the composition Bank⊕Cust1 in Figure 2.5 covers all open-net
nodes except ap, p3, t2, and t10.

Strict termination

The notion of a final marking of an open net, as introduced in Definition 2.3.1,
is very general, as it allows an open net to receive or to send messages being in
a final marking. Even internal transitions may be enabled at a final marking. In
industrial service description languages, final states are usually more restrictive;
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for example, in WS-BPEL, it is not possible to define a final state in which the
service can send, receive, or perform an internal transition. Inspired by this
restriction to final states, we introduce strict termination. Strict termination
guarantees that no transition can be enabled at any final marking; that is, the
restriction of every final marking of an open net N to its inner subnet inner(N)
does not enable any transition in inner(N).

Definition 2.6.5 (strict termination).
Let N be an open net, and let inner(N) = (P, T, F, ∅, ∅,m0,Ω). Open net N
strictly terminates iff, for all final markings m ∈ Ω of inner(N), m does not
enable any transition t ∈ T in inner(N). y

Note that strict termination does not imply weak termination.
The open nets of the online bank and the customers strictly terminate. For a

violation of this property, consider the open net Client in the contract in Figure 2.7.
In final marking [p2] transition t2 is enabled in inner(Client).

2.6.2. Open-net properties and strategies

Now we combine the four properties deadlock freedom, weak termination, cover,
and strict termination that we defined in the previous subsection and. In addition,
we add quasi-liveness as a fifth property and define the notion of an open-net
property.

Definition 2.6.6 (open-net property, X-open net).
Let N be an open net, and let Y ⊆ P ∪ T be a set of nodes of N .

• Each x ∈ Prop = {deadlock freedom, weak termination, cover(Y ), strict
termination, quasi-liveness} is an open-net property .

• Let X ⊆ Prop be a set of open-net properties. Open net N is an X-open
net iff N satisfies all properties as given in X. y

For a reasonable concept of open-net properties, we only consider 9 subsets of
Prop; see Table 2.1. The motivation is that deadlock freedom is a minimal re-
quirement for the correctness of services. Hence every subset of Prop in Table 2.1
contains at least deadlock freedom or the stricter termination criterion weak ter-
mination. Weak termination ensures that a final state can be reached, and strict
termination further restricts the set of final markings. Therefore, strict termina-
tion has to be combined with weak termination. In contrast, a deadlock-free open
net may never reach a final state (due to a livelock). Hence, restricting final states
for deadlock freedom is not reasonable. Finally, we consider either quasi-liveness
or cover(Y ).

In Section 2.4, we introduced the notion of a partner for two interface compat-
ible open nets N and S. Now we extend this notion such that the composition of
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Table 2.1.: Nine subsets of open-net properties considered in this thesis.
deadlock freedom weak term. strict term. cover(Y ) quasi-liveness

+ − − − −
+ − − + −
+ − − − +
+ + − − −
+ + + − −
+ + − + −
+ + − − +
+ + + + −
+ + + − +

N and S has b-limited communication and, in addition, satisfies a set X of open-
net properties. In this case, we say that N and S are (interface and behaviorally)
compatible, and we refer to N and to S as (X, b)-strategies.

Definition 2.6.7 (strategy).
Let N and S be bounded open nets that are partners, let X ⊆ Prop be a set
of open-net properties, and let b ∈ N. If X contains strict termination, then N
as well as S must be strictly terminating. Open net S is an (X, b)-strategy of
N iff N ⊕ S is an X-open net, and N ⊕ S has b-limited communication. With
StratX,b(N) we denote the set of all (X, b)-strategies of N . y

Strict termination is treated differently than the other open-net properties. The
composition of two strictly terminating open nets is also strictly terminating. The
other way around, the composition of two open nets that are not strictly terminat-
ing may be strictly terminate. So for a reasonable concept of strict termination,
we require N and S to be strictly terminating.

We do not require that nodes of (X, b)-strategies S have to be covered, because
(X, b)-strategies will be generated. In this case, every node of this (X, b)-strategy
is covered by construction. However, the cover property violates symmetry. If
X does not contain cover(Y ), the notion of an (X, b)-strategy is as the notion
of a partner symmetric; that is, if N is an (X, b)-strategy of S, then S is an
(X, b)-strategy of N , too. This is a consequence of the commutativity of open-net
composition (see Lemma 2.4.3). An open net S may cover all nodes of N ; however,
as S may contain transitions that cannot be enabled in N ⊕ S, the converse does
not hold in general. Thus, cover violates the symmetry property. In contrast,
quasi-liveness ensures that all transitions of the composition N ⊕ S are covered,
and hence it preserves the symmetry property.

The term strategy is used in the field of controller synthesis [RW87]. For open
nets, it has been introduced in [Sch05], where the considered set X of open-net
properties is restricted to deadlock freedom. In that paper, a strategy S serves
as a controller for an open net N , meaning, S controls N in a way such that
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their composition will never reach a deadlock. Wolf [Wol09] extends the notion
of a strategy to (X, b)-strategies by considering behavioral properties deadlock
freedom, weak termination, and quasi-liveness.

If the set of (X, b)-strategies of an open net N is nonempty, then N is (X, b)-
controllable.

Definition 2.6.8 (controllability).
Let N be a bounded open net, let X be a set of open-net properties for N , and
let b ∈ N. If StratX,b(N) 6= ∅, then N is (X, b)-controllable. y

The open net Cust1 is a ({deadlock freedom}, 1)-strategy of the open net Bank,
and Cust3 is a ({weak termination}, 1)-strategy of the open net Bank. Hence, the
open nets Cust1 and Bank are ({deadlock freedom}, 1)-controllable, and Cust3 and
Bank are ({weak termination}, 1)-controllable.

Throughout this thesis, we will restrict ourselves to bounded open nets as
already done in Definitions 2.6.7 and 2.6.8. Thus, we require partners to be
bounded and to satisfy b-limited communication. For unbounded open nets,
controllability has been proved to be undecidable even for the simplest class of
{deadlock freedom}-strategies [MSSW08]. As services in practice are finite state
services, this restriction does not harm our approach.

To simplify the notation, we fix a bound b in the following and write X-strategy
instead of (X, b)-strategy. In the examples, the bound will usually be b = 1.

2.7. Modeling service behavior with service automata

In the previous sections, we introduced open nets. Open nets are well-suited to
model service behavior, as they have a more implicit and compact model than
LTSs, for instance. As open nets have a formal foundation, they can be used to
analyze service models. However, most of the analysis techniques, we will present
in the forthcoming chapters, deal only with the reachable markings of an open
net and do not make use of its structural information—for example, the explicit
representation of concurrency.

For that reason, we introduce service automata in this section. A service au-
tomaton is an automaton-based representation of an open net taking into account
the concept of asynchronous message passing. In Section 2.7.1, we define a normal
form for open nets, where every transition is connected to at most one interface
place. Afterwards, in Section 2.7.2, we show that every open net N in normal
form can be translated forth and back into a service automaton without affecting
the set of X-strategies of N .

2.7.1. A normal form for open nets

We aim at translating open nets into service automata, a special kind of automata.
As the main difference between both formalisms, the explicit sending and receiving
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of messages from an interface place in an open net will be in a service automaton
modeled implicitly by the help of transition labels. An open net is capable to
send and receive several messages by firing a single transition. To avoid a set of
labels at each transition in the corresponding service automaton, we introduce a
normal form for open nets, where every transition is connected to at most one
interface place. Only open nets being in normal form will be translated into
service automata.

Definition 2.7.1 (normal form for open nets).
An open net N is in normal form iff every transition of N is connected to at most
one interface place, i. e., |(•t ∪ t•) ∩ (P I ∪ PO)| ≤ 1, for all t ∈ T . y

We define a mapping that assigns a label to each open-net transition. These
labels are used to represent the LTS of an open net N . A label denotes to which
interface place a transition is connected. In case the label is an internal transition,
we define the transition label to be τ . Hence, the label denotes the communication
behavior of N and abstracts from all other aspects.

Definition 2.7.2 (transition label).
The transition labels of an open net N in normal form are defined by the mapping
l : T → P I ∪PO ∪ {τ} (τ /∈ P I ∪PO), such that l(t) is the unique interface place
adjacent to t if one exists, and l(t) = τ if t is not adjacent to any interface place.y

Consider the open net Cust1 in Figure 2.4(a). Examples for transition labels
are l(t5) = τ , l(t6) = req, and l(t7) = as.

An open net N can be transformed easily into an open net in normal form.
Intuitively, we relabel each interface place x to px and add a transition tx and a
new interface place x to N . If x was an output place, we add two arcs (px, tx)
and (tx, x). For an input place, the two arcs have the opposite direction. In
addition, we add for each input place a complementary place px that contains in
the initial marking b tokens. This ensures that the inner subnet of the normalized
open net has the same message bound than inner(N). The sum of tokens in px
and px is always b, for all reachable markings. We also have to adapt the set of
final markings of N : In every final marking, all complementary places px must
contain b tokens guaranteeing that px is not marked. Figure 2.9 illustrates the
construction for b = 1. As the construction is straight-forward, we refrain from a
formal definition.

This transformation guarantees that normal(N) and N are interface equivalent,
and every transition of normal(N) is connected to at most one interface place.
The following theorem proves that the normal form of an open net N preserves
all X-strategies of N .

Theorem 2.7.3 (correctness of the normalization).
Let N be an open net, and let X ⊆ Prop be a set open-net properties of N . An
open net S is an X-strategy of N iff S is an X-strategy of normal(N). y
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Figure 2.9.: A 1-bounded open net N, which is not in normal form, and its cor-
responding open net normal(N) in normal form. For each interface
place a, b, and c of N, a buffer place pa, pb, and pc, respectively,
is added to normal(N). Places pb and pc are the complementary
places of pb and pc, respectively. The inner subnet of both, N and
normal(N), is 1-bounded.

Proof.
From S being an X-strategy of N follows that N ⊕ S is a closed net. From
normal(N) being interface equivalent to N follows that normal(N)⊕S is a closed
net, too. Hence, the construction of a normal open net normal(N)⊕ S from the
open net N⊕S without adding the complementary places corresponds to applying
the Petri transformation rule ‘fusion of series places’ [Mur89]. This rule is known
to preserve liveness and boundedness; hence, N ⊕S has b-limited communication
if and only if normal(N) ⊕ S does. Adding now the complementary places will
clearly not affect the set of reachable markings. (Note that we only need these
places to ensure boundedness of normal(N).) Adding the complementary places
adapts the set of final markings of N ; that is, in every final marking of normal(N),
all complementary places must contain b tokens. As by Definition 2.3.1 interface
places do not contain a token in a final marking, no transition in the post-set of a
complementary place can be enabled at a final marking (follows from the construc-
tion of normal(N)). Thus, normalizing N does not affect strict termination. It is
easy to see that N⊕S has a deadlock (livelock) if and only if normal(N)⊕S has a
deadlock (livelock). Thus, deadlock freedom and weak termination are preserved
in both directions. Next, we have to show that N ⊕ S is quasi-live if and only if
normal(N)⊕S is quasi-live. If N⊕S is quasi-live, then we conclude from the fact
that any reachable marking of N⊕S is also reachable in normal(N)⊕S (if we re-
strict the markings of normal(N)⊕S to the places of N⊕S) and the construction
of normal(N) that normal(N)⊕ S is quasi-live, too. Let now normal(N)⊕ S be
quasi-live. We can show that (due to boundedness) for every reachable marking
m of normal(N) ⊕ S, there is a marking m′ with m

∗−→ m′ and the restriction
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of m′ to the places of N ⊕ S is reachable in N ⊕ S. Hence, N ⊕ S is quasi-live.
Finally, we have to show that a set Y of nodes of N is covered in N ⊕ S if and
only if it is covered in normal(N)⊕ S. This fact follows the same argumentation
than for quasi-liveness. �

By commutativity of open-net composition (see Lemma 2.4.3) we directly con-
clude that we can construct a normal open net for both, N and S, without
affecting the relationship between their sets of X-strategies.

Corollary 2.7.4 (correctness of construction).
Let X be an open-net property of an open net N . An open net S is an X-strategy
of N iff the open net normal(S) is an X-strategy of the open net normal(N). y

Due to Corollary 2.7.4 we may consider only open nets in normal form in the
rest of this thesis.

2.7.2. Service automata and their relationship to open nets

In this section, we introduce service automata and a translation of any normal
open net into a service automaton.

A state of a service automaton is comparable to a marking of the inner subnet
of an open net N . Interface transitions of N are modeled as annotations to the
transitions of the service automaton according to the respective transition label
of N . Hence, the alphabet of a service automaton consists of an input and of an
output alphabet modeling the input and the output channels, respectively. Unlike
an open net, a service automaton has no explicit concept of message channels.
The message channels are taken care of in the definition of composition: A state
of a composed service automaton consists of a state of each participating service
automaton and a state of the bag of currently pending messages.

First, we define the notion of an automaton, which is refined to a service au-
tomaton. For the labeling, we fix a universe MC of message channels, with
τ /∈MC.

Definition 2.7.5 (automaton).
An automaton A = (Q,MC I ,MCO, δ, q0) is a finite LTS (Q,Σ, δ, q0) where the
alphabet Σ = MC I ∪MCO is divided into an input alphabet MC I ⊆MC and an
output alphabet MCO ⊆MC such that MC I ∩MCO = ∅. y

An x-labeled transition (q, x, q′) ∈ δ is a sending transition if x ∈ MCO, a
receiving transition if x ∈ MC I , and an internal transition if x = τ . A preceding
question mark and exclamation mark emphasizes whether x ∈ MC I and x ∈ MCO

in the graphical representation of an automaton, respectively.
To model service behavior, we have to extend automata with a set of final

states. The resulting model, service automata, has been introduced in [MS05].
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Definition 2.7.6 (service automaton).
A service automaton A = (Q,MC I ,MCO, δ, q0,Ω) consists of an automaton
(Q,MC I ,MCO, δ, q0) and a set Ω ⊆ Q of final states. y

Service automata are related to classical I/O automata [Lyn96]. In contrast to
I/O automata, service automata communicate asynchronously rather than syn-
chronously, and they do not require the explicit modeling of the states of message
channels. For a detailed comparison of service automata with other automata
models, we refer to [Mas09].

Every normal open net N can be transformed easily into a service automaton
SA(N). To this end, we calculate the reachability graph of the inner subnet of N
and annotate every edge with the respective transition label. The input and the
output alphabet of SA(N) is defined by the input and by the output places of N ,
respectively.

Definition 2.7.7 (corresponding service automaton).
The corresponding service automaton SA(N) = (Q,MC I ,MCO, δ, q0,Ω) of an
open net N is defined as

• Q = {m | m ∈ Rinner(N)(m0)};

• MC I = P I ∧MCO = PO;

• (m, l(t),m′) ∈ δ iff m
t−→ m′, for m,m′ ∈ Rinner(N)(m0) ∧ t ∈ Tinner(N);

• q0 = m0; and

• Ω = {m | m ∈ Rinner(N)(m0) ∩ Ωinner(N)}. y

As an example, the corresponding service automata of the online bank (cf.
Figure 2.3) and its three customers (cf. Figure 2.4) are illustrated in Figure 2.10.
We use the standard graphical notations for automata and denote initial states
by an inbound arrow and final states by double circles. In Figure 2.10(d), s7 is
the initial state, s9 is the final state, and the states s7, s8, and s9 correspond to
the markings [p12], [p13], and [p14] in Figure 2.4(c), respectively.

The translation of an open net into a service automaton according to Defini-
tion 2.7.7 guarantees that the reachability graph of inner(N) is isomorphic with
SA(N).

A service automaton A can, due to the transition labeling, be transformed easily
into an open net PN (A). The inner subnet of PN (A) is then a state machine—
that is, a Petri net where every transition has at most one state in its pre- and
post-set.

Definition 2.7.8 (corresponding open net).
The corresponding open net PN (A) = (P, T, F, P I , PO,m0,ΩN ) of a service au-
tomaton A = (Q,MC I ,MCO, δ, q0,Ω) is defined as

• P = Q ∪MC I ∪MCO;
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Figure 2.10.: Service automata of the open nets Bank, Cust1, Cust2, and Cust3.

• T = {(q, x, q′) | (q, x, q′) ∈ δ};
• F = {(q, (q, x, q′)), ((q, x, q′), q′) | (q, x, q′) ∈ δ}

∪ {(q, x, q′), x) | (q, x, q′) ∈ δ ∧ x ∈ MCO}
∪ {(x, (q, x, q′)) | (q, x, q′) ∈ δ ∧ x ∈ MC I};

• P I = MC I ∧ PO = MCO;

• m0 = q0; and

• ΩN = {q | q ∈ Ω}. y

From the construction of PN (A) in Definition 2.7.8, it is easy to see that there
is an isomorphism between the states of A and the markings of the inner subnet
of PN (A).

Alternatively, it is also possible to translate a service automaton A into an
open net PN (A) by applying the theory of regions [BD98], for instance. That
way, concurrency can be modeled explicitly in the resulting open net.

The composition of two service automata A and B is the service automaton of
the composition PN (A) ⊕ PN (B) of their corresponding open nets PN (A) and
PN (B). If the composition has an empty interface, then the corresponding service
automaton is, in fact, an LTS.

Definition 2.7.9 (composition of service automata).
The composition A⊕B of service automata A and B is defined by SA(PN (A)⊕
PN (B)). y

Let m be a reachable marking in PN (A) ⊕ PN (B). To model asynchronous
communication, we model a state qm of the composition A ⊕ B as a tripel
(qA, qB ,M). The states qA and qB correspond to a marking of inner(PN (A))
and of inner(PN (B)), respectively and M to a multiset (i. e., bag) of pend-
ing messages in m. Formally, qA = m|Pinner(PN(A)) (i. e., the restriction of m to
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inner(PN (A))), qB = m|Pinner(PN(B)) (i. e., the restriction of m to inner(PN (B))),
and M(x) = m(x), for all places x ∈ ((P IPN (A) ∪ P

I
PN (B)) ∩ (POPN (A) ∪ P

O
PN (B)))

(i. e., the pending messages on the merged interface places of PN (A) and PN (B)).
Sending a message x in A⊕B increases the multiplicity of the message x by 1 in

the bag M ; receiving a message x is only possible if the multiplicity of the involved
message x is greater than 0 and, on occurrence, decreases this multiplicity by 1;
an internal transition τ does not affect the bag M of pending messages.

As a consequence of Definitions 2.7.7–2.7.9, we can lift all definitions of open
nets to service automata. As this is straight-forward, we do not present these
definitions, but refer the interested reader to [Mas09].

The next theorem justifies that we can change arbitrarily between the two
formalisms, open nets and service automata, without loosing information with
respect to StratX .

Theorem 2.7.10 (forth and back translation preserves StratX).
• For any two open nets N1, N2 and any set X ⊆ Prop of open-net properties

holds: N1 ⊕N2 is an X-open net iff SA(N1)⊕ SA(N2) satisfies X.

• For any two service automata A,B, open nets PN (A),PN (B), and any set
X ⊆ Prop of open-net properties holds: PN (A)⊕PN (B) is an X-open net
iff A⊕B satisfies X. y

Correctness of this theorem is easily observed, as the reachable states of
SA(N1)⊕ SA(N2) and SA(PN (SA(N1))⊕PN (SA(N2))) are isomorphic, and the
reachable states of A⊕B and SA(PN (A)⊕ PN (B)) are isomorphic.

2.8. Discussion of the modeling restrictions

In the previous sections, we introduced open nets and, in addition, service au-
tomata as a formalism to model service behavior. The aim of this section is to
evaluate the model of open nets and to justify design decisions we made so far.
Afterwards, we will explain how services described by industrial service descrip-
tion languages can be transformed into our model open nets and how our analysis
techniques can be applied in practice.

2.8.1. Justification of the design decisions in open nets

Four different aspects of service compatibility are distinguished in the litera-
ture [Pap07]: interface compatibility, behavioral compatibility, semantical com-
patibility, and QoS compatibility.

Open nets focus on the service behavior and are designed to analyze behavioral
compatibility. Hence, open nets abstract from information related to the seman-
tics and QoS of a service. In the model of open nets, we assume a unique label for
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each message channel. Composition of two open nets is defined by merging pair-
wise equally labeled input and output places. That way, interface compatibility
of services is adequately modeled by open nets.

Extending open nets with information related to the semantics and QoS of a
service seems not to be reasonable, because these information would complicate
the analysis techniques that we will present in the following chapters. We think
that for deciding semantical compatibility or QoS compatibility models differ-
ent than open nets are required that are tailored towards the analysis of those
compatibility notions.

As already mentioned in the introduction, this thesis focuses on the control-
flow of services and abstracts from other also important aspects, such as data,
time, and resources. The reason is mainly driven by analysis needs, because
incorporating these aspects into the model would make the analysis much more
complicated. In the following, we motivate why this is the case.

Data, time, and resources can be modeled with high-level Petri
nets [Jen97], for instance. In case the data domain is finite, a high-level Petri
net can be unfolded into an equivalent low-level Petri net with undistinguishable
black tokens. However, unfolding typically results in huge Petri nets making the
analysis hard or even impossible. Infinite data domains may be abstracted to a
finite domain using techniques, such as abstract interpretation [CC77] and pred-
icate abstraction [GS97]. If this is not possible, most analysis questions for such
a Petri net are in general undecidable. Like for data, the explicit modeling of
time makes the analysis more complex. However, an explicit modeling of time is
often not necessary. Instead, a timed dependency between two activities can be
modeled implicitly by a causality of the corresponding transitions.

If a service is executed, a running instance of this service is created. Several
instances of a service may coexist. In this setting, a message being sent to the
service has to be correlated to its corresponding instance. As another restriction
of our model, we assume in this thesis that message correlation is taken care of
elsewhere—for example, by using the correlation mechanisms in the context of
WS-BPEL [Alv07]. This formalism could be modeled by using high-level Petri
nets, for instance. Hence, we only consider a single instance of a service.

Summing up, from a practical point of view it would be beneficial to model
all aspects of services. However, this would make the problems addressed in this
thesis far more complex. Therefore, we decided to focus on the control-flow of
services which can be adequately modeled with open nets.

Next, we show how services specified by industrial service description languages
can be automatically translated into open nets.

2.8.2. Translating real-life services into open nets

In the forthcoming chapters, we will introduce analysis methods for services mod-
eled as open nets. To justify the suitability of these methods, we have to apply
them to real-life service models. In practice, services are usually not modeled by

54



2.8. Discussion of the modeling restrictions

formalisms, such as Petri nets. Instead, a number of service description languages
have been proposed by different industrial consortiums. Most prominent lan-
guages are WS-BPEL and BPMN. To obtain an open net from a service specified
in any of such language, we need a formal semantics and a compiler to automat-
ically translate services into an open net. In the following, we sketch some of the
most prominent approaches.

For WS-BPEL, there exists a feature-complete open net semantics [Loh08] and a
compiler, BPEL2oWFN, to translate a WS-BPEL process into an open net. With
feature-complete we mean that the open-net semantics supports all concepts of
WS-BPEL including the control flow, data flow, message flow, exception handling,
and compensation handling. As mentioned in the previous subsection, we only
translate a single instance of each WS-BPEL process, and therefore we do not
need to correlate messages to process instances.

The compiler BPEL2oWFN is also capable of translating choreographies speci-
fied in the choreography description language BPEL4Chor [DKLW07] into a closed
net [LKLR08]. That way, a choreography of WS-BPEL processes—for example,
a service contract—can be automatically translated into a closed net.

There is also tool support to translate an open-net model of a service into a
WS-BPEL (abstract) process [LK08]. Hence, a complete tool chain for translating
WS-BPEL back and forth into open nets is available. So, all analysis methods for
open nets can be used to analyze WS-BPEL processes as well. This is illustrated
in Figure 1.4.

Besides this open-net semantics, there is another Petri-net semantics for WS-
BPEL, which has been implemented in the tool BPEL2PNML [OVA+07]. As
its two main differences to BPEL2oWFN, this formal semantics is restricted
to a subset of the constructs of WS-BPEL (i. e., those that have been part
of BPEL4WS [And03], a predecessor version of WS-BPEL), and BPEL2PNML
translates a BPEL process into a workflow net. That way, information about the
interface is abstracted away. Workflow nets can be translated back into BPEL4WS
using the tool WorkflowNet2BPEL4WS [AL08]. For a detailed comparison of the
two Petri-net semantics, we refer to [LVOS08].

Furthermore, services specified in a service description languages other than
WS-BPEL can be translated into Petri nets or other formalisms. For example,
there exists tool support [DDO08] to translate BPMN into Petri nets.

If the service is described as a programming language like Java or C, a trans-
lation into a formal model becomes more complicated. However, there are also
approaches like the one of [SCCS05] and of [SK07] that can translate such a ser-
vice description into an automaton (or another formal model) using techniques
that have proved themselves in the area of model checking [CGP00] and static
program analysis [NNH05]. In principle, the resulting automaton can be easily
modified to a service automaton.

Summing up, suitability of our model has been proved by a feature-complete
open nets semantics for WS-BPEL and the choreography language BPEL4Chor.
In addition, Petri net semantics for other service description languages, such as
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BPMN, exist. In principle, it is possible to translate any service into an open net.

56



Part II.

Substitutability Criteria and
Representations of Sets of

Services

57





3. Substitutability Criteria

In this thesis, we consider two application scenarios of service substitutability in
more detail: multiparty contracts (cf. Section 1.2.1) and service improvement
(cf. Section 1.2.2). This chapter formally defines substitutability criteria that are
applicable in these application scenarios.

In the literature, there exist various criteria when a service model can be substi-
tuted by another service model. These criteria depend on the (behavioral) prop-
erties that have to be preserved by the substitution. In this thesis, we consider
five behavioral properties: deadlock freedom, weak termination, quasi-liveness,
cover(Y ), and strict termination (cf. Section 2.6.1). For any combination X of
these properties, the set of X-strategies of N defines all open nets S such that
the composition of N and S satisfies X.

We define the substitution of an open net N by an open net N ′ with respect
to the set of X-strategies of N . We distinguish between two substitutability
criteria: X-conformance and X-preservation. The criterion X-conformance en-
sures that N ′ preserves every X-strategy of N (Section 3.1), whereas the criterion
X-preservation guarantees that N ′ preserves at least a certain subset of the X-
strategies of N (Section 3.2).

Each substitutability criterion is defined as a preorder on open nets. In line
with [Bau88, Vog92], these preorders are external preorders. An external preorder
on N and on N ′ is not based on the respective internal characteristics of N and
of N ′. Rather, it relates these open nets with respect to their contexts (i. e., their
X-strategies).

The X-conformance preorder is a classical refinement relation. This makes it
worthwhile to identify the position of X-conformance in relation to known pro-
cess equivalences and preorders. We show that {deadlock freedom}-conformance
coincides with the stable failures preorder [Hoa85]. Furthermore, we show that fair
testing [RV07] is the coarsest preorder known to us that implies
{weak termination}-conformance.

The results of Section 3.1.1 and of Section 3.2 are a generalization of [ALM+08,
ALM+09, SMB09]. The work on the relationship between {weak termination}-
conformance and fair testing in Section 3.1.2 is based on [MSV09].

3.1. Substitutability under conformance

In the setting of multiparty contracts (cf. Section 1.2.1), each party of a contract
has to implement its public view (the agreed specification of the service) such
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that the private view (the actual implementation of the public view) conforms to
the overall specification of the contract.

In Section 3.1.1, we define conformance, a preorder on open nets, which is
well-suited in the setting of contracts. In Section 3.1.2, we relate conformance to
known preorders.

3.1.1. A notion of conformance

This section defines the notion of conformance. Conformance is a substitutability
criterion that can be used to compare the public view and the private view on a
party’s share of a contract. The goal of the conformance notion is to preserve the
set X of open-net properties of the overall contract N . For this reason, we use
the term X-conformance in the following.

Let a contract N for parties A = {A1, . . . , Ak} be given, and let N = N1 ⊕
· · · ⊕Nk be an X-open net with an empty interface where Ni denotes the public
view of a party Ai of A, i = 1, . . . , k. Each party Ai substitutes its public view
Ni by the implemented private view N ′i . Let N ′ = N ′1 ⊕ · · · ⊕ N ′k denote the
overall contract as actually implemented. The notion of X-conformance should
guarantee that if N is an X-open net and each private view N ′i X-conforms to
its corresponding public view Ni, then N ′ is an X-open net as well.

Consider, for example, the weakly terminating contract for a credit request of
Section 2.5. The contract is split into the three public views Client, Broker, and
Credit. If each of these three public views is substituted by a private view such
that the private view {weak termination}-conforms to the public view, then the
composition of these private views should weakly terminate, too.

In general, each party’s public view Ni is an X-strategy of the remaining part of
the composition N1⊕· · ·⊕Ni−1⊕Ni+1⊕· · ·⊕Nk. To guarantee that substituting
the public view Ni by its private view N ′i does not affect the overall contract, we
have to make sure that every X-strategy of Ni is also an X-strategy of N ′i .

Definition 3.1.1 ((X, X′)-conformance).
Let N and N ′ be two open nets with equivalent interfaces, and let X ′′ ⊆ Prop \
{cover(Y )} be a set of open-net properties. Let either X = X ′′ and X ′ = X ′′

or X = X ′′ ∪ cover(Y ) and X ′ = X ′′ ∪ cover(Y ′) with Y ⊆ PN ∪ TN and
Y ′ ⊆ PN ′ ∪ TN ′ . Open net N ′ substitutes N under (X,X ′)-conformance (N ′

(X,X ′)-conforms to N for short), denoted by N ′ vconf,(X,X′) N , iff StratX′(N ′) ⊇
StratX(N). If X = X ′ we write X instead of (X,X ′). y

Note that we need two parameters X and X ′ only in case open-net nodes have
to be covered. For the sake of simplicity we will write X-conformance rather
than (X,X ′)-conformance in the following and only give the precise notation if
necessary. The reason is (as we will show further down) that we need a symmetric
X-strategy notion in the setting of contracts.
X-conformance defines a refinement relation on open nets: If an open net N ′

X-conforms to an open net N , then every X-strategy of N is an X-strategy of N ′
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Figure 3.1.: Two open nets with StratX(N1) = StratX(N2), for X =
{weak termination}.

as well. In addition, X-conformance allows N ′ to have more X-strategies. There-
fore, X-conformance is well-suited for implementing public views of a multiparty
contract.

Definition 3.1.1 defines X-conformance for arbitrary interface equivalent open
nets N and N ′. If N is a public view and N ′ is the corresponding private view,
then interface equivalence is trivially fulfilled.

The notion of {deadlock freedom}-conformance has been introduced
in [SMB09], and the notion of {weak termination}-conformance has been intro-
duced in [ALM+08, ALM+09]. The latter notion is actually equivalent to the
conflict relation in [MSR06] and the subcontract relation in [BZ07a].

As an illustration of the X-conformance relation, consider the two open nets in
Figure 3.1 and assume ΩN1 = {[p2]} and ΩN2 = {[p6]}. In this case, any open net
that weakly terminates with N1 also weakly terminates with N2, and any open net
that weakly terminates with N2 also weakly terminates with N1. In other words,
N1 {weak termination}-conforms to N2 and vice versa. Both open nets are not
branching bisimilar (cf. Definition 2.1.5), and hence branching bisimulation seems
to be finer than X-conformance.

In the following, we consider some properties of the X-conformance relation.
As X-conformance is defined as a subset relation on sets of X-strategies, it is easy
to see that X-conformance is a preorder ; that is, it is a reflexive and transitive
relation.

Lemma 3.1.2 ((X, X′)-conformance is a preorder).
The (X,X ′)-conformance relation, vconf,(X,X′), is a preorder. y

Besides the preorder property it is also important that the X-conformance
relation between two open nets is preserved under composition; thus, if N ′ X-
conforms to N , we want that (N ′ ⊕R) X-conforms to (N ⊕R), for any interface
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compatible open net R. A preorder that satisfies this condition is a precongruence
with respect to the composition operator ⊕.

Lemma 3.1.3 ((X, X′)-conformance is a precongruence w.r.t. ⊕).
The (X,X ′)-conformance relation is a precongruence with respect to the compo-
sition operator ⊕. y

Proof.
Let N , N ′ be two open nets, and let X,X ′ be two sets of open-net properties
defined as in Definition 3.1.1 such that N ′ vconf,(X,X′) N . So by Definition 3.1.1,
we have StratX′(N ′) ⊇ StratX(N). Let R be any interface compatible open net
for N and N ′. We have to show that (N ′ ⊕R) vconf,(X,X′) (N ⊕R).

Let S ∈ StratX(N ⊕ R); that is, N ⊕ R ⊕ S is an X-open net with empty
interface. Hence, (R ⊕ S) ∈ StratX(N), because composition operator ⊕ is by
Lemma 2.4.3 commutative and associative. Because of N ′ vconf,(X,X′) N we have
(R ⊕ S) ∈ StratX′(N ′), and hence N ′ ⊕ R ⊕ S is an X ′-open net with empty
interface as well. By associativity of ⊕, we have S ∈ StratX′(N ′ ⊕R), and hence
we conclude (N ′ ⊕R) vconf,(X,X′) (N ⊕R).

Note that if StratX(N ⊕ R) = ∅; that is, N ⊕ R is not X-controllable, then
(N ′ ⊕R) vconf,(X,X′) (N ⊕R) holds trivially. �

The precongruence result enables us to refine an open-net composition in a
modular way; that is, it guarantees compositionality. This is, in fact, crucial in
the setting of multiparty contracts. As a direct consequence of this precongruence
property, the following theorem shows that each party of a contract can substitute
its public view by a private view independently. If each of the private views X-
conforms to the corresponding public view, then the set X of open-net properties
of the implemented contract is preserved.

Theorem 3.1.4 (implementation of a contract).
Let X ⊆ Prop\{cover(Y )} be a set of open-net properties, and let N be a contract
for parties {A1, . . . , Ak} where N is an X-open net. If, for all i = 1, . . . , k, N ′i
X-conforms to Ni, then N ′ = N ′1 ⊕ · · · ⊕N ′k is an X-open net. y

In Theorem 3.1.4 we restricted ourselves to a set of open-net properties X that
does not contain cover(Y ); otherwise, we could not substitute a public view Ni
by a private view N ′i if Ni contains nodes of N that have to be covered according
to X. The reason is that the open-net property X of the contract N is global and
hence requires a symmetric X-strategy notion.

The value of Theorem 3.1.4 is that it gives each party Ai of a contract a
criterion—that is, X-conformance of the private view N ′i to its public view Ni—
that can be locally verified for asserting a global property (i. e., the implemented
contract N ′ is still an X-open net).

Restricting X-conformance to the same set of X-strategies yields an another
substitutability criterion, X-conformance equivalence.
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Figure 3.2.: Some known preorders from the linear time – branching time
spectrum.

Definition 3.1.5 ((X, X′)-conformance equivalence).
Let N and N ′ be interface equivalent open nets, and let X,X ′ be sets of open-net
properties as defined in Definition 3.1.1. Open net N ′ is (X,X ′)-conformance
equivalent to N , denoted by N ′ ≡conf,(X,X′) N , iff StratX′(N ′) = StratX(N). If
X = X ′ we write X instead of (X,X ′). y

X-conformance equivalence is defined as the identity on sets of X-strategies.
Hence, it is an equivalence relation; that is, the relation ≡conf,X is reflexive,
transitive, and symmetric.

Lemma 3.1.6 ((X, X′)-conformance equivalence is an equivalence).
(X,X ′)-conformance equivalence, ≡conf,(X,X′), is an equivalence relation. y

It is easy to see that we can adapt Lemma 3.1.3 to X-conformance equiv-
alence. This result enables us to prove a variant of Theorem 3.1.4 in case of
X-conformance equivalence. In other words, X-conformance equivalence can also
be used as a substitutability criterion in the setting of multiparty contracts.

3.1.2. Relationship between conformance and known preorders

X-conformance is a classical refinement relation and a precongruence with respect
to composition. The linear time – branching time spectrum [Gla93, Gla01] lists
many known preorders. Hence, we are interested in the relationship between
X-conformance and these preorders.

In Figure 3.2, some of these preorders and the relations between them are
depicted, featuring B (bisimulation), BB (branching bisimulation), S (simulation),
RS (ready simulation), PF (possible futures), FT (fair testing [BRV95, NC95,
RV07]), F (stable failures [BHR84, Hoa85, Ros98]), CT (completed trace), and T
(trace) preorders. An arrow between two preorders denotes the inclusion relation;
for example, B implies (is finer than) BB; if an arrow is absent (in the transitive
closure), then the inclusion does not hold.

In case of X = {deadlock freedom}, we can prove that X-conformance and the
stable failures preorder, denoted by vf, coincide.
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Theorem 3.1.7 (X-conformance coincides with stable failures).
Let X = {deadlock freedom}. For any two interface equivalent open nets N and
N ′ holds:

N ′ vconf,X N ⇔ N ′ vf N . y

For a formal definition of the stable failures preorder and for a proof of this
theorem, we refer the interested reader to Appendix A.2.

In case of X = {weak termination}, [MSR06, BZ07a] prove that fair testing,
denoted by vft, implies X-conformance (called conflict preorder in [MSR06] and
subcontract preorder in [BZ07a]), but X-conformance does not imply fair testing.

Theorem 3.1.8 (X-conformance implies fair testing).
Let X = {weak termination}. For any two interface equivalent open nets N and
N ′ holds:

N ′ vft N ⇒ N ′ vconf,X N . y

In Appendix A.1, we show that fair testing is the coarsest preorder known to
us that implies X-conformance. Moreover, we analyze under which conditions X-
conformance would imply fair testing. In this way, we identify the real differences
between X-conformance and fair testing.

3.2. Substitutability under preservation

This section introduces a substitutability criterion that is suitable in the context
of service improvement. In the setting of service improvement (cf. Section 1.2.2),
an open net N shall be substituted by an improved version N ′ of N . Clearly,
we could require that N ′ X-conforms to N . However, in the scenario of service
improvement, X-conformance might be too restrictive; for example, if we want
to remove some unprofitable functionality of N . Clearly, this would violate X-
conformance.

To this end, we introduce with X-preservation another substitutability crite-
rion. This criterion aims at preserving at least a fixed subset S of the X-strategies
of N . Applications for X-preservation include: an upgraded service supports only
behavior that is used by major clients, and all other clients have to adjust their
services; an enterprise restricts itself to its core competencies, and thus all un-
profitable X-strategies are rejected from its service; the behavior of a service is
restricted to certain scenarios, such as payment by credit card. These considera-
tions lead to the following definition of X-preservation.

Definition 3.2.1 ((X, X′)-preservation).
Let N and N ′ be two open nets with equivalent interfaces, and let X ′′ ⊆ Prop \
{cover(Y )} be a set of open-net properties. Let either X = X ′′ and X ′ = X ′′

or X = X ′′ ∪ cover(Y ) and X ′ = X ′′ ∪ cover(Y ′) with Y ⊆ PN ∪ TN and Y ′ ⊆
PN ′ ∪ TN ′ , and let S ⊆ StratX(N). Open net N ′ substitutes N under (X,X ′)-
preservation of S (N ′ (X,X ′)-preserves S for short), denoted by N ′ ≡pres,S,(X,X′)
N , iff StratX′(N ′) ⊇ S. If X = X ′ we write X instead of (X,X ′). y
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Figure 3.3.: The online bank Bank and an improved version Bank′′.

Like for X-conformance, we will use the notion X-preservation the following
and only give the precise notion if necessary.

In [SMB09], X-preservation has been introduced as restriction in case of X =
{deadlock freedom}. According to Definition 3.2.1, at least every open net in S is
an X-strategy of N ′, meaning, the substitution preserves at least the X-strategies
in S. Hence, X-preservation seems to be the right notion to achieve the previously
mentioned goal.

Consider the running example Bank in Figure 3.3(a). Suppose we want to
substitute Bank by an “improved” banking service that preserves all customers for
Bank that do not send information messages. Then, Bank′′ in Figure 3.3(b) with
ΩBank′′ = {[p18]} is a valid candidate. We will come back to this in Chapter 6.2.
X-conformance requires that N ′ preserves all X-strategies of N , whereas X-

preservation requires that N ′ preserves only a subset of N ’s X-strategies. Hence,
there are fewer services N ′ that X-conform to N than services N ′ that satisfy
X-preservation. Clearly, X-preservation coincides with X-conformance for S =
StratX(N).

The X-preservation relation is an equivalence relation.

Lemma 3.2.2 ((X, X′)-preservation is an equivalence).
The (X,X ′)-preservation relation, ≡pres,S,(X,X′), is an equivalence relation. y

Proof.
Let N1, N2, and N3 be interface equivalent open nets, and let X1, X2, X3 be any
sets of open-net properties as defined in Definition 3.2.1.

Relation ≡pres,S,X is reflexive: For any S ⊆ StratX1(N1), we have N1 ≡pres,S,X1

N1.
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Relation ≡pres,S,X is transitive: Suppose N3 ≡pres,S,(X2,X3) N2 and
N2 ≡pres,S,(X1,X2) N1. By Definition 3.2.1, N2 ≡pres,S,(X1,X2) N1 implies
StratX2(N2) ⊇ S. Hence, because N3 ≡pres,S(X2,X3) N2, also StratX3(N3) ⊇ S.
Hence, we conclude N3 ≡pres,S,(X1,X3) N1.

Finally, relation ≡pres,S,X is symmetric: Let N2 ≡pres,S,(X1,X2) N1. This
implies by Definition 3.2.1, S ⊆ StratX1(N1) and S ⊆ StratX2(N2). Thus,
N1 ≡pres,S,(X2,X1) N2. �

In contrast to the X-conformance relation, there is no meaningful congruence
property with respect to composition for preservation. Let N and N ′ be two
interface equivalent open nets such that N ′ ≡pres,S,X N . Let R be any interface
compatible open net for N and for N ′. Then (N ′⊕R) ≡pres,S,X (N⊕R) typically
does not hold. The reason is that none of the open nets S ∈ S is an X-strategy
of N ′ ⊕ R and of N ⊕ R, because composing N and R as well as composing
N ′ and R changes the interface of N and N ′, respectively. As a consequence,
X-preservation misses an important property. Hence, from a theoretical point of
view, X-preservation is less interesting than X-conformance. However, from a
practical point view the X-preservation relation is very interesting in the setting
of service substitutability.
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To decide whether an open net N ′ can substitute another open net N , we have to
compare the two in general infinite sets of X-strategies of N ′ and of N . Therefore,
we aim at constructing a finite representation of these sets that can be used to
decide substitutability; see also Figure 1.4.

Given an open net N and a set X of open-net properties, we present an algo-
rithm to construct a finite representation of the set StratX(N) of all X-strategies
of N . We also provide a method to check containment of an open net in such a
representation.

For each set StratX(N), there exists a particular service automaton MPX(N)
that simulates the corresponding service automaton SA(S) of every X-strategy S
of N . Due to this property, MPX(N) is called the most permissive X-strategy of
N . As a simulation relation of SA(S) by MPX(N) is a necessary condition for S
being an X-strategy of N , the representation of StratX(N) is based on the most
permissive X-strategy of N . To exclude open nets that are not an X-strategy of
N , we have to add additional restrictions to MPX(N).

It turns out that the choice of the set X of open-net properties has a great
impact on the set StratX(N) of all X-strategies of N and therewith also a great
impact on the restrictions we have to add to MPX(N). In this thesis, we focus
on the 9 combinations of deadlock freedom, weak termination, quasi-liveness,
cover(Y ), and strict termination listed in Table 2.1. To illustrate the impact of X
on StratX(N), consider the open net Bank in Figure 2.3 and the three customers
in Figure 2.4. Customers Cust1 and Cust3 are {deadlock freedom}-strategies of
Bank whereas Cust2 is not. If we, however, consider {weak termination} as the
set of open-net properties, only Cust3 is a {weak termination}-strategy of Bank.
The corresponding representation of all X-strategies of Bank has to take this into
account.

Interestingly, only 6 of the 9 sets of open-net properties listed in Table 2.1 affect
the algorithmic solution of a finite representation, namely

• X1 = {deadlock freedom};
• X2 = X1 ∪ {quasi-liveness};
• X2(Y ) = X1 ∪ {cover(Y )};
• X3 = {weak termination};
• X4 = X3 ∪ {quasi-liveness};
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• X4(Y ) = X3 ∪ {cover(Y )}.

Unlike deadlock freedom, weak termination, quasi-liveness and cover(Y ), strict
termination can always be incorporated into the respective algorithmic solution
and will therefore be neglected. As illustrated by the notations X2 and X2(Y ) as
well as X4 and X4(Y ), quasi-liveness is a special case of cover(Y ).

In each of the following four Sections 4.1–4.4 we present a finite representation,
an X-operating guideline, for one set of open-net properties X ∈ {X1, X2(Y ), X3,
X4(Y )}. In Section 4.5, we show how the representations for X3 and X4(Y ) have
to be adjusted if, in addition, strict termination is added to these sets of open-net
properties.

In this chapter, we frequently compose an open net N and a service automaton
A, where N ⊕ PN (A) is a closed net. To ease the representation, we do not
explicitly transform the service automaton A into an open net PN (A), but use
N ⊕ A as a shorthand notation for the composition N ⊕ PN (A). Each state
(m, q) in N ⊕A consists of a marking m of N and a state q of A. State (m, q) is
defined as a marking m∗ of the composition N ⊕ PN (A). Marking m = m∗|PN

is the projection of m∗ to the places of N , and state q corresponds to a marking
m∗|Pinner(PN(A)) , which is the projection of m∗ to the places of the inner subnet of
PN (A).

4.1. Representing strategies in case of deadlock
freedom

In this section, we recapitulate operating guidelines [MS05, LMW07b, Mas09].
An operating guideline of an open net N1 is a finite representation of the (in
general) infinite set of X1-strategies of N . Technically, an X1-operating guideline
is an annotated automaton; that is, an automaton where each state is annotated
with a Boolean formula.

We introduce annotated automata in Section 4.1.1. Subsequently, we define
the construction of an X1-operating guideline for an open net. For that pur-
pose, we present an algorithm to construct the automaton (Section 4.1.2) and the
annotation (Section 4.1.3) of an X1-operating guideline.

4.1.1. Annotated automata to represent sets of open nets

This section introduces annotated automata as a compact representation of a set
of open nets. Before we present the formal definitions, we introduce the general
concepts of annotated automata with the help of the annotated automaton Aφ in
Figure 4.1(b).

1We use the term X1-operating guideline in this thesis.
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Figure 4.1.: The annotated automaton Aφ is the X1-operating guideline of Credit.
Aφ represents SA3 (depicted in bold), but not SA1 and SA2 (assum-
ing that the corresponding open net of each service automaton is a
partner of Credit).

An illustrating example

The annotated automaton Aφ consists of an automaton A with five states. Each
state is annotated with a Boolean formula, depicted inside of the state. As Aφ

represents a set of open nets, we need a procedure to check whether an open net
is represented by Aφ. We call this procedure matching and define Match(Aφ) as
the set of all open nets that are represented by Aφ. Annotated automaton Aφ

represents all X1-strategies of Credit; hence, it is the X1-operating guideline of
Credit.

If an open net S is represented by Aφ (i. e., S matches with Aφ), then A simulates
the corresponding service automaton SA(S) of S; for example, A simulates the
three service automata SA1, SA2, and SA3 in Figure 4.1. The simulation relations
are {(s0, q0), (s1, q1)}, {(s2, q0), (s3, q1), (s4, q2)}, and {(s5, q0), (s6, q1), (s7, q2)}.
Simulation is, however, only a sufficient criterion for matching; that is, A sim-
ulates service automata whose corresponding open nets are not represented by
Aφ; for example, although the corresponding open nets of SA1 nor SA2 are no
X1-strategies of Credit, SA1 and SA2 are simulated by A. In the composition
with SA1, Credit can send message inf, which cannot be received by SA1; in the
composition with SA2, Credit can terminate without sending message inf yielding
a deadlock in the composition.

To exclude such open nets, we need to specify which restrictions of the structure
of A correspond to behavior of open nets S that are contained in Match(Aφ). This
can be achieved by specifying, for each state q of A, which outgoing transitions
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have to be present in a state of SA(S) that is related to q by the simulation
relation and whether the related state has to be a final state. To this end, every
state q of A is annotated with a Boolean formula φ(q); for example, the annotation
φ(q0) requires an open net either to send message fwd or to do a τ -step, and the
annotation φ(q1) requires an open net either to be able to receive message inf and
to be in a final state or to do a τ -step.

Observe that the due to the annotations the corresponding open net of SA1

does not match with Aφ: In related states (s1, q1), the state s1 can neither receive
message inf nor execute an internal transition. Furthermore, the corresponding
open net of SA2 does also not match with Aφ, because in related states (s3, q1),
the state s3 is neither a final state nor does it enable an internal transition.

The service automaton SA3 meets the restrictions of the annotations; for ex-
ample, in related states (s5, q0), it can send message fwd, and in related states
(s6, q1), the state s6 is a final state and the service automaton can receive message
inf. This is illustrated in bold in Figure 4.1(b). Hence, the corresponding open
net of SA3 matches with Aφ, and it is easy to see that its composition with Credit
is deadlock-free.

Boolean formulae

As a Boolean formula is assigned to every state of an annotated automaton, we
introduce Boolean formulae in the following. The definition will be very general,
because annotated automata are not the only application of Boolean formulae in
this thesis.

To define Boolean formulae, we need a propositional logic without negation. A
literal of a Boolean formula is an element of an alphabet Σ. Let BFΣ be the set
of all such Boolean formulae with literals taken from Σ.

Definition 4.1.1 (Boolean formula).
The set BFΣ of Boolean formulae with literals taken from an alphabet Σ is in-
ductively defined as follows:

Basis : x ∈ Σ, true, false are Boolean formulae.
Step : If ψ, χ are Boolean formulae, then (ψ ∨ χ) and (ψ ∧ χ) are

Boolean formulae. y

An assignment β is a mapping β : Σ −→ {true, false} assigning to each literal a
truth value. An assignment β satisfies a Boolean formula ψ, denoted by β |= ψ,
if ψ evaluates to true under β using standard propositional logic semantics. We
define β |= true and β 6|= false, for all β.

As usual, we denote the implication of two Boolean formulae ψ and χ (which
is not a Boolean formula) by ψ ⇒ χ; equivalence of ψ and χ is denoted by ψ ≡ χ.
If ψ ≡ true, then ψ is a tautology; if ψ ≡ false, then ψ is a contradiction.
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Representing a set of open nets

To define annotated automata, we extend automata (cf. Definition 2.7.5) by an
annotation function that assigns a Boolean formula, as defined in Definition 4.1.1,
to each state of the automaton. In contrast to service automata, annotated au-
tomata do not have final states. The reason is that an annotated automaton
describes many open nets, and each open net can have different final markings.
Hence, an annotated automaton does not have final states, but information about
final states is encoded in the annotations instead.

With MC+, we denote the set MC ∪ {final , τ} of message channels, extended
by the literals τ and final representing an internal transition and a final state,
respectively. For the Boolean formulae of annotated automata, the set MC+

serves as the alphabet Σ.
Furthermore, as X1-operating guidelines will always have a deterministic tran-

sition relation, we restrict annotated automata to have a deterministic transition
relation, too.

Definition 4.1.2 (annotated automaton).
An annotated automaton Aφ = (Q,MC I ,MCO, δ, q0, φ) consists of a determinis-
tic automaton A = (Q,MC I ,MCO, δ, q0) and an annotation function φ : Q −→
BFMC

+
. y

The idea of using annotated automata as a representation of a set of automata
has been published first by Wombacher et al. [WFMN04]. As the main difference
to our work, an annotated automaton in [WFMN04] represents the behavior of a
set of synchronously communicating automata, whereas an annotated automaton
in our case represents a set of asynchronously communicating open nets.

To represent a set of open nets, we take an annotated automaton Aφ and define
when an open net S, described in terms of its corresponding service automaton
SA(S), matches with Aφ. Open net S matches with Aφ if

1. there exists a minimal simulation relation % of SA(S) by A; and

2. for every state qS of SA(S), such that (qS , qA) ∈ %, the transitions leaving
qS and the fact whether qS is a final state of SA(S) constitute a satisfying
assignment for φ(qA).

Note that we require the existence of a minimal simulation relation of SA(S)
by A (see Definition 2.1.4). Because annotated automata are by definition de-
terministic, we can be sure that if there exists any simulation relation of SA(S)
by A, then there exists also a minimal one. We choose the minimal simulation
relation, because it is well-defined and can be easily calculated. Furthermore, it
guarantees that only states of SA(S) that are reachable from the initial state of
SA(S) are related to states of A.
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Definition 4.1.3 (service automaton constitutes assignment).
A service automaton A = (Q,MC I ,MCO, δ, q0,Ω) constitutes to each state q ∈ Q
an assignment βA(q) :MC+ → {true, false}, defined by

βA(q)(x) =


true, if x ∈MC+ \ {final} and there is a state q′ with

(q, x, q′) ∈ δ;
true, if x = final and q ∈ Ω;
false, otherwise. y

The assignment βA(q) assigns true to a literal x if there is an x-labeled transition
that leaves q or if x = final and q is a final state of A. To all other literals false
is assigned.

With the help of the assignment β, matching of an open net with an annotated
automaton can be defined as follows.
Definition 4.1.4 (matching with an annotated automaton).
Let S be an open net, and let Aφ = (Q,MC I ,MCO, δ, q0, φ) be an annotated
automaton such that MC I = MC I

SA(S) and MCO = MCO
SA(S). Open net S

matches with Aφ iff

• there exists a minimal simulation relation % of SA(S) by A, where

• for each (qS , qA) ∈ % : βSA(S)(qS) |= φ(qA).

Let Match(Aφ) denote the set of all open nets that match with Aφ. y

Consider again the annotated automaton Aφ in Figure 4.1(b). Its initial state
is q0, and the alphabet is given by MC I = {?inf} and by MCO = {!fwd}. The
service automaton SA2 in Figure 4.1(d) is simulated by Aφ; however, state s3 does
not satisfy the formula φ(q1). SA2 constitutes assignment βSA2(s3)(?inf) = true
and false for all other literals. Hence, the corresponding open net of SA2 does not
match with Aφ. In contrast, the service automaton SA3 is simulated by Aφ, and,
in addition, each state of SA3 satisfies the annotation φ of the respective state in
Aφ. Hence, the corresponding open net of SA3 matches with Aφ.

In spite of the restriction to deterministic structures and negation-free Boolean
formulae in Definition 4.1.2, an annotated automaton is able to represent an
open net whose corresponding service automaton contains τ -transitions. To this
end, a disjunct τ has to be added to each Boolean formula, and each state of
the annotated automaton must contain a τ -labeled self-loop. As an illustration,
consider SA3 and Aφ in Figure 4.1, with (s7, q2) ∈ %. The state s7 would violate
the minimal simulation relation if the τ -loop was not present in the state q2, and
it would violate φ(q2) if the τ -disjunct was not present in φ(q2).

A normal form for annotated automata

The definition of an annotated automaton permits annotated automata that con-
tain states or literals in the annotation of a state, which are not needed for the
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matching with any open net. This is a problem, because those states and annota-
tions unnecessarily blow up the size of an annotated automaton and complicate
the comparison whether two annotated automata match the same set of open
nets. To approach this problem, Massuthe [Mas09] introduces a normal form for
annotated automata. The normal form normal(Aφ) of any annotated automaton
Aφ preserves the semantics of Aφ—that is, Match(Aφ) = Match(normal(Aφ)). In
the following, we sketch the idea of this normalization.

Let B be the service automaton with the structure of A and the empty set
of final states. An annotation φ(q) of a state q of Aφ is in normal form if, for
each literal x ∈ φ(q), with x ∈ MC ∪ {τ}, the service automaton B constitutes
an assignment βB(q)(x) = true. If βB(q)(x) = false, then no service automaton
of any open net that matches with Aφ can assign true to x. The reason is that
the assignment βB depends on the minimal simulation of B by A, and no service
automaton can relate more states of A than B. Each such literal x is replaced by
the formula false yielding the normalized annotation. As literal final can be set
to true independently of B, it does not have to be considered. A state q of Aφ is
in normal form if its annotation can be satisfied—that is, φ(q) 6= false.

To normalize an annotated automaton Aφ, we first normalize the annotation of
each state. In a second step, all states that are not in normal form are removed
(together with their adjacent transitions). As the removal of states may again
yield annotations that are not in normal form, this procedure has to be repeated
until a fixpoint is reached. The resulting annotated automaton is then in normal
form.

A slightly modified version A′φ
′

of the annotated automaton Aφ in Figure 4.1(b)
is illustrated in Figure 4.2. Normalizing A′φ

′
yields in the first iteration

normal(φ′(q4)) = false, because there is no ?inf-labeled transition leaving q4
and hence βB′(q4)(?inf) = false. As a consequence, q4 is not in normal form, and
hence it is removed. In the second iteration, the literal !fwd in the state q3 is
replaced by the Boolean formula false. Hence, normal(φ′(q3)) = final ∨ τ . The
normalized annotated automaton is Aφ in Figure 4.1(b).

The following theorem justifies that the normalization procedure does not
change the semantics of an annotated automaton. For a proof, we refer to [Mas09,
Theorem 4.3.12, p.119].

Theorem 4.1.5 (expressiveness of normal annotated automata).
For each annotated automaton Aφ exists a normal form A′φ

′
= normal(Aφ) such

that Match(Aφ) = Match(A′φ
′
). y

The next lemma proves that, for every nonempty, normalized annotated au-
tomaton Aφ, the service automaton A′ that has the automaton of A and contains
final states according to the annotation of Aφ matches with Aφ.

Lemma 4.1.6 (most permissive service automaton).
Let Aφ = (Q,MC I ,MCO, δ, q0, φ) be annotated automaton in normal form with
Q 6= ∅, and let A′ = (Q,MC I ,MCO, δ, q0,Ω) be a service automaton, with Ω =
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Figure 4.2.: An annotated automaton A′φ
′

that is not in normal form.

{q ∈ Q | final occurs in φ(q)}. Then, PN (A′) matches with Aφ. y

Proof.
By construction of A′, there is a minimal simulation relation of A′ by Aφ. For
each state q ∈ Q, βA′(q) assigns true to each literal in q (because Aφ is normalized
by assumption). Therefore, βA′(q) satisfies φ(q). Hence, PN (A′) matches with
Aφ. �

In the next subsection, we use annotated automata to represent allX1-strategies
of an open net.

4.1.2. Construction of the most permissive X1-strategy

In this section, we present an algorithm to construct the most permissive X1-
strategy MPX1(N) of N . More precisely, we do not construct an open net, but
its corresponding service automaton. MPX1(N) has an important property: It
simulates the corresponding service automaton of every X1-strategy of N . More-
over, every marking that N can reach in the composition with any X1-strategy
of N is reachable in the composition of N and MPX1(N) as well. The under-
lying automaton of MPX1(N) is an automaton A providing the structure of the
operating guideline Aφ of N .

An illustrating example

The construction of the most permissive X1-strategy MPX1(Bank) of the open
net Bank in Figure 4.3(a) is illustrated in Figure 4.3(b). The idea is to assign
to each state q of MPX1(N) the set of all markings that N might be in while
MPX1(N) is in q. The outgoing transitions of q are maximal in the sense that,
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(b) A part of MPX1 (Bank).

Figure 4.3.: Construction of the most permissive X1-strategy MPX1(Bank) of
Bank. The state q3 violates the message bound b = 1 and will be
removed.

for each message that can be sent or received in one of the markings assigned to q,
a respective receiving and sending transition with source q is added to MPX1(N).

To construct MPX1(Bank), we add initially the initial state q0. If MPX1(Bank)
is in state q0, then Bank is in its initial marking [p0] or in markings [p1, as] or
[p2, req] that are reachable from [p0] (without any interaction with MPX1(Bank)).
These three markings are assigned to the state q0; graphically, they are depicted
inside this state.

Next, MPX1(Bank) has to trigger Bank. It can execute arbitrary many τ -
transition; hence, we add a τ -loop to q0. It can also send any message of the input
alphabet (i. e., ap and i); hence, we add states q2 and q3 and their respective
transitions. For example, sending i results in adding to each marking in q0 a
token on place i. This yields the first three markings in state q3. From marking
[p2, req, i] are the markings [p4, req] and [p2, req, req] reachable in Bank (without
any interaction with MPX1(Bank)). Hence, they are also assigned to q3.

Besides sending, MPX1(Bank) can also receive the messages as and req; for
example, MPX1(Bank) can receive the message req (i. e., it consumes a token
from the place req), because Bank can be in the marking [p2, req]. Hence, state
q4 and transition (q0, ?req, q4) is added to MPX1(Bank). Only the marking [p2]
(i. e., [p2, req] after removing the token from place req) is related to the state q2,
because no other marking is reachable from [p2] in Bank. So MPX1(Bank) has to
trigger again.

The service automaton MPX1(Bank), which is constructed this way, is in gen-
eral infinite, because it can send any message in every state q. Consequently, it
eventually violates the message bound b; for example, sending message i in state
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q0 yields the state q3. In this state, a marking [p2, req, req] is reachable that vi-
olates b = 1. To avoid the construction of an infinite service automaton, we only
add a sending transition to MPX1(Bank) if none of the markings of Bank that are
related to the resulting state of MPX1(Bank) violates the message bound. This
guarantees MPX1(Bank) to be finite.

In the following, we formally define the construction of MPX1(N).

Construction algorithm

To construct MPX1(N), we have to identify those sets of markings of N that are
assigned to a state q of MPX1(N). We refer to these markings as the knowledge
that MPX1(N) has of N in state q. We first define knowledge of N for arbitrary
service automata. Afterwards, we present how the knowledge that MPX1(N) has
of N and hence MPX1(N) can be constructed.

Let N and S be open nets. The next definition establishes a connection be-
tween the markings of N and the markings of inner(S) (i. e., states of SA(S)). If
inner(S) is in a marking mS , then the knowledge kinner(S),N (mS) that inner(S)
has of N is the set of markings of N that N might be in while S is in mark-
ing mS . In the definition, we refer to states of SA(S) rather than to markings
of inner(S) (see our notation before Section 4.1), because MPX1(N) will be a
service automaton.

Definition 4.1.7 (knowledge of the potential markings of N).
Let S and N be open nets. The knowledge that SA(S) has of N is a map-
ping kSA(S),N : QSA(S) −→ 2M(N), defined by kSA(S),N (q) = {m | (m0, q0) ∗−→
(m, q) in N ⊕ SA(S)}, for q ∈ QSA(S). y

The knowledge kSA(S),N (q) contains all markings of N that are reachable in
N ⊕ SA(S) when SA(S) is in state q. As we restricted ourselves to b-limited
communication, the set M(N) of all possible markings of N is finite, and no
marking in M(N) violates the message bound b.

As an example, Figure 4.4 shows the customer SA(Cust1), where each state
of SA(Cust1) is annotated with the knowledge of the online bank Bank in Fig-
ure 4.3(a). For instance, in state s0 is kSA(Cust1),Bank(s0) = {[p0], [p1, as], [p2, req]}.

The knowledge that SA(S) has of N contains all markings of N that are reach-
able in N ⊕ S. So we can derive every state of Bank ⊕ Cust1 from Figure 4.4.
However, open net Bank cannot be reconstructed from the knowledge. Markings
of Bank that are not reachable in Bank⊕Cust1—for example, the marking [p3]—
do not appear in the knowledge, and the knowledge does not give information
whether a marking of Bank is a final marking.

For the construction of MPX1(N), we need two operations on sets of markings
of N . One operation, closure, is used to calculate the states and the other, event,
to calculate the transition relation of MPX1(N).

The first operation, closure, calculates the knowledge for each state of
MPX1(N). The closure adds to a marking m of N all markings m′ that are
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Figure 4.4.: Service automaton SA(Cust1) annotated with the knowledge of Bank.

reachable from m in N .

Definition 4.1.8 (closure).
For a set M ∈ 2M(N) of markings of an open net N , define closureN (M) = {m′ |
m ∈M ∧m ∗−→ m′}. y

The second operation for constructing MPX1(N), event, corresponds to a tran-
sition in MPX1(N). Given a set M of markings of N—that is, the knowledge
that MPX1(N) has of N in a state q—an event represents the effect of a com-
munication transition of MPX1(N) to M . We distinguish between send events
and receive events. A send event models the effect that a message being sent by
MPX1(N) has on M . Accordingly, a receive event models the effect a message
being received by MPX1(N) has on M . As τ -events do not affect the knowledge
of MPX1(N), they shall be inserted as a τ -loop at each state in the definition of
MPX1(N).

Definition 4.1.9 (event).
Let N be an open net, let M ∈ 2M(N) be a set of markings of N , and let
x ∈ P I ∪ PO. Let [x] be a marking with [x](x) = 1 and [x](y) = 0, for all y 6= x.
The x-event of M in N is defined as

event(M,x) =

{
{m+ [x] | m ∈M} if x ∈ P I ;
{m− [x] | m ∈M,m(x) > 0} if x ∈ PO. y
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A send event x adds to each marking m ∈M a token on x. In contrast, a receive
event x yields those markings m of M from which a token could be removed from
x.

For the open net Bank in Figure 4.3(a) we have closureBank({[p0]}) = {[p0],
[p1, as], [p2, req]}. For instance, the ?req-event is defined as
event(closureBank({[p0]}), ?rej) = {[p2]}, because only marking [p2, req] contains a
token on place req. As another example, the !ap-event is defined as
event(closureBank({[p0]}), !ap) = {[p0, ap], [p1, ap, as], [p2, ap, req]}.

With the help of the two operations closure and event, we can construct the
most permissive X1-strategy MPX1(N) of N . As we restricted ourselves to b-
limited communication, the setM(N) of all possible markings of N is finite, and
no marking in M(N) violates the message bound b. To this end, we require that
the closure of the initial marking of N is an element ofM(N) and hence does not
violate b. Open nets that violate this requirement are not X1-controllable. An
example is the open net N1 in Figure 2.6(a), where we calculate closureN1(m0) =
{[p0, p], [p0, p, p], . . . }.
Definition 4.1.10 (most permissive X1-strategy).
Let N = (PN , TN , FN , P IN , P

O
N ,m0N ,ΩN ) be an open net where

closureN ({m0N}) ⊆ 2M(N). The most permissive X1-strategy of N is defined
as the service automaton MPX1(N) = (Q,MC I ,MCO, δ, q0,Ω) with

• Q = {qK | K ∈ 2M(N)};
• MC I = PON ∧MCO = P IN ;

• δ = {(qK , x, qK′) | K ∈ 2M(N) ∧ x ∈ P IN ∪ PON
∧K ′ = closureN (event(K,x))} ∪ {(qK , τ, qK) | K ∈ 2M(N)};

• q0 = qK0 with K0 = closureN ({m0N});
• Ω = {qK | K ∈ 2M(N) ∧K ∩ ΩN 6= ∅}. y

The construction of MPX1(N) starts with the initial marking of N and com-
putes its closure. The resulting set K0 of markings yields the initial state q0 of
MPX1(N). From the alphabet of MPX1(N), we derive the set of all x-events
of K0. For each x, we add an outgoing transition to q0. The corresponding
successor state q of q0, q0

x−→ q, is constructed by computing the closure of the
set event(K0, x) of markings. In addition, a τ -labeled self-loop is added to each
state. That way, MPX1(N) can be iteratively constructed. A state of MPX1(A)
is a final state if it contains a final marking of N .

The most permissive X1-strategy MPX1(Bank) of the online bank has 11 states.
Ignore the Boolean formula in each state, then Figure 4.5 shows the underlying
automaton of MPX1(Bank). The final states of MPX1(Bank) are q1 and q6.

During the construction of the most permissive X1-strategy, states may be
calculated that contain markings violating b-limited communication. These states
are removed, because they violate the definition of a state in Definition 4.1.10.
An example is the marking [p2, req, req] in state q3 in Figure 4.3(b).
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Figure 4.5.: X1-operating guideline of Bank. Bold lines illustrate the minimal
simulation relation with SA(Cust1).

For each open net N that contains at least one output place, the algorithm of
Definition 4.1.10 constructs a particular state, the empty state q∅. This state is
added if a receive event x for a set M of markings is calculated, and no marking
of M marks the place x. In this case, the x-event yields the empty set of markings
(cf. Definition 4.1.9). Applying any x-event to the empty state always leads to
the empty state again.

Proposition 4.1.11 (empty state).
Let MPX1(N) be the most permissive X1-strategy of some open net N . The
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empty state q∅ of MPX1(N) is δ-reachable in MPX1(A) iff N has at least one
output place. Furthermore, for each transition (q∅, x, q) ∈ δ : q = q∅. y

Every incoming transition (except for the self-loops) of the empty state of
MPX1(Bank) in Figure 4.5 is a receiving transition of MPX1(Bank). None of
these receiving transitions can appear in the composition of MPX1(Bank) and
Bank, because there is no corresponding sending transition in Bank, and hence
the receiving transition in MPX1(Bank) will never be enabled. Nevertheless, any
such receiving transition in MPX1(Bank) is valid behavior and does not harm
Bank.

Properties of the most permissive X1-strategy

The aim for constructing MPX1(N) of an open net N was to get a finite, deter-
ministic service automaton that simulates the corresponding service automaton
of every X1-strategy of N . The next lemma proves that MPX1(N) has indeed
these properties.

Lemma 4.1.12 (properties of MPX1(N)).
Let N be an open net, and let MPX1(N) be its most permissive X1-strategy. The
following properties hold:

• For each partner S, there is a minimal simulation relation of SA(S) by
MPX1(N) [Mas09, Corollary 5.4.4, p.167].

• MPX1(N) is deterministic [Mas09, Corollary 5.2.12, p.154].

• MPX1(N) is finite (i. e., has finitely many states and a finite interface) and,
for each state qK of MPX1(N), K is finite [Mas09, Lemma 5.4.3, p.166]. y

Finiteness of MPX1(N) for a bounded open net N with b-limited communica-
tion guarantees that MPX1(N) can be computed.

The minimal simulation relation of SA(Cust1) in Figure 4.4 by
MPX1(Bank) in Figure 4.5 is % = {(s0, q0), (s1, q0), (s2, q1), (s3, q3), (s4, q7),
(s2, q∅)}. Notice the importance of the empty state. Without this state there
would be no simulation relation, because in related states (s3, q3), transition ?as
could not be mimicked in MPX1(Bank).

For any partner S, we can even prove a stronger property than the existence
of a minimal simulation relation % of SA(S) by MPX1(N). Relation % actually
establishes a relation between the knowledge values of the involved states of SA(S)
and of MPX1(N). Hence, the knowledge that MPX1(N) has of N can be used to
deduce the knowledge that SA(S) has of N .

Lemma 4.1.13 (knowledge of S is union of knowledge of MPX1(N)).
Let MPX1(N) be the most permissive X1-strategy of an open net N , let S be a
partner of N , and let % ⊆ QSA(S) × QMP be the minimal simulation relation of
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SA(S) by MPX1(N). For each state qS of SA(S) holds:

kSA(S),N (qS) =
⋃

(qS ,q)∈%

kMP,N (q) .

y

For a proof of Lemma 4.1.13 see [Mas09, Lemma 5.2.14, p.156].
Relation % relates a state qS of SA(S) to a set of states of MPX1(N). The

knowledge that SA(S) has of N in qS is equal to the union of the knowledge
values of all states q of MPX1(N) with (qS , q) ∈ %.

For an illustration of Lemma 4.1.13, consider again the minimal simulation rela-
tion of SA(Cust1) by MPX1(Bank). From this relation, we conclude by
Lemma 4.1.13:

kSA(Cust1),Bank(s0) = kMP,Bank(q0)
kSA(Cust1),Bank(s1) = kMP,Bank(q0)
kSA(Cust1),Bank(s2) = kMP,Bank(q1) ∪ kMP,Bank(q∅)
kSA(Cust1),Bank(s3) = kMP,Bank(q3)
kSA(Cust1),Bank(s4) = kMP,Bank(q7)

The state s2 of SA(Cust1) is an example, where the knowledge is equal to a
union of knowledge values.

4.1.3. X1-operating guidelines

The most permissive X1-strategy MPX1(N) of an open net N provides only the
structure A of an annotated automaton Aφ describing all X1-strategies of N . In
this section, we present an algorithm to construct the second ingredient of Aφ, the
annotation function, which assigns to each state of MPX1(N) a Boolean formula.
Recall that these Boolean formulae are needed to exclude all open nets that are
not an X1-strategy of N , but are simulated by MPX1(N).

We construct the annotation function in two steps. First, we show how deadlock
freedom of a composition N ⊕ S can be decided based on MPX1(N) and its
knowledge of N . In a second step, we show how this criterion can be encoded
into a Boolean formula.

A characterization of deadlock freedom

Based on the knowledge that SA(S) has of N and the information about final
markings of N , deadlock freedom of N ⊕ S can be characterized from the point
of view of SA(S). This result has been proved in [Mas09, Corollary 5.1.6, p.146].

Lemma 4.1.14 (characterization of deadlock freedom).
The composition N⊕S of two open nets N and S is deadlock-free iff, for all states
q of SA(S) and each marking m of N with m ∈ kSA(S),N (q), at least one of the
following three conditions holds:
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(i) m
t−→ , for some t ∈ TN ; or

(ii) q
x−→ , for some x ∈ (P IS ∪ POS ∪ {τ}) ∧m(x) > 0 if x ∈ P IS ; or

(iii) (m, q) is a final state of N ⊕ SA(S), i. e., m ∈ ΩN ∧ q ∈ ΩSA(S). y

Lemma 4.1.14 enables us to decide the absence of deadlocks in the composition
N ⊕S by checking only the three conditions, for each marking of N in the knowl-
edge of each state q of SA(S). The conditions require that (i) a transition in N
is enabled at a marking m; (ii) state q has an outgoing transition, and in case it
is a receiving transition, then the corresponding interface place in N is marked;
or (iii) the composition is in a final state. If one of these three conditions holds
for a marking m ∈ kSA(S),N (q) of N , state (m, q) is not a deadlock in N ⊕SA(S).
The other way around, if none of these three conditions holds, marking (m, q) is
a deadlock in N ⊕ SA(S).

Consider the marking [p1] in the state s2 of SA(Cust1) in Figure 4.4. In this
example, the third condition holds; that is, [p1] is a final marking of Bank, and
s2 is a final state of SA(Cust1). Consequently, ([p1], s2) is not a deadlock. As
all other markings satisfy at least one of the three conditions, we conclude that
Bank⊕ Cust1 is deadlock-free.

As a consequence of Lemma 4.1.13, we do not have to compute the knowledge
of SA(S). Instead, we can use MPX1(N) to decide whether or not a marking
in N ⊕ S is deadlock-free. This can be done by first checking the existence of a
minimal simulation relation % of S by MPX1(N). If % does not exist, S is not an
X1-strategy of N . Otherwise, by checking the knowledge of all states of MPX1(N)
that are in %, we can decide whether N ⊕ S is deadlock-free.

An annotation function to encode deadlock freedom

In the sequel, we present a way to make the procedure of deciding whether N⊕S is
deadlock-free more efficient. To this end, we directly encode the three conditions
of Lemma 4.1.14 into an annotation function, which assigns a Boolean formula
to each state of MPX1(N). Besides the underlying automaton of MPX1(N), the
annotation function will be the second ingredient of the X1-operating guideline
of N .

For each state qK of MPX1(N) that occurs in %, we have to check each marking
m ∈ K. As the three conditions are a disjunction, the formula we are looking for
is a conjunction over all markings m ∈ K, and each such conjunct is a disjunction
encoding the three conditions. The encoding works as follows: Condition (i) is
encoded by true if m satisfies condition (i); else by false. Condition (ii) holds if
the corresponding state q of SA(S), (q, qK) ∈ %, enables any internal transition,
any sending transition, or any receiving transition (where the respective interface
place is marked at m). This can be encoded by a disjunction over the respective
literals. Finally, condition (iii) is encoded by final if m is a final marking and by
false else. Because the conjunct for m trivially holds if m satisfies condition (i),
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it is sufficient to restrict ourselves to markings m ∈ K that do not enable any
transition of N (i. e., m ∈ K ∧ ∀t ∈ TN : m 6 t−→ ). Thus, we do not have to encode
condition (i).

Definition 4.1.15 (annotation function).
For an open net N = (PN , TN , FN , P IN , P

O
N ,m0N ,ΩN ), let MPX1(N) = (Q,MC I ,

MCO, δ, q0,Ω) be its most permissive X1-strategy. Define the annotation function
of MPX1(N) as a mapping ψMP : Q −→ BFMC

+
where, for each state qK of

MPX1(N)

ψMP (qK) =
∧

m∈K∧∀t∈TN :m 6
t−→

(
ψii(m) ∨ ψiii(m)

)
with

• ψii(m) = τ ∨
(∨

x∈MCO x
)
∨
(∨

x∈MC I ,m(x)>0 x
)

; and

• ψiii(m) =

{
final , if m ∈ ΩN ;
false, otherwise. y

Let qS be a state in SA(S), which is related to a state qK of MPX1(N) by
the minimal simulation relation % of SA(S) by MPX1(N). The formula ψii(m),
encoding the second condition of Lemma 4.1.14, evaluates to true if qS enables any
transition and thus assigns true to any of the literals of MC I ∪MCO of MPX1(N)
or to the literal τ .

The formula ψiii(m) encodes that state (m, qS) is a final state in N⊕SA(S). In
this case, m is a final marking of N . Then, the formula ψiii(m) contains a literal
final and by Definition 4.1.3, SA(S) assigns true to final if qS is a final state of
SA(S).

For the empty state q∅ of MPX1(N), the knowledge is the empty set. Hence, the
Boolean formula of MPX1(N) at state q∅ is always equal to the empty conjunction
(which is defined to be true).

As an example, for MPX1(Bank) in Figure 4.5, we calculate the following an-
notations for the states q0–q3:

ψMP (q0) = (τ ∨ !ap ∨ !i ∨ ?as ∨ false) ∧ (τ ∨ !ap ∨ !i ∨ ?req ∨ false)
ψMP (q1) = τ ∨ !ap ∨ !i ∨ final
ψMP (q2) = (τ ∨ !ap ∨ !i ∨ ?as ∨ false) ∧ (τ ∨ !ap ∨ !i ∨ ?req ∨ false)
ψMP (q3) = τ ∨ !ap ∨ !i ∨ false

The automaton of the most permissive X1-strategy MPX1(N) of N and the
annotation function ψMP define the X1-operating guideline of N .

Definition 4.1.16 (X1-operating guideline).
Let MPX1(N) = (Q,MC I ,MCO, δ, q0,Ω) be the most permissive X1-strategy of
an open net N , and let ψMP be the annotation function of MPX1(N). Let A be
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an automaton, which is isomorphic to (Q,MC I ,MCO, δ, q0) under isomorphism
h, and let φ : QA −→ BFMC

+
be an annotation function of A, defined as φ(qA) =

ψMP (h(qA)), for all qA ∈ QA. The X1-operating guideline OGX1(N) of N is the
annotated automaton Aφ. y

The next theorem, which is also the main theorem of this section, shows that an
X1-operating guideline of N characterizes all X1-strategies of N . For the proof,
we refer to [Mas09, Corollary 5.4.10, p.175].

Theorem 4.1.17 (X1-operating guideline represents all X1-strategies).
For any open net with X1-operating guideline OGX1(N) holds:

Match(OGX1(N)) = StratX1(N) . y

Theorem 4.1.17 justifies that, given an open net N , we have an algorithm for
constructing the X1-operating guideline of N .

Constructing the most permissive X1-strategy and the canonical Boolean an-
notation according to Definitions 4.1.10 and 4.1.15, respectively, the resulting
X1-operating guideline is not necessarily in normal form. As an X1-operating
guideline is a special annotated automaton, we can apply the normalization pro-
cedure for annotated automata as introduced in Section 4.1.1. By Theorem 4.1.5,
the normalization does not affect any X1-strategy of N . Hence, it is sufficient
to consider only normalized X1-operating guidelines in the following. Note that
the normalization only normalizes the annotations. It never removes any state of
an X1-operating guideline, because each conjunct of every annotation contains a
literal τ , and each state of the X1-operating guideline has a τ -labeled self-loop.

The X1-operating guidelines of the online bank is illustrated in Figure 4.5. The
annotations of the states q8 and q9 are normalized to τ .

Another important fact is that once OGX1(N) is calculated, we can remove the
knowledge from each state of OGX1(N). To this end, Definition 4.1.16 defines a
new automaton A that is isomorphic to the structure of the most permissive X1-
strategy of N . The knowledge is needed for the construction of OGX1(N), rather
than for matching any open net with OGX1(N). As an advantage, we have to
store only the much more compact annotated automaton without its knowledge of
N . Additionally, trade secrets of N are preserved if we publish OGX1(N), because
no other party can observe internal states of N by looking at the X1-operating
guideline.

Finally, we conclude from Lemma 4.1.6 the open net PN (MPX1(N)) matches
with the X1-operating guideline of N .

4.1.4. Experimental results and discussion

Based on a prototypical implementation of the algorithm for constructing the
X1-operating guideline of a service, we experiment with a number of real-life
service models. Furthermore, we discuss some complexity issues and some related
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work. As we did not contribute in the development of X1-operating guidelines,
this section is not devoted to evaluate X1-operating guidelines. Instead, we aim
at providing information that enables us to compare X1-operating guidelines with
the three other finite representations of X-strategies we will present later in this
chapter.

Experimental results

The construction algorithm for X1-operating guidelines has been implemented in
the service analysis tool Fiona2 [MW08, LMSW08]. Among others, Fiona can be
used to read an open net N , to calculate the X1-operating guideline of N , and to
check whether an open net matches with an X1-operating guideline.

Deadlock freedom is a less restrictive correctness criterion, because every open
net is X1-controllable; for example, an open net that executes an infinite τ -loop
is an X1-strategy of every open net. As an X1-strategy may put on each input
place of N b messages and then execute an infinite τ -loop, the most permissive
X1-strategy tends to become great in size. For that reason, Fiona implements
responsiveness instead of deadlock freedom. Responsiveness is a more restrictive
correctness criterion than deadlock freedom. A composition N⊕S is responsive if
and only if it is deadlock-free, and each livelock contains at least one marking that
enables a prior interface transition of N or of S. Formally, for all reachable mark-
ings m of N⊕S, m is not a deadlock and, for all livelocks {m1, . . . ,mk} of N⊕S,
there exists a marking mi with i = 1, . . . , k and a transition t of N ⊕ S such that
mi

t−→ and t is an interface transition of N or of S. That means, responsiveness
guarantees the absence of deadlocks, and in addition it guarantees the absence
of livelocks where N and S do not interact with each other. For instance, the
two previously mentioned X1-strategies are not responsive and hence excluded
by Fiona. For the online bank Bank, Fiona calculates the annotated automaton
in Figure 4.6 as an X1-operating guideline in case of responsiveness. However,
although Fiona implements responsiveness, our theory is based on deadlock free-
dom.

Table 4.1 provides the results of our experiment including 16 service models
which were specified as open nets. The first five examples are realistic service
models taken from the WS-BPEL specification [Alv07] (‘Loan Approval’, ‘Pur-
chase Order’ and ‘Travel Service 1’), and from [AFFK05] (‘Olive Oil Ordering’).
‘Travel Service 2’ is a modification of ‘Travel Service 1’. As these examples were
specified in the service description language WS-BPEL [Alv07], we had to trans-
late them into open nets using the compiler BPEL2oWFN [Loh08].

The ‘Beverage Machine’ is taken from [LMW07b], and the online shops are
taken from [LMSW06]. ‘Philosophers’ are an open net model of three and five
dining philosophers. ‘SMTP Protocol’ models the SMTP protocol. The last five
examples are real-life service models provided by a consultant company.

2available at http://www.service-technology.org/fiona
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Figure 4.6.: X1-operating guideline of Bank in case of responsiveness. The empty
state is ommitted.

For each open N , we computed the X1-operating guideline OGX1(N), for b = 1,
using Fiona. Table 4.1 provides information about the size of the open net N , the
size of its behavior, the state space of the most permissive X1-strategy MPX1(N)
of N , the state space of the most permissive X1-strategy MPR

X1
(N) of N in case of

responsiveness, and the time for computing MPR
X1

(N). More precisely, columns
2–4 refer to the number of places (|P |), transitions (|T |), and interface places
(|P Int | = |P I ∪ PO|) in N , respectively; columns 5 and 6 refer to the number
of states (|Q|) and edges (|δ|) in the corresponding service automaton SA(N),
respectively; columns 7 and 8 show whether N has concurrency (||) and contains
a cycle (	), respectively; columns 9 and 10 refer to the number of states (|Q|) and
edges (|δ|) of MPX1(N), respectively; the size of MPR

X1
(N) is shown in columns

11 and 12. Finally, the most right column denotes the time for computing the
X1-operating guideline of N .

As an example, the corresponding open net of ‘Online Shop 1’ has 61 places, 58
transitions, and 7 interface places. ‘Online Shop 1’ has 205 states and 463 edges.
It contains concurrency, but it is acyclic. The most permissive X1-strategy of
‘Online Shop 1’ has 117 states and 312 transitions; in case of responsiveness, it
has only 13 states and 50 transitions. The time for computing the X1-operating
guideline is 2 seconds.

Based on the experimental results, we make the following observations: The
X1-operating guidelines of these service models were calculated in reasonable
time; most of them within a few seconds. However, calculating the X1-operating
guideline of the ‘SMPT Protocol’ took about 47 minutes. A second observation
is that the most permissive X1-strategy MPX1(N) contains in general far more
states than the most permissive X1-strategy MPR

X1
(N) in case of responsiveness.

In case of ‘Process 2’, MPX1 is almost 100 times greater in size than MPR
X1

, for
instance. We discuss these observation in the following.
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Table 4.1.: Calculation of OGX1(N) with Fiona. All experiments were obtained
on an UltraSPARC III processor with 900MHz and 4 GB RAM running
Solaris 10.
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Discussion

We start with a short complexity analysis for X1-operating guidelines. Similar
considerations for acyclic open nets can be found in [MW07]. Let |TS | denote
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the size of a transition system TS , where |TS | is defined as |QTS |+ |δTS |. When
referring to the size of an open net N , we always mean the size of its corresponding
service automaton SA(N).

To compute an X1-operating guideline OGX1(N) of N , the most permissive X1-
strategy MPX1(N) ofN has to be computed. The number of states of MPX1(N) is
proportional to the number 2M(N) of knowledge sets of N (see Definition 4.1.10).
We calculate this size in two steps. First, consider the inner subnet of N . The
number of knowledge sets for inner(N) is proportional to 2x with x is the number
of the reachable markings of inner(N). Second, consider the interface of N , and
let k = |P I ∪ PO| denote the number of interface places of N . For a given
communication bound b, we have (b+1)k markings. The overall space complexity
of MPX1(N) is proportional to the product of the knowledge sets of inner(N)
and the interface of N . Hence, we have O(|MPX1(N)|) = 2x · (b + 1)k, which is
also the time complexity for computing MPX1(N).

Computing OGX1(N) is proportional in time to the product of the number
of states of N and its most permissive X1-strategy MPX1(N); that is, we have
O(|N | · |MPX1(N)|). In addition, we have to compute the annotation function.
To this end, we have to consider each state q of MPX1(N) and traverse through
its knowledge kMP,N (q), building the conjunction of at most k literals. This takes
O(|N | · |MPX1(N)| ·k). As we assume the number k of interface places to be such
small that it is dominated by the rest of product, we conclude that the overall
time and space complexity of OGX1(N) is proportional to O(|N | · |MPX1(N)|).

Matching an open net S with OGX1(N) means to find a minimal simulation
relation % of SA(S) by OGX1(N). This is proportional in time to the product of
the single state spaces of OGX1(N) and S. So we have O(|OGX1(N)| · |S|). For
each pair (qSA(S), qOG) ∈ % of related states, it has to be checked whether qSA(S)

satisfies the annotation φ(qOG). An annotation has at most k many different
variables, and hence there are at most 2k different assignments. So independent
of the size of the formula, the check takes at most time O(2k). Thus, we have the
overall complexity ofO(|OGX1(N)|·|S|·2k). As we assume the number of interface
places of N to be such small that even 2k is dominated by the number of states
of a composition [MW07], we conclude that matching takes O(|OGX1(N)| · |S|).

Although the time and space complexity of OGX1(N) is exponential, our exper-
imental results in Table 4.1 and other experimental results (e. g., in [LMW07b])
show that the calculation of OGX1(N) is feasible in practical applications both for
time and space. One reason is that the computation of the X1-operating guideline
gives room for optimizations.

Regarding the time complexity, Table 4.1 illustrates that the number of states
of MPX1(N) is typically much greater than the number of states of MPR

X1
(N).

This is one of the reasons why responsiveness rather than deadlock freedom is
implemented in Fiona. To compute the X1-operating guideline for responsiveness,
Fiona calculates first MPX1(N). Clearly, this causes a lot of overhead. Therefore,
a number of optimizations exist. One idea is to analyze the reachability graph
of the inner subnet of N to derive information about the interaction behavior of
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4.2. Representing strategies in case of deadlock freedom and cover

N with any X1-strategy. That way, information about which messages are never
sent or received or message bounds can be computed [SW09b]. This information
can then be used during the computation of the X1-operating guideline of N .

The automaton-based representation of an X1-operating guideline causes over-
head—for example, the diamond structures that represent concurrency in the
most permissive X1-strategy. Some effort has been investigated to reduce the
(average) space complexity of X1-operating guidelines. Kaschner et al. [KMW07]
apply BDD-based symbolic representations to reduce the size of an X1-operating
guideline. Gierds [Gie08] presents an algorithm that replaces diamond structures
in X1-operating guidelines by a more compact structure. Recently an approach
has been published [LW09] that transforms the underlying automaton of the X1-
operating guideline into a Petri net by applying the theory of regions. Investi-
gating regularities in the annotations, the annotations can be represented in a
compact manner. Experimental results in [LW09] show that the resulting repre-
sentation is very space-efficient. In fact, the worst-case space complexity reduces
from O(|N | · |MPX1(N)|) to the size of MPX1(N).

Besides responsiveness, there also exists variants of X1-operating guidelines
that depend on the notion of a final state used for open nets, for instance. For an
overview, we refer to [Mas09].

4.2. Representing strategies in case of deadlock
freedom and cover

In the previous section, we recapitulated X1-operating guidelines as a finite rep-
resentation of all open nets S for a given open net N such that the composition
N ⊕ S is deadlock-free. We denoted such an open net S as an X1-strategy of N .
The aim of this section is to introduce a finite representation of X1-strategies S′

of N such that a given set Y of nodes of N is covered in the composition N ⊕S′.
We refer to S′ as an X2(Y )-strategy of N .

The information for deciding whether or not S′ is an X2(Y )-strategy of N can
actually be derived from the knowledge that OGX1(N) has of N (Section 4.2.1).
This information can be encoded into a global constraint. Basically, the global
constraint specifies which states of OGX1(N) must be contained in the min-
imal simulation relation with the corresponding service automaton SA(S′) of
S′. The X1-operating guideline of N with the global constraint defines the
X2(Y )-operating guideline of N , which represents all X2(Y )-strategies of N (Sec-
tion 4.2.2). The X2(Y )-operating guideline can be adapted such that it represents
all X2-strategies of N ; that is, all open nets such that the composition with N
is quasi-live (Section 4.2.3). Based on a prototypical implementation, we present
experimental results and compare X1-operating guidelines and X2(Y )-operating
guidelines in Section 4.2.4.

The results of this section have been published in [SW08, SW09a].
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Figure 4.7.: The composition of the online bank Bank and the customer Cust1.

4.2.1. Deciding coverability of open-net nodes

The motivation for covering open-net nodes is to figure out if some functionality
of a service—that is, some communication pattern, such as a credit approval—
can in principle be used by other services. On the level of open nets, we have to
check whether there exists an open net S for an open net N such that N ⊕ S is
deadlock-free and, in addition, some nodes Y of N—for example, transition credit
approval—are covered in N ⊕ S.

As an example, the composition of the online bank Bank and the customer Cust1
is illustrated in Figure 4.7 again. Cust1 is anX2(Y )-strategy of Bank for Y = {p1},
because marking [p1, p5, as] is reachable in the composition. For Y = {t2}, Cust1
is not an X2(Y )-strategy of Bank, because this transition cannot be enabled in
the composition.

Every X2(Y )-strategy of an open net N is an X1-strategy of N as well, and
covering nodes Y of N restricts the set of X1-strategies of N . Thus, we conclude
StratX2(Y )(N) ⊆ StratX1(N).

To decide when an X1-strategy of an open net N is an X2(Y )-strategy of N ,
we need a criterion to distinguish between an X1-strategy of N and an X2(Y )-
strategy of N . The first observation is that an interface place p of N is cov-
ered in N ⊕ S if and only if a corresponding interface transition of S can be
enabled in N ⊕ S. Suppose Y = {ap} is the set of nodes of Bank to be cov-
ered. In this case, Cust1 cannot cover Y , because place ap cannot be marked in
the composition Bank ⊕ Cust1. This can also be observed at the X1-operating
guideline OGX1(Bank) in Figure 4.5, because no !ap-labeled transition is present
in the minimal simulation relation of SA(Cust1) by OGX1(Bank). However, as
we want to cover arbitrary nodes of an open net—that is, also internal places
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and transitions—the information that we can extract from the labels of an X1-
operating guideline is not sufficient.

According to Definition 2.6.4, a transition t (place p) is covered if it can be
fired (marked) in the composition N ⊕ S. This is equivalent to the existence of a
reachable marking inN⊕S that enables t (marks p). The information about which
markings of N are reachable in the composition N ⊕ S are, in fact, given by the
knowledge that S has of N . In addition, Lemma 4.1.13 provides a relation of the
knowledge that S has of N and the knowledge that the X1-operating guideline of
N has of N . So, we can decide whether a node of N is covered in the composition
of N and an X1-strategy S of N by exploring the knowledge values of each state
of the X1-operating guideline of N that is contained in the minimal simulation
relation of S by OGX1(N).

The following lemma uses these facts about X1-operating guidelines to decide
on the basis of an X1-operating guideline whether a node of N is covered in the
composition of N and an X1-strategy S of N .

Lemma 4.2.1 (place/transition coverability).
Let an open net S be an X1-strategy of an open net N , and let % be the minimal
simulation relation of SA(S) by OGX1(N). A transition t ∈ TN (a place p ∈ PN )
is covered in N ⊕ S iff there is a state q ∈ Q of OGX1(N), a state qS of SA(S),
and a marking mN ∈ kOG(N),N (q) with (qS , q) ∈ %, and t is enabled at mN

(mN (p) ≥ 1). y

Proof.
We present the proof only for the case of a covered transition t ∈ TN . The case
of a covered place p ∈ PN is analogous.

(⇒): Let N , OGX1(N), and S ∈ StratX1(N) be given. Let transition t be
covered in N⊕SA(S). According to Definition 2.6.4, there is a run (m0N , q0S) t1−−→
. . .

tn−−→ (mN , qS) t−→ (m′N , q
′
S) in N⊕SA(S). As t is a transition of N , t is enabled

at mN . By Definition 4.1.7, we have mN ∈ kSA(S),N (qS). As S ∈ StratX1(N),
there must be (by Lemma 4.1.13) a state q in OGX1(N) with mN ∈ kOG(N),N (q)
and (qS , q) ∈ % (the minimal simulation relation of SA(S) by OGX1(N)).

(⇐): Let N be an open net, and let OGX1(N) = (Q,MC I ,MCO, δ, q0, φ). Let
S be an X1-strategy of N . Because S is an X1-strategy of N , there is a minimal
simulation relation % of the states in SA(S) by the states in Q. Let qS , q, and mN

be as assumed. Thus, (qS , q) ∈ %, mN ∈ kOG(N),N (q), and t is enabled at mN .
From Lemma 4.1.13 follows mN ∈ kSA(S),N (qS). Consequently, there is a run
(m0N , q0S) ∗−→ (mN , qS) in N ⊕ SA(S). As t is enabled at mN , t is also enabled
at (mN , qS). Hence, the transition t is covered in N ⊕ S. �

The value of Lemma 4.2.1 is that it gives us a criterion to check whether an
open-net node is covered or not. A transition t of N is covered by an X1-strategy
of N if there is a state q, and the knowledge in q contains a marking m of N such
that t is enabled at m. Analogously, a place p of N is covered by an X1-strategy
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of N if there is a state q in OGX1(N), and the knowledge in q contains a marking
of N where p is marked. That way, it is easily possible to annotate each state q
of OGX1(N) with all places and transitions which are covered in q. This can be
done during the calculation of the X1-operating guideline.

Observe the importance of using the minimal simulation relation of SA(S) by
OGX1(N) for the matching; otherwise, a state qS of SA(S) that is not reachable
in the composition N ⊕SA(S) could be related to a state q of OGX1(N) and thus
violate the result of Lemma 4.2.1.

Based on the knowledge of Bank in the X1-operating guideline OGX1(Bank) in
Figure 4.5, we can derive the following sets of nodes of Bank that are covered in
states q0–q3 of OGX1(Bank):

q0 : {p0, p1, p2, as, req, t0, t1};
q1 : {p1};
q2 : {p0, p1, p2, p3, ap, as, req, t0, t1, t2};
q3 : {p2}.

In the following, we show how all X2(Y )-strategies of an open net can be
represented.

4.2.2. Extending X1-operating guidelines with a global
constraint

In this section, we extend X1-operating guidelines by a global Boolean formula to
represent all X2(Y )-strategies of an open net N . We further present an algorithm
for deciding whether an open net S matches with such an extended X1-operating
guideline.

Consider the open net Bank in Figure 4.3(a), and suppose we want to cover
Y = {t2, t3}. Transition t2 is enabled when p2 and ap are marked. Hence, we look
for knowledge values of OGX1(Bank) (cf. Figure 4.5) that mark these two places.
This is the case for the following three states of OGX1(Bank): [p2, ap, req] ∈
kOG(Bank),Bank(q2), [p2, ap] ∈ kOG(Bank),Bank(q6), and [p2, ap, req], [p2, ap, i] ∈
kOG(Bank),Bank(q9). Transition t3 is enabled when p4 is marked. This is the
case for the following two states of OGX1(Bank): [p4] ∈ kOG(Bank),Bank(q7), and
[p4, ap] ∈ kOG(Bank),Bank(q9). According to Lemma 4.2.1, Y is covered in the com-
position of an X1-strategy S of Bank and Bank if SA(S) has at least a state qt2
that is related to states q2, q6, or q9 in the minimal simulation relation % of SA(S)
by OGX1(Bank) (for covering t2), and it has a state qt3 that is related to q7 or
q9 in % (for covering t3).

This example illustrates that it is in general not possible to express the con-
straints for covering open-net nodes in the shape of local annotations in each
state of the X1-operating guideline. Consequently, the present concept of an an-
notated automaton fails at representing all X2(Y )-strategies of N . To overcome
this problem, we propose another representation that takes the non-locality of
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covering open-net nodes into account. To this end, we slightly refine the concept
of an X1-operating guideline.

Consider again the example. The X1-operating guideline OGX1(Bank) in Fig-
ure 4.5 represents all X1-strategies of Bank, and every X2(Y )-strategy of Bank is
also an X1-strategy of Bank. Hence, we have to restrict OGX1(Bank) to X2(Y )-
strategies. This can be achieved by a global constraint specifying that, for ev-
ery open-net node y ∈ Y of Bank, at least one state q in OGX1(Bank) with
m ∈ kOG(Bank),Bank(q) must be present in the minimal simulation relation of an
X2(Y )-strategy by OGX1(Bank) such that m marks/enables y. We can express
this constraint as a Boolean formula χ.

We formalize annotated automata, extended with a global constraint, and de-
fine the matching relation between an open net and such an extended annotated
automaton.

Definition 4.2.2 (extended annotated automaton).
Let Aφ = (Q,MC I ,MCO, δ, q0, φ) be an annotated automaton, and let χ ∈ BFQ

be a Boolean formula with literals taken from the set Q. Then, Aφ,χ = (Aφ, χ) is
an extended annotated automaton, and χ is its global constraint . y

As an example for a global constraint to OGX1(Bank), consider χ ≡ (q2∨ q6∨
q9)∧(q7∨q9). This formula is satisfied if and only if true is assigned to sufficiently
many states to cover the set Y = {t2, t3}.

Extending an annotated automaton Aφ with a global constraint χ makes it
necessary to define matching of an open net S with Aφ,χ. Open net S matches with
an extended annotated automaton Aφ,χ if it matches with Aφ and, in addition,
satisfies χ.

Definition 4.2.3 (matching with extended annotated automaton).
Let Aφ,χ be an extended annotated automaton. An open net S matches with
Aφ,χ iff

• S matches with Aφ using relation %; and

• χ evaluates to true in the assignment γSA(S) : QA −→ {true, false}, where
γSA(S)(q) = true, for q ∈ QA iff there is a state qS in SA(S) such that
(qS , q) ∈ %. y

Finally, we construct an extended annotated automaton for an open net N as
a finite representation of the set StratX2(Y )(N) of all X2(Y )-strategies of N , the
X2(Y )-operating guideline OGX2(Y )(N) of N .

Definition 4.2.4 (X2(Y )-operating guideline).
Let N be an open net and OGX1(N) the X1-operating guideline of N . Let Y ⊆
PN∪TN . For a place p ∈ PN ofN and a state q ∈ Q of OGX1(N), let p ∼ q iff there
is an m ∈ kOG(N),N (q), where m(p) > 0. For a transition t ∈ TN of N and a state
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q ∈ Q of OGX1(N), let t ∼ q iff there is an m ∈ kOG(N),N (q), where t is enabled.
Then, the extended annotated automaton OGX2(Y )(N) = (OGX1(N), χ) with

χ =
∧

y:y∈Y

∨
q:y∼q

q

defines the X2(Y )-operating guideline of N . y

As a consequence of Lemma 4.2.1, we obtain the main result of this section;
that is, OGX2(Y )(N) represents all X2(Y )-strategies of N .

Theorem 4.2.5 (OGX2(Y )(N) represents all X2(Y )-strategies of N).
An open net S is an X2(Y )-strategy of an open net N iff S matches with
OGX2(Y )(N). y

Proof.
(⇒): Let S be an X2(Y )-strategy of N , and let OGX2(Y )(N) = (OGX1(N), χ) be
the X2(Y )-operating guideline of N . We show that S matches with OGX2(Y )(N).

From S ∈ StratX2(Y )(N) and StratX2(Y )(N) ⊆ StratX1(N), we conclude S ∈
StratX1(N). Thus, S matches with OGX1(N) satisfying the first item of Defi-
nition 4.2.3. Furthermore, every y ∈ Y of N is (by definition X2(Y )-strategy)
covered in N ⊕ S. From Lemma 4.2.1 follows that, for all y ∈ Y , there is a state
q ∈ Q of OGX1(N), a state qS in SA(S) of S, and a marking mN ∈ kOG(N),N (q)
with (qS , q) ∈ %, and y is marked in/enabled at mN . Thus, for each disjunction
of χ, γSA(S) assigns true to at least one state q ∈ Q of OGX2(Y )(N). Conse-
quently, SA(S) satisfies χ and the second item of Definition 4.2.3 holds. Hence,
we conclude from Definition 4.2.3 that S matches with OGX2(Y )(N).

(⇐): Let S match with OGX2(Y )(N). We show that S is an X2(Y )-strategy of
N .

Because S matches with OGX2(Y )(N), we know by Definition 4.2.3 that S
matches with OGX1(N) as well. Thus, S is an X1-strategy of N . Furthermore,
SA(S) satisfies χ (follows also from Definition 4.2.3). So we conclude, for each
disjunction of χ, γSA(S) assigns true to at least one state q ∈ Q of OGX2(Y )(N).
Hence, for all nodes y ∈ Y of N , there is a state q with y ∼ q. By Lemma 4.2.1, we
conclude that all y ∈ Y are covered in N ⊕ S. Therefore S is an X2(Y )-strategy
of N . �

Theorem 4.2.5 proves that an X2(Y )-operating guideline is indeed a finite rep-
resentation of all X2(Y )-strategies of an open net, and hence it justifies Defini-
tion 4.2.4.

The representation of all X2(Y )-strategies of Bank with Y = {t2, t3} is the
X2(Y )-operating guideline OGX2(Y )(Bank) = (OGX1(Bank), χ) with χ ≡ (q2 ∨
q6 ∨ q9) ∧ (q7 ∨ q9) as previously mentioned. If we consider the open net Cust1
(which is an X1-strategies of Bank) again, then we get that Cust1 does not match
with OGX2(Y )(Bank), because it does not satisfy the global constraint. More
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precisely, there is no state in SA(Cust1) that is related to any of the states q2, q6,
or q9 as it can be observed from Figure 4.5. Hence, Cust1 is not an X2(Y )-strategy
of Bank.

4.2.3. Representing strategies in case of deadlock freedom and
quasi-liveness

In the following, we show how the notion of an extended annotated automaton can
be used to represent all open nets S of an open net N such that the composition
N⊕S is deadlock-free and quasi-live. Quasi-liveness ensures that every transition
of N and every transition of S is covered in N ⊕S. We refer to such an open net
S as an X2-strategy of N .

An X2-strategy S of N is an X1-strategy of N (ensuring deadlock freedom in
the composition). Moreover, it is an X2(Y )-strategy of N , for Y = TN (ensuring
that each transition of N is covered in the composition). From the set of X2(Y )-
strategies of N we have to rule out all open nets that have a transition that is not
covered in the composition. This can be achieved by adjusting the matching of S
with the X2(Y )-operating guideline of N : For every state qS of SA(S), there must
exist a state q of the X2(Y )-operating guideline of N in the minimal simulation
relation and q is not the empty state.

We continue with the definition of the X2-operating guideline of an open net
N and present afterwards matching with such an annotated automaton.

Definition 4.2.6 (X2-operating guideline).
Let N be an open net with Y = TN , and let OGX1(N) be the X1-operating
guideline of N . The extended annotated automaton OGX2(Y )(N) defines the
X2-operating guideline OGX2(N) of N . y

Definition 4.2.7 (matching with X2-operating guideline).
For an open net N let OGX2(N) = Aφ,χ be the X2-operating guideline of N . An
open net S matches with OGX2(N) iff

• S matches with Aφ,χ using relation %; and

• for all states qS of SA(S), there is a q ∈ QA with (qS , q) ∈ % and q is not
the empty state q∅. y

Existence of qS in the minimal simulation relation % ensures that this state
is reachable from the initial state. Further, existence of a state q 6= q∅ with
(qS , q) ∈ % guarantees reachability of qS in the composition with N .

From Theorem 4.2.5 we conclude that the X2-operating guideline of N repre-
sents all X2-strategies of N .

Corollary 4.2.8 (OGX2(N) represents all X2-strategies of N).
An open net S is an X2-strategy of an open net N iff S matches with OGX2(N).y
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The representation of all X2-strategies of Bank is the X2-operating guideline
OGX2(Bank) = (OGX1(Bank), χ) with

χ ≡ (q0 ∨ q2) ∧ (q0 ∨ q2) ∧ (q2 ∨ q6 ∨ q9) ∧ (q7 ∨ q9) ∧ (q7 ∨ q9) ,

which is equivalent to

χ ≡ (q0 ∨ q2) ∧ (q2 ∨ q6 ∨ q9) ∧ (q7 ∨ q9) .

If we consider the open net Cust1 (which is an X1-strategies of Bank) again,
then we get that Cust1 does not match with OGX2(Bank), because it does not
satisfy the global constraint. More precisely, there is no state in SA(Cust1) that
is related to any of the states q2, q6, or q9 as it can be observed from Figure 4.5.
Hence, Cust1 is not an X2-strategy of Bank.

4.2.4. Experimental results and discussion

We use a prototypical implementation of the algorithm for constructing the
X2(Y )-operating guideline of an open net N to experiment with a number of
real-life service models. Furthermore, we compare X1-operating guidelines and
X2(Y )-operating guidelines and discuss some related work.

Experimental results

The results presented in this section have been implemented in the service anal-
ysis tool Fiona. Thus, Fiona can also be used to calculate the X2(Y )-operating
guideline (or the X2-operating guideline) of an open net and to check whether an
open net matches with an X2(Y )-operating guideline.

For the example services from Section 4.1.4, we calculated the X2-operating
guidelines. Table 4.2 provides the results of this experiment. As Table 4.1 in
Section 4.1.4, it shows the size of the open nets (i. e., number of places, transitions,
and interface places), the size of its corresponding service automaton (i. e., number
of states and transitions), structural properties of the open nets (i. e., concurrency,
cycles), the size of the X2-operating guidelines for responsiveness (i. e., number of
states and transitions), the size of the global constraint (number of disjunctions—
the global constraint is a conjunction of disjunctions—and number of literals
appearing in the constraint), and the time to calculate the X1-operating guideline
and the X2-operating guideline. In comparison to Table 4.1 in Section 4.1.4, the
information about the global constraint has been added, and the information
about the size of the most permissive X1-strategy is not shown again.

The corresponding open net of ‘Online Shop 1’ has 61 places, 58 transitions,
and 7 interface places. The state space of its inner subnet has 205 states and 463
edges. ‘Online Shop 1’ contains concurrency, but it is acyclic. The X2-operating
guideline has 13 states and 50 transitions, and the global constraint consists of 3
disjunctions and 3 literals. The time for computing the X1-operating guideline is
2 seconds. Computing the X2-operating guideline takes also 2 seconds.
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4.2. Representing strategies in case of deadlock freedom and cover

Table 4.2.: Calculation of OGX2(N) with Fiona. All experiments were obtained
on an UltraSPARC III processor with 900MHz and 4 GB RAM running
Solaris 10.
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The experimental results illustrate that the X2-operating guidelines of these
services were calculated in almost the same time than the corresponding X1-
operating guidelines (cf. Table 4.1). Furthermore, the size of the global con-
straints is typically still tractable.
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Discussion

In the following, we compare X1-operating guidelines and X2(Y )-operating guide-
lines. We further discuss some complexity issues.

Let N be an open net, and let Y ⊆ PN ∪ TN be the set of nodes of N to be
covered. As usual, the X1-operating guideline of N is denoted by OGX1(N) and
the X2(Y )-operating guideline with a global constraint χ by OGX2(Y )(N).

Comparing an X1-operating guideline and an X2(Y )-operating guideline of N ,
we identify that both representations have the same underlying automaton—
the automaton of the most permissive X1-strategy of N . The reason is that
each X2(Y )-strategy of N is also an X1-strategy of N . Furthermore, if the most
permissive X1-strategy of N is not an X2(Y )-strategy of N , then the set of X2(Y )-
strategies is empty.

The X1-operating guideline OGX1(N) can be computed in time
O(|N | · |MPX1(N)|). For OGX2(Y )(N) the time complexity does not change.
All information necessary for annotating the states of OGX1(N) with the nodes
of N and setting up the global constraint have to be computed for OGX1(N)
anyway. To increase efficiency, it is sufficient to annotate each state q ∈ Q of
OGX1(N) only with nodes of the set Y .

The space complexity of OGX1(N) is O(|N | · |OGX1(N)|). If we compute
OGX2(Y )(N), then this complexity increases because of χ. The global constraint
is a conjunction of at most |Y | disjunctions, where each disjunction may consist of
at most |Q| literals. Hence, the size of the global constraint is at most O(|Y | · |Q|),
and we have an overall space complexity of O(|N | · |OGX1(N)|+ |Y | · |Q|). The
experimental results suggests that the size of χ will be much smaller in practice.

Matching an open net S with OGX1(N) has a time complexity O(|OGX1(N)| ·
|S|). If we check matching of S with OGX2(Y )(N), we additionally have to check
whether the global constraint is satisfied by the assignment γSA(S). This can be
done in linear time with respect to the size of the constraint χ. So the overall
complexity is O(|OGX1(N)| · |S|+ |Y | · |Q|).

As the space complexity and the matching complexity for the X2(Y )-operating
guidelines only marginally increase in comparison with X1-operating guidelines
and as a consequence of our case study, we conclude that this novel notion is as
well-suited as X1-operating guidelines.

It is possible to reduce the size of the global constraint by taking into account
the structure of the X2(Y )-operating guideline OGX2(Y )(N). For example, if an
open net cannot assign true to a state q of OGX2(Y )(N) in the matching, it cannot
assign true to any other state q′ of OGX2(Y )(N) that is reachable only from q.

Recently, an approach has been published by Kaschner and Wolf [KW09] that
uses the notion of an extended annotated automaton to represent the complement
of all X1-strategies for a given open net N . The authors present an algorithm
to construct, given the X1-operating guideline of N , an extended annotated au-
tomaton that represents all open nets S that are not an X1-strategy of N . As a
substantial difference to our notion of an extended annotated automaton, [KW09]
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use a propositional logic with negation to define Boolean formulae. The additional
application of extended annotated automata justifies their usefulness as a repre-
sentation of sets of open nets.

The notion of relaxed soundness [DA04] for workflow nets ensures that for each
transition t of a workflow net, there is a run that enables t and can be carried
forward to the final state. Our approach enables us to compute all X2-strategies
S of an open net N such that the composition N ⊕ S is deadlock-free, and every
transition of the composition can be enabled in at least a single run. So on the one
hand, our approach is stricter than relaxed soundness, as N ⊕S cannot deadlock.
Deadlocks are not excluded by the notion of relaxed soundness. On the other
hand, relaxed soundness guarantees that, for each transition t, there exists a run
to a final state. In our approach, this is not necessarily the case, because deadlock
freedom does not exclude livelocks; thus, we cannot ensure that a run covering t
reaches a final state.

4.3. Representing strategies in case of weak
termination

In this section, we introduce for any open net N a finite representation of all open
nets S such that the composition of N and S weakly terminates. We refer to S as
an X3-strategy of N . Strengthen the termination criterion from deadlock freedom
to weak termination requires a representation that is different from (extended)
annotated automata. In the next subsection, we motivate the need for another
finite representation and outline this section.

The results of this section have been published in [WSOD09].

4.3.1. Motivation for another representation

In this subsection, we show that, in general, (extended) annotated automata
cannot represent all X3-strategies of an open net. Afterwards, we explain our
new approach and outline the remainder of this section.

Limitations of extended annotated automata

In order that the X1-operating guideline OGX1(Bank) in Figure 4.5 can serve as
a finite representation of all X3-strategies of Bank, it must exclude all open nets S
that may cause a livelock in the composition with Bank. We distinguish livelocks
that are local to Bank or to S (i. e., the inner subnet of Bank or of S contains a
livelock) and livelocks that are caused by the interaction of Bank and S (i. e., the
livelock occurs only in the composition Bank⊕ S).

Livelocks that are local to one of the open nets do not cause a problem, as
they can be detected by standard state-space exploration algorithms [CGP00].
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In contrast, livelocks that are caused by the interaction of two open nets pose a
challenge.

As an illustration, consider the composition Bank ⊕ Cust1 in Figure 4.7. Al-
though inner(Bank) and inner(Cust1) do not contain a livelock, the composition
Bank⊕ SA(Cust1) may livelock. After Bank has sent a request req and Cust1 has
received this message, the composition enters a cycle which cannot be left. The
reason can be observed on the X1-operating guideline OGX1(Bank) in Figure 4.5.
The cycle corresponds to states q3 and q7 in OGX1(Bank). It cannot be left by
SA(Cust1), because transition (q3, !ap, q6) of OGX1(Bank) is not present in the
minimal simulation relation of SA(Cust1) by OGX1(Bank). That means, Cust1
can send only i, but not ap.

To identify that Cust1 is not an X3-strategy of Bank, we need to encode that
a service automaton can always leave this cycle. This example illustrates that it
is in general not possible to express such a constraint for leaving a cycle in the
shape of local annotations in each state of an X1-operating guideline. The notion
of a global constraint, as introduced in Section 4.2.2, is also not suitable: With
the help of a global constraint, we can specify that a final state can be reached.
To exclude livelocks, we need, however, to specify that a final state can always be
reached. Hence, we need another representation.

Illustration of the novel representation

We have motivated that it is, in general, not possible to represent all X3-strategies
of an open netN as an (extended) annotated automaton in a straightforward man-
ner. So, we need another representation. As in case of X1-operating guidelines,
the representation of all X3-strategies of N should hide the internals of N , be-
cause it might be necessary to publish this representation. Hence, open net N or
a reduced version of N is not a well-suited candidate. For this reason, we follow
a different approach.

The approach starts with the construction of the most permissive X1-strategy
MPX1(N) of N . From this service automaton, we construct the most permissive
X3-strategy MPX3(N) of N (Section 4.3.2) having the following two properties:
The composition N ⊕MPX3(N) contains all markings of N that are reachable
with any X3-strategy S of N , and there is a minimal simulation relation of any
X3-strategy of N by MPX3(N). We make use of these facts and partition the LTS
of the composition N ⊕MPX3(N) into fragments (Section 4.3.3). A fragment is
that part of the composition that takes place between two subsequent transitions
of MPX3(N). As an example, Figure 4.8 shows the LTS of the composition
Bank⊕MPX3(Bank) and its partitioning into fragments.

Given an open net S and the set of fragments of N , we glue fragments to the
actual LTS of N⊕S. Here, the minimal simulation relation of SA(S) by MPX3(N)
determines the way in which fragments are glued. The LTS can then be analyzed
for weak termination using state-of-the-art model-checking tools. That way, we
can decide whether S is an X3-strategy of N .
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Figure 4.8.: An LTS of Bank ⊕ MPX3(Bank). Dotted arcs denote transitions of
Bank; solid arcs denote transitions of MPX3(Bank). Each ellipse de-
notes a fragment of Bank.

To speed up the approach and to hide the internals of N , we apply reduction
rules to condense the state spaces of the fragments a posteriori. As an advantage,
the outcome of this reduction is then available in every LTS that uses the reduced
fragments (Section 4.3.4). We also present a procedure to detect already during
the construction of the LTS of N ⊕ S if this LTS may deadlock (Section 4.3.5).
In such a case, the construction of the LTS is stopped immediately.

Finally, Section 4.3.6 presents some experimental results based on a prototyp-
ical implementation. We also highlight some complexity results and discuss the
achieved results.

4.3.2. Construction of the most permissive X3-strategy

An algorithm for constructing the most permissive X3-strategy MPX3(N) of an
open net N has been developed in [Wol09]. As in [Wol09] final states are restricted
to states where an open net can only receive a message, we have to slightly adapt
this work.

We start with the construction of the most permissive X1-strategy MPX1(N)
of N according to Definition 4.1.10. Service automaton MPX1(N) has to be
adjusted such that N ⊕MPX1(N) is weakly terminating. Weak termination (cf.
Definition 2.6.2) requires that, from every state, it is always possible to reach a
final state. Hence, we remove all states q of MPX1(N), where a state (m, q) in
N ⊕MPX1(N) exists such that no final marking is reachable from (m, q).
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Definition 4.3.1 (transformation of MPX1(N) to an X3-strategy).
Let MPX1(N) be the most permissive X1-strategy of an open net N . Let
(MPX1(N))i, i = 0, 1, . . . be a sequence of service automata inductively defined
as follows.

Basis : (MPX1(N))0 = (Q0,MC I ,MCO, δ0, q0,Ω0)
Step : (MPX1(N))i+1 = (Qi+1,MC I ,MCO, δi+1, q0,Ωi+1) with

− Qi+1 = Qi \ {q ∈ Qi | ∃ (m, q) ∈ N ⊕ (MPX1(N))i :
∀ (m′, q′), q′ ∈ Ωi,m′ ∈ ΩN : (m, q) 6 ∗−→ (m′, q′)}

− δi+1 = δi ∩ (Qi+1 ×MC+ ×Qi+1)
− Ωi+1 = Ωi ∩Qi+1.

Let j be the smallest number with (MPX1(N))j = (MPX1(N))j+1. If q0 ∈
Qj , then (MPX1(N))j is the most permissive X3-strategy MPX3(N) of N ; else
MPX3(N) is not defined. y

The algorithm iteratively removes all states of the most permissive X1-strategy
of N from which a final marking in the composition with N cannot be reached.
Accordingly, the transition relation and the final states have to be adjusted to the
new state set.

Consider the most permissive X1-strategy of Bank in Figure 4.5. From markings
[p1, i] and [p1, ap] in states q4 and q5, respectively, a final state is not reachable.
Hence, we remove both states and therefore also its successor state q8. As from
marking [p1, ap, as] in state q2 and marking [p3, i] in state q9 a final state cannot be
reached either, both states are removed. Figure 4.9 illustrates the most permissive
X3-strategy of Bank.

The most permissive X1-strategy is finite by Lemma 4.1.12. Hence, the con-
struction algorithm of Definition 4.3.1 always terminates. Correctness of this
construction can be observed easily, as Definition 4.3.1 directly implements the
definition of weak termination. So if the resulting most permissive X3-strategy of
N contains at least one state, we conclude that N is X3-controllable (cf. Defini-
tion 2.6.8). This is justified by the following theorem, which is the main result of
this subsection.
Theorem 4.3.2 (transformation preserves all X3-strategies).
Let N be an open net, and let MPX3(N) be its most permissive X3-strategy
being constructed according to Definition 4.3.1. Open net N is X3-controllable
iff QMP 6= ∅. y

From Theorem 4.3.2 and Lemma 4.1.12, we conclude that MPX3(N) simulates
each X3-strategy of N .

Corollary 4.3.3 (MPX3(N) simulates all X3-strategies of N).
Let N be an X3-controllable open net. The most permissive X3-strategy of N
simulates every X3-strategy S of N . y

With the help of MPX3(N), we can now define a finite representation of all
X3-strategies of an open net.
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Figure 4.9.: The most permissive X3-strategy MPX3(Bank) of Bank (annotated
with the knowledge of N).

4.3.3. A finite generator set for constructing composed systems

We aim at computing a finite set of state-space fragments such that, for every X3-
strategy S of N , the LTS of the composition N⊕S can be constructed from these
fragments. The core idea is to make use of the fact that the most permissive X3-
strategy MPX3(N) ofN simulates everyX3-strategy ofN (cf. Corollary 4.3.3). So
if SA(S) is simulated by MPX3(N), its composition N ⊕SA(S) must follow those
patterns which are already present in N ⊕MPX3(N). To this end, we decompose
the state space of N⊕MPX3(N) into fragments (cf. Figure 4.8). These fragments
can then be glued to the actual composition N ⊕ SA(S), where the simulation
relation of SA(S) by MPX3(N) determines the way in which fragments are glued.

We formally define fragments based on LTSs and show how to compute frag-
ments for an open net N . Afterwards, we present how an LTS of N ⊕ S can be
constructed, given the fragments of N and an open net S.

Fragments and connections

Given N and MPX3(N), the state space of the composition N ⊕MPX3(N) yields
an LTS TS that consists of transitions of N and MPX3(N). We use this property
to derive a canonical decomposition of TS . Suppose we remove all transitions of
MPX3(N). This yields a set of unconnected subgraphs of TS . Each subgraph
consists of states and transitions, where each transition corresponds to a transition
of N . Such a subgraph is a fragment, and a transition of MPX3(N) is a connection
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and connects two states of different fragments. Figure 4.8 illustrates this idea.
The set of fragments and connections can be seen as a decomposition of TS

into the reachable states of MPX3(N) in TS . Each fragment corresponds to a
state q of MPX3(N), and the states of this fragment are the Cartesian product
of q with the knowledge (cf. Definition 4.1.7) that MPX3(N) has of N in state q.
Besides the knowledge (i. e., a set of markings of N) in state q, a fragment also
contains the transition relation of the markings inside the knowledge. This is, in
fact, the main difference to X1-operating guidelines. We assign to each state of
an X1-operating guideline the knowledge of N , rather than the transition relation
of the markings within the knowledge.

According to our approach, we want to compose state spaces from fragments.
To this end, we formally define fragments and connections in terms of LTSs.

Definition 4.3.4 (state-space fragment).
A (state-space) fragment F = (V,Σ, E,Ω) is an LTS without initial state. y

To distinguish between service automata and fragments, we denote the set of
states of a fragment by V (instead of Q) and the transition relation by E (instead
of δ). We do not define an initial state of a fragment, because a fragment may
have several initial states. Instead, we introduce an initial state later on when we
define the LTS of the composition N ⊕ S from fragments of N . The initial state
will be the initial state of N ⊕MPX3(N).

When composing a state space from fragments, it may happen that we need
several copies of one and the same fragment. The reason is that different states
of SA(S) may be related to the same state of MPX3(N) and hence to the same
fragment. For instance, this happens if SA(S) executes an internal transition,
because then the knowledge of N does not change. To this end, we introduce
fragment instances. Let some fixed set FI denote the name space of all fragment
instances.

Definition 4.3.5 (fragment instance).
Let n ∈ FI . An instance F (n) of a fragment F is built by renaming the con-
stituents as follows: v 7→ (v, n), e = (v1, x, v2) 7→ ((v1, n), x, (v2, n)), for all
v ∈ VF , e ∈ EF . y

Fragment instances are fragments again. A fragment instance contains the label
of the fragment and the label of the fragment instance. Later on, the label of a
fragment instance refers to a state of SA(S).

For gluing fragments, more precisely, for connecting states of different fragment
(instances), we use the concept of connections.

Definition 4.3.6 (connection, connection instance).
A connection C between fragments F1 = (V1,Σ, E1,Ω1) and F2 = (V2,Σ, E2,Ω2)
is defined as C ⊆ V1 × (Σ∪ {τ})× V2. An instance C (m,n) of a connection C is
defined as C (m,n) = {((v1,m), x, (v2, n)) | (v1, x, v2) ∈ C}, for m,n ∈ FI . y
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If C is a connection between fragments F1 and F2, then C (m,n) is a connection
between fragment instances F1(m) and F2(n).

Given a set of fragments and a set of connections, we can build an LTS by
connecting states of different fragments according to the connections.

Definition 4.3.7 (transition system of fragments).
A set F1, . . . ,Fn of fragments with alphabet Σ and a set C1, . . . ,Cm of connections
define the labeled transition system TS = (V,Σ, E) where

• V =
⋃n
k=1 VFk

; and

• E =
⋃n
i=1EFi

∪
⋃m
j=1 Cj . y

We do not define initial and final states of such an LTS, but we define these
states later when we consider fragments for a given open net.

Next, we show how to define the set of fragments and connections for a given
open net N .

Fragments and connections for a given open net

Given an open net N and its most permissive X3-strategy MPX3(N), we have all
the ingredients to construct the sets F(N) of fragments and C(N) of connections
for N . Due to finiteness of N and MPX3(N), these sets can be indeed computed.
With the sets F(N) and C(N) we provide those ingredients from which we can
construct composed systems involving N .

First, we construct the reachability graph of N ⊕ MPX3(N). Thereby, each
transition of MPX3(N) keeps its label. As an example, the reachability graph
of N ⊕MPX3(Bank) is illustrated in Figure 4.8. The reachability graph of N ⊕
MPX3(N) can be decomposed into the fragments and connections of N .

Definition 4.3.8 (F(N), C(N)).
For an open net N , let MPX3(N) = (Q,MC I ,MCO, δ, q0,Ω) be the most permis-
sive X3-strategy of N , and let R = (QR,ΣR, δR, q0R) be the reachability graph of
N ⊕MPX3(N). Define F(N) = {Fq | q ∈ Q} and C(N) = {C(q,x,q′) | (q, x, q′) ∈
δ}, where

• VFq
= {(m, q) | (m, q) ∈ QR};

• EFq
= δR ∩ (VFq

× {τ} × VFq
);

• ΣFq
= MC I ∪MCO;

• ΩFq = {(m, q) ∈ VFq | m ∈ ΩN ∧ q ∈ Ω}; and

• C(q,x,q′) = δR ∩ (VFq × {x} × VFq′ ) ∧ x ∈ MC I ∪MCO ∪ {τ}. y

For each state q ∈ Q in the most permissive X3-strategy MPX3(N), there is
a fragment Fq. Fragment Fq describes the behavior of N while MPX3(N) is in
state q. This yields the set VFq

of states and EFq
of transitions of Fq. Thereby,
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(b) C(Bank)

Figure 4.10.: (a) The sets of all fragments (except for the empty state q∅) and (b)
all connections (except for the τ -loops) of the online bank Bank.

each state of fragment Fq consists of markings of N in q. Each transition of N
is internal in the composition, and hence it is labeled with τ . The alphabet of a
each fragment is equal to the alphabet of MPX3(N). Final states of a fragment
are those states, where both, N and MPX3(N), are in a final state. A connection
C(q,x,q′) describes a set of transitions in the composed system that originates from
a single transition (q, x, q′) in MPX3(N). Note that F(N) contains a fragment
Fq∅. However, Fq∅ is unconnected and does not contain any state, because state
q∅ is not reachable in R.

The fragments and the connections of the online bank Bank are shown in Fig-
ure 4.10. For each of the five reachable states q0, q1, q3, q6, and q7 of the
most permissive X3-strategy MPX3(Bank) (cf. Figure 4.9), there is one fragment
in Figure 4.10(a). For instance, the fragment for the initial state q0 is defined
as Fq0 = ({v0, v1, v2}, {?as, ?req, !ap, !i, τ}, {(v0, τ, v1), (v0, τ, v2)}, ∅). Connection

C(v1,?as,v3) corresponds to a transition v1
?as−−→ v3. Thereby v0 relabels the state

([p0], q0); v1 relabels the state ([p1, as], q0), etc.
Next, we show how we can construct an LTS of N ⊕S given an open net S and

the set of fragments F(N) and connections C(N) of N .

Composing a labeled transition system from fragments

Throughout this section, fix an open net N . Let MPX3(N) be the most permissive
X3-strategy of N that has been used for constructing F(N) and C(N).

By Corollary 4.3.3, a minimal simulation relation % of a service automaton
SA(S) by MPX3(N) is a necessary condition for an open net S being an X3-
strategy of N . That is, if MPX3(N) does not simulate SA(S), N⊕S is not weakly
terminating, and hence there is no use in constructing an LTS TS from SA(S),
F(N), and C(N) that reflects the LTS of N⊕S. Thus, we may assume existence of
% when constructing TS , because once % is violated, we can immediately stop the
construction of TS . The existence of % is actually checked during the construction
of TS by relating states of SA(S) to fragments of F(N).

We build the LTS TS by gluing fragments and connections of N . For construct-
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ing TS , we have to define its set F(TS ) of fragments and C(TS ) of connections.
We add, for each (qS , q) ∈ %, a fragment Fq to the set F(TS ). More precisely, as
qS might not be the only state of SA(S) that is related to q, we add a fragment
instance Fq(qS). Accordingly, the set C(TS ) is determined by the connections of
N and the fragments Fq of F(TS ) where state q is used in %.

Definition 4.3.9 (construction of TS).
Let % be a minimal simulation relation of SA(S) by MPX3(N). Compose the LTS
TS from the following fragments and connections:

• F(TS ) = {Fq(qS) | (qS , q) ∈ %};
• C(TS ) = {C(q,x,q′)(qS , q′S) | ∃x : (qS , q), (q′S , q

′) ∈ % ∧ (qS , x, q′S) ∈ δSA(S) ∧
(q, x, q′) ∈ δMP}.

Let the initial state of TS be the initial state of N ⊕MPX3(N) in Fq0(q0S). Let
the set of final states of TS consist of all final states occurring in those fragments
Fq(qS) where qS ∈ ΩSA(S). y

Fragment instance Fq0(q0S) is definitely contained in F(TS ) and contains an
instance of the initial state ofN⊕MPX3(N); otherwise, there would be no minimal
simulation relation of SA(S) by MPX3(N). We use this particular state as the
initial state of TS .

In our example, we construct the state space of Bank⊕Cust1 from the fragments
of Bank (cf. Figure 4.10) and SA(Cust1) (cf. Figure 4.4). We have (s0, q0),
(s1, q0) ∈ %. Hence, we add two instances of Fq0, Fq0(s0) and Fq0(s1), to F(TS ).
As transition (s0, τ, s1) ∈ δSA(Cust1), we add connection C(q0,τ,q0)(q0, q1) to C(TS ).
Next, we add fragment Fq1(s2) to F(TS ), because (s2, q1) ∈ %. From transition
(s1, ?as, s2) ∈ δSA(Cust1) and (q0, ?as, q1) ∈ δMP , we conclude that connection
C(q0,?as,q1)(s1, s2) has to be added to C(TS ), and so on. Figure 4.11 shows the
resulting transition system TS . Note that (s4, q7) ∈ % and presence of transition
(s4, ?as, s2) ∈ δSA(Cust1) (cf. Figure 4.4) yields (s2, q∅) ∈ %. However, as q∅ is not
reachable in MPX3(Bank), there is no ?as-labeled connection leaving Fq7(s4). TS
contains a livelock, because Fq3(s3) and Fq7(s4) do not have a final state. Thus,
Cust1 is not an X3-strategy of Bank.

As the main result of this subsection, we prove that the constructed LTS TS
indeed reflects the state space of N ⊕ S; that is, TS and the LTS of N ⊕ S
are bisimilar. Intuitively, a stronger result than a bisimulation—for example, an
isomorphism—cannot be achieved due unfoldings of cycles.

Theorem 4.3.10 (TS and N ⊕ S are bisimilar).
Let S be an X3-strategy of N , and let TS be as previously defined. There is a
bisimulation that respects final states between TS and the LTS of N ⊕ S. y

Proof.
We prove this theorem on the level of service automata. Let N and S be service
automata, let % be the minimal simulation relation of S by MPX3(N) that is
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Figure 4.11.: Constructing the state space of Bank ⊕ Cust1 from the fragments
and connections of Bank. Bank ⊕ Cust1 has a livelock (depicted in
bold); the only final state is (v3, s2).

used for constructing TS . Let further be the labels of transitions of N and of
S be preserved in the composition N ⊕ S, and let also the labels of transitions
of N be present in the fragments of N . We claim that the following relation
%∗ ⊆ QN⊕S ×QTS is the required bisimulation:

%∗ = {〈(qN , qS ,M), ((qN , qMP ,M), qS)〉 | (qN , qS ,M) ∈ QN⊕S
∧ (qS , qMP ) ∈ %
∧ ((qN , qMP ,M), qS) ∈ FqMP

(qS)}

By construction of TS , FqMP
(qS) ∈ F(TS ), so %∗ is well defined.

The initial state of N ⊕ S is (q0N , q0S , [ ]), the initial state of TS is
((q0N , q0MP , [ ]), q0S); so %∗ relates the initial states of the considered systems.

Let 〈(qN , qS ,M), ((qN , qMP ,M), qS)〉 ∈ %∗. A transition in N ⊕ S originates
either from a transition in N or from a transition in S. A transition of N
leads to some state (q′N , qS ,M

′) in N ⊕ S. Obviously, the same transition is
possible in state (qN , qMP ,M) of the composition N ⊕MPX3(N) as well, lead-
ing to (q′N , qMP ,M

′) there. Both states and the corresponding transition be-
tween them are thus part of fragment FqMP

which proves that a transition from
((qN , qMP ,M), qS) to ((q′N , qMP ,M

′), qS) with the same label is present in TS .
Analogously, a transition internal to a fragment (which again stems from a tran-
sition in N) used in TS can be mimicked in N ⊕ S.
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Consider now a transition from state (qN , qS ,M) to state (qN , q′S ,M
′) of N ⊕S

that originates from a transition (qS , x, q′S) in S. As % is a minimal simulation,
there is a transition (qMP , x, q

′
MP ) with (q′S , q

′
MP ) ∈ %, for some q′MP . (This

transition can be either internal (i. e., τ) or visible. However, as MPX3(N) is de-
terministic, every successor state in % is uniquely determined, and we do not have
to distinguish between internal or visible transitions in the following.) Both tran-
sitions change message bag M in the same way, because they carry the same
label. Fragment Fq′MP

and connection instance C(qMP ,x,q′MP )(qS , q′S) have been
included in the construction of TS . This connection instance contains the re-
quired transition from ((qN , qMP ,M), qS) with x to ((qN , q′MP ,M

′), q′S) in TS .
The other way around, consider a transition in TS from ((qN , qMP ,M), qS) with
x to some state ((qN , q′MP ,M

′), q′S) that is part of an included connection instance
C(qMP ,x,q′MP )(qS , q′S). By construction of TS , we have (qS , x, q′S) ∈ δS . Because
enabledness of a transition in N ⊕ S and its effect on M just depend on M and
x, transition ((qN , qS ,M), x, (qN , q′S ,M

′)) must be present in N ⊕ S.
Let (qN , qS ,M) be final in N ⊕ S—that is, qN ∈ ΩN , qS ∈ ΩS , and M = [ ];

thus, for any qMP , ((qN , qMP ,M), qS) is final in FqMP
and, by construction of TS ,

((qN , qMP ,M), qS) is final in TS . The other way around, a state in TS is final
according to Definition 4.3.9 if qS is final and the state of the fragment instantiated
with qS is final. By construction of fragments, this implies qN ∈ ΩN and M = [ ],
so (qN , qS ,M) is final in N ⊕ S. �

It is well known that bisimilar LTSs are undistinguishable for any formula of
the temporal logic CTL that uses atomic propositions, which are preserved by the
considered bisimulation relation [CGP00]. As weak termination can be expressed
as AGEF final in this logic, Theorem 4.3.10 implies the following corollary.
Corollary 4.3.11 (TS strongly preserves weak termination).
The LTS of N ⊕ S weakly terminates iff TS weakly terminates. y

The value of Corollary 4.3.11 is that it enables us to verify TS in place of the
LTS of N ⊕ S, because the bisimulation relation between both LTSs guarantees
strong preservation of weak termination. With strong preservation we mean if
weak termination does not hold for TS , it also does not hold for the LTS of
N ⊕S. Consequently, our approach of constructing TS by gluing fragments of N
is fully justified.

Based on Corollary 4.3.11, we can now define matching of an open net S with
the set of fragments and connections of an open net N .
Definition 4.3.12 (matching with fragments).
For an open net N , let F(N) and C(N) denote the set of its fragments and
connections. An open net S matches with F(N) and C(N) iff S is a partner of
N , and TS , constructed from F(N) and C(N), weakly terminates. y

The LTS of Bank⊕ SA(Cust1) in Figure 4.11, constructed from fragments and
connections of Bank, does not weakly terminate. Hence, Cust1 does not match
with the fragments and connections of Bank.
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The sets F(N) of fragments and C(N) of connections of an open net N , as
defined in Definition 4.3.8, are a finite representation of all X3-strategies of N .
More precisely, F(N) and C(N) serve as a finite generator set for constructing
the state space of N ⊕ S, for any partner S of N . Matching—that is, checking
whether an open net S is an X3-strategy of N—means to construct the LTS TS
of N ⊕ S from the sets F(N) and C(N) according to Definition 4.3.9 and then
model check TS for weak termination.

The following two subsections are devoted to speed up the matching procedure.

4.3.4. Reducing fragments

In this section, we aim at reducing the size of the calculated fragments and thus the
number of connections. That way, we achieve three advantages. First, reducing
fragments actually speeds up the matching procedure. On the one hand, fewer
states and connections reduce the effort when constructing TS from fragments
and connections, and on the other hand, the smaller LTS TS reduces the model-
checking effort in general. Second, we have to store only fragments of smaller size
and third, abstracting parts from the fragments helps to hide trade secrets of a
service, modeled as an open net N .

The reduction we are using is different from usual state-space reduction known
from explicit state-space verification [Val98, CGP00]. Whereas traditional state-
space reduction is applied during the state-space construction, we can apply
our techniques after the state-space construction. This is not to say that usual
state-space reduction techniques, such as the symmetry method [CFJ93, ES93] or
partial-order reduction [Val91, God91, Pel93], are completely out of scope in our
setting. The problem is that application of these techniques must be restricted to
the interior of a fragment, because changing number or connection of fragments
would cause problems in the procedure of composing fragments to an LTS TS
as described in the previous section. Consequently, we focus on an a posteriori
state-space reduction that can be applied immediately after having constructed
the fragments. The outcome of the reduction is then available in every LTS that
uses the reduced fragments.

We continue by first restricting the states of all fragments to strongly connected
components and then by defining abstraction rules that minimize the number of
states of the fragments.

Strongly connected component-based fragment reduction

Deadlocks and livelocks in an LTS are terminal strongly connected components
(TSCCs), which do not contain a final state (cf. Definition 2.1.2). If this TSCC
is a singleton state without a self-loop, we have a deadlock; otherwise, we have a
livelock.

In this light, replacing all strongly connected states in a fragment by single
states is an obvious reduction. It may turn a livelock into a deadlock, but the
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reduced LTS is weakly terminating if and only if the original LTS is.

Definition 4.3.13 (SCC reduction).
Let F be a set of fragments, and let C be a set of connections. The reduced sets
F ′ and C′ are defined as follows. For each fragment F = (V,Σ, E,Ω), let ≡F be
the equivalence on V where q ≡F q′ iff q and q′ are mutually reachable using
transitions in E. Let F ′ = (V ′,Σ, E′,Ω′) be defined by

• V ′ = V|≡F
,

• E′ = {([q]≡F
, [q′]≡F

) | ∃q1 ∈ [q]≡F
, q′1 ∈ [q′]≡F

: (q1, q
′
1) ∈ E}, and

• Ω′ = {[q]≡F
| [q]≡F

∩ Ω 6= ∅}.

Let F ′ = {F ′ | F ∈ F}. For a connection C between fragments F1 and F2,
let ([q]≡F1

, x, [q′]≡F2
) ∈ C ′ iff there exist q1 ∈ [q]≡F1

and q′1 ∈ [q′]≡F2
, with

(q1, x, q
′
1) ∈ C . Let C′ = {C ′ | C ∈ C}. y

For each SCC, we only store one representative. Each transition from (to) a
state of an SCC is replaced by a transition from (to) the representative of this
SCC.

As all replacements are executed simultaneously and consistently, it is easy to
see that the reduction is well defined. Furthermore, all SCCs of single fragments
are strongly connected in every LTS composed of the fragments. Mutual reacha-
bility of states in different SCCs is left invariant. It is thus easy to see that the
following lemma holds.

Lemma 4.3.14 (SCC reduction strongly preserves weak termination).
An LTS, composed using fragments in F and connections in C, is weakly termi-
nating iff the corresponding reduced LTS is where, for every fragment F ∈ F ,
F ′ is used instead, and every connection C ∈ C is replaced by the corresponding
C ′. y

SCC reduction on fragments alone is applicable if the given open net N has
cycles in its reachability graph. As none of the fragments of Figure 4.10(a) has
an internal cycle, SCC reduction does not effect these fragments.

Rule-based reduction

Given an SCC-reduced set of fragments and connections, we can further re-
duce these fragments and connections using local state-space transformations.
We present three applicable rules that have been adapted from the deadlock-
preserving reduction rules by Juan et al. [JTM98].

Most of the rules in [JTM98] indeed do preserve livelocks. Thus, the adaptation
was quite straight forward. The actual challenge in adapting the rules was rather
to assure that their application is justified in any LTS that can be constructed
using the considered fragments and connections.
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Figure 4.12.: Illustration of the transitive reduction rule: (a) fragment internal
application and (b) removing a redundant connection.

For simplifying presentation, we introduce some notation. For a state q, let
Fq = (Vq,Σ, Eq,Ωq) be the fragment where q ∈ Vq. For a pair (q, q′), let E(q,q′) =
Eq if Fq = Fq′ and (q, q′) ∈ Eq, and let E(q,q′) = C(Fq,Fq′ )

, otherwise. With this
notation, we are able to refer to the fragment some state actually belongs to. We
can further refer to transitions internal to a fragment and to transitions in connec-
tions in a single notation. For a set T of transitions, q′ is reachable via T from q,
denoted by q T−→ ∗q′, if and only if (q, q′) is in the reflexive and transitive closure
of T . For a state q, let •q = {q′ | (q′, q) appears in any fragment or connection}
and q• = {q′ | (q, q′) appears in any fragment or connection} denote the set of
predecessor and successor states of q, respectively.

We can now present the actual transformation rules.

Rule Transitive Reduction The transitive reduction rule [AGU72] aims at re-
moving a transition (q, q′) if and only if there is another transition sequence T
from q to q′.

Constraint: There is a transition (q, q′) where q
(Eq∪Eq′∪E(q,q′))\{(q,q

′)}
−−−−−−−−−−−−−−−−−→ ∗q′.

Application: E(q,q′) := E(q,q′) \ {(q, q′)}.

Figure 4.12 illustrates the transitive reduction rule. It shows that the rule
can be internally applied to a fragment (see Figure 4.12(a)) but also to remove
redundant connections (see Figure 4.12(b)). The following lemma proves that we
can apply this reduction rule in our setting.

Lemma 4.3.15 (justification of rule Transitive Reduction).
Rule Transitive Reduction strongly preserves weak termination. y

Proof.
Let TS be constructed of fragments, and assume that it contains an instance
of (q, q′). If this transition is internal to a fragment, then the whole sequence
required in the constraint is internal to the same fragment. So q′ is still reachable
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from q. If (q, q′) belongs to a connection C between fragments F1 and F2, then
fitting instances of both fragments and the connection C are present in TS , and
the constraint again assures reachability of q′ from q via a member of the same
connection. Thus, mutual reachability of states is left invariant, which is sufficient
for asserting preservation of weak termination. �

As none of the fragments in Figure 4.10(a) has states that are transitively
reachable, transitive reduction does not effect these fragments.

Rule Sequence The intuition behind this rule is to reduce sequences of states
and synchronization states to minimize all paths to deadlocks or final states. A
state q can be removed if

(1) all predecessor states of q are in the same fragment as q; or

(2) all successor states of q are in the same fragment as q.

Constraint: There is a state q such that there is a transition (q, q∗) ∈ Eq—
that is, q is not a deadlock in its own fragment and q is not the initial state of
F(TS )—and

(1) •q × {q} ⊆ Eq; or

(2) {q} × q• ⊆ Eq.

Application: (i) Add a transition from every predecessor of state q to each of
its successor states. Then remove all transitions from (ii) and to (iii) state q, and
finally (iv) remove state q. Formally,

(i) for every q′ ∈ •q and every q′′ ∈ q•, E∗ := E∗∪{(q′, q′′)}, where E∗ = E(q′,q)

if E(q′,q) 6= Eq, and E∗ = E(q,q′′), otherwise;

(ii) for all q′ ∈ •q, E(q′,q) := E(q′,q) \ {(q′, q)};
(iii) for all q′ ∈ q•, E(q,q′) := E(q,q′) \ {(q, q′)}; and

(iv) Vq := Vq \ {q}.

An example for each of the two forms of this rule is shown in Figure 4.13. State
q is always the state that is removed. The following lemma proves that we can
apply this reduction in our setting.

Lemma 4.3.16 (justification of rule Sequence).
Rule Sequence strongly preserves weak termination. y

Proof.
Let TS be an LTS built from fragments, and let Fq be the fragment to be changed
by the reduction rule. We prove both forms of this rule. First, we show for an
arbitrary LTS that every deadlock or final state being reachable before the reduc-
tion is also reachable after the reduction, and no new deadlocks are introduced by
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Figure 4.13.: Illustration of the sequence rule: (a) all predecessors of q are in
the same fragment as q, and (b) all successors of q are in the same
fragment as q.

the reduction. Afterwards, we show that these properties hold for any LTS that
can be constructed from fragments.

Consider a path to a final state or to a deadlock that passes through q. This
path passes through some q′ ∈ •q and some q′′ ∈ q•. Applying the reduction rule
yields a bypass transition (q′, q′′), for all q′, q′′, and the only removed state is q.
Clearly, reachability remains invariant by adding bypass transition (q′, q′′). So,
reachability of a final state or a deadlock remains invariant, for all states that
reach q, and also no additional deadlock has been introduced by the reduction.
State q is by assumption not a deadlock and the only state that is removed. Thus,
deadlock states remain invariant by the reduction. Now assume, q is a final state.
By assumption, q has at least one successor q∗ in its own fragment. According
to Definition 2.6.2 (weak termination), a final state must be reachable from every
state of the LTS and therefore also from q∗. As reachability is not affected by the
reduction, reachability of a final state from q is the same as reachability of a final
state from the (still present) q∗.

It remains to show that these properties hold for any LTS TS . Clearly, instances
of manipulated connections are only present in TS with instances of Fq. Consider
again the path through some q′ ∈ •q and some q′′ ∈ q•. By our constraint, at least
one of (q′, q) and (q, q′′) is internal to Fq. If one of these transitions is outside
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the fragment Fq, the bypass transition (q′, q′′) is member of the same connection.
Thus, an instance of (q′, q′′) is present in TS if and only if transitions (q′, q) and
(q, q′′) are present in the unreduced TS . So reachability of deadlocks and final
states remains invariant in any LTS. Suppose q is a final state. As the constraints
assert that q has at least one successor in its own fragment, it has a successor in
TS . Hence, reachability of a final state remains invariant for all states that reach
q in any LTS. �

Applying this rule to the fragments of our example in Figure 4.10(a) results
in removing the state v5 from fragment Fq6 and the states v7 and v8 from frag-
ment Fq7. Accordingly, we have to change connections C(v4,!i,v7) and C(v4,!ap,v5) to
C(v4,!i,v9) and C(v4,!ap,v6). The example shows that this rule is a rather powerful
reduction technique.

Rule Equivalent States With this rule, we aim at detecting states q and q′ of
the same fragment that share the same successors. If q and q′ are both either
final states or no final states, then they can be merged while preserving weak
termination.

Constraint: There are states q and q′ such that Fq = Fq′ , q ∈ Ωq iff q′ ∈ Ωq,
and, for all fragment-internal transitions and connections E∗, (q, q′′) ∈ E∗ iff
(q′, q′′) ∈ E∗.

Application: (1) Redirect every transition from a predecessor of state q to q′, (2)
remove all transitions from q to its successors, and finally (3) remove q. Formally,

(1) for every q∗ ∈ •q, E(q∗,q) := (E(q∗,q) \ {(q∗, q)}) ∪ {(q∗, q′)};
(2) for every q′′ ∈ q•, E(q,q′′) := E(q,q′′) \ {(q, q′′)}; and

(3) Vq := Vq \ {q}.

Figure 4.14 illustrates this reduction rule. In Figure 4.14(a), the removal of
state q is local to the fragment of q. The example in Figure 4.14(b) shows that
also surrounding fragments may be involved, and hence also connections have to
be redirected or removed. The following lemma justifies the applicability of this
reduction in our setting.

Lemma 4.3.17 (justification of rule Equivalent States).
Rule Equivalent States strongly preserves weak termination. y

Proof.
Consider an instance of Fq. This fragment contains both states q and q′ in its
unreduced version. We prove for an arbitrary LTS that every deadlock or final
state being reachable in the unreduced LTS is also reachable in the reduced LTS,
and no new deadlocks are introduced by the reduction. Afterwards, we show that
these properties hold for any LTS that can be constructed from fragments.
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Figure 4.14.: Illustration of equivalent states rule: (a) fragment internal applica-
tion and (b) application that involves several fragments.

The constraints assure that q and q′ have the same successors. Thus, redirection
of all transitions (q∗, q) to (q∗, q′) guarantees that reachability remains invariant
in the reduced LTS, for all states that reach q. If q is a deadlock or a final state,
so is q′ (follows from the constraint). Hence, reachability of a deadlock or a final
state remains invariant in the reduced LTS, for all states that reach q. If q is not a
deadlock, then q′ is also not a deadlock. As reachability remains invariant in the
reduced LTS, we conclude that the reduction does not add additional deadlocks.

We continue by proving that these properties hold for any LTS. The redirected
transitions appear in the same fragment or connection as the original one. So
replacing Fq by the reduced fragment is independent of the actual construction of
any LTS. Consider now the effect of the reduction on the successors of q and q′.
If all successors q∗ appear in Fq, the removal of transitions (q, q∗) is guaranteed
to be independent from the actual construction of any LTS. Suppose now there
is a transition (q, q∗), and q∗ is not a state of Fq. The constraint assures the
existence of transition (q′, q∗), which is also a member of the same connection.
Hence, removing transition (q, q∗) affects only one connection, which is because of
the presence of q′ in the reduced fragment still present in the reduced LTS. Hence,
substituting Fq by the reduced fragment is independent of the actual construction
of any LTS. �
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As none of the fragments of Figure 4.10(a) has equivalent states, the application
of this reduction rule does not effect these fragments.

From Lemma 4.3.15, from Lemma 4.3.16, and from Lemma 4.3.17 we can con-
clude that we can apply the three reduction rules in any order, and the minimized
fragments strongly preserve weak termination.
Corollary 4.3.18 (justification of rule-based reduction).
Let TS ′ result from applying any sequence of reduction rules as described above
to TS . Then, TS weakly terminates iff TS ′ weakly terminates. y

The abstraction rules presented in this section are related to work on minimiza-
tion of LTSs (see [Val95, FGK+96, PV99], for instance). These papers present
congruences with respect to composition, which never equate an LTS with a prop-
erty, such as deadlock freedom or livelock freedom, with one, which does not sat-
isfy that property. That way, one can minimize an open net N to an open net
N ′ such that N ′ preserves deadlocks and livelocks. However, as S is unknown
at the minimization phase, only N can be minimized, whereas in our approach,
we construct an overapproximation N ⊕MPX3(N) of any state space N ⊕ S and
minimize N ⊕MPX3(N) instead of only minimizing N .

The condensation rules presented in this subsection reduce TS and therefore
in particular speed up the second step of the matching procedure—that is, model
checking TS for weak termination. Remember that the more complicated match-
ing procedure (in comparison toX1-strategies) became necessary, because we want
to exclude livelocks. As a drawback, the approach will also calculate the LTS of
N ⊕ S if S causes a deadlock in the composition with N . For checking deadlock
freedom, a more efficient procedure has been introduced for X1-operating guide-
lines in Section 4.1.3, namely, encoding deadlock freedom into an annotation. In
the next subsection, we will adapt this procedure to the setting of fragments.

4.3.5. An annotation function for fragments to encode
deadlock freedom

The aim of this section is to detect already during the construction of the LTS of
N ⊕ S whether N ⊕ S may deadlock. A fragment F corresponds to a state qMP

of the most permissive X3-strategy MPX3(N) of N . Each state q = (m, qMP ) of
F consists of a marking of N (i. e., a knowledge value of N) and the state qMP of
MPX3(N). That way, we can directly apply the three conditions of Lemma 4.1.14
to fragments. As a main difference to the annotation function for X1-operating
guidelines (cp. Definition 4.1.15), the Boolean formula, annotated to a fragment
F , is not a conjunction over the set of all markings in F that do not enable any
transition, but a conjunction over the set of all TSCCs in F—that is, all states q
that have at most successors in a different fragment than F .
Definition 4.3.19 (annotation function for fragments).
Let N be an open net, and let MPX3(N) = (Q,MC I ,MCO, δ, q0,Ω) be the most
permissive X3-strategy of N that has been used for constructing the set F(N)
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of all (reduced) fragments and the set C(N) of all connections of N . Define the
annotation function of (F(N), C(N)) as ψF(N) : F(N) −→ BFMC

+
where, for each

fragment F = (VF ,ΣF , EF ,ΩF ) ∈ F(N)

ψF(N)(F ) =
∧

v=(m,q)∈VF∧v is a TSCC

(
ψii(v) ∨ ψiii(v)

)
with

• ψii(v) = τ ∨
(∨

x∈MCO x
)
∨
(∨

x∈MC I ,m(x)>0 x
)

;

• ψiii(v) =

{
final , if v ∈ ΩF ;
false, otherwise.

y

Let the corresponding service automaton SA(S) of an open net S be in state
qS such that qS is related to a state q of MPX3(N) by the minimal simulation
relation. Let v be a TSCC of Fq (the corresponding fragment of q). Formula
ψii(v) encodes the second condition of Lemma 4.1.14. It evaluates to true if qS
enables any connection having v as its source. So it assigns true to any of the
literals x ∈ MC I ∪MCO of MPX3(N) that represent a connection, or it assigns
true to the literal τ .

Formula ψiii(v) encodes that the TSCC v is a final state of fragment Fq. Then,
the formula ψiii(v) contains literal final and by Definition 4.1.3, SA(S) assigns
true to final if and only if qS is a final state of SA(S).

As for annotated automata, the resulting Boolean formulae may not be in nor-
mal form. However, it is easy to adapt the normalization procedure for annotated
automata of Section 4.1.1. For the fragments in Figure 4.10(a), we calculate the
following (normalized) annotations:

ψF(Bank)(Fq0) = τ ∨ (?as ∧ ?req)
ψF(Bank)(Fq1) = τ ∨ final
ψF(Bank)(Fq3) = τ ∨ !ap ∨ !i
ψF(Bank)(Fq6) = τ ∨ final
ψF(Bank)(Fq7) = τ ∨ ?req

The set of fragments and connections of an open net N and the canonical
Boolean annotation form the X3-operating guideline of N .

Definition 4.3.20 (X3-operating guideline).
For an open net N , let F(N) be its set of fragments, C(N) its set of connections,
and φ = ψF(N) its annotation function. The X3-operating guideline of N is
defined by OGX3(N) = (F(N), C(N), φ). y

Based on the X3-operating guideline, as a representation of all X3-strategies of
an open net N , we can give an improved definition of matching that takes into
account the presence of the annotation function.
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Definition 4.3.21 (matching with X3-operating guideline).
For an open net N , let OGX3(N) = (F(N), C(N), φ) be its X3-operating guide-
line. An open net S matches with OGX3(N) iff

• S matches with (F(N), C(N)) using minimal simulation relation
% ⊆ QSA(S) ×QMP , with QMP is the set of states of MPX3(N)); and

• for each (qS , q) ∈ % : βSA(S)(qS) |= φ(Fq), where Fq ∈ F(N). y

An open net S matches with OGX3(N) if (1) S and N are partners, (2) the
minimal simulation relation that is used for gluing fragments of N to the LTS
TS of N ⊕S, constitutes for each pair (qS , q) of states a satisfying assignment for
φ(Fq), and (3) TS weakly terminates.

In our example, the customer Cust1 in Figure 4.11 actually satisfies conditions
(1) and (2). However, as already shown, the LTS of Bank⊕SA(Cust1) constructed
from fragments and connections of Bank violates condition (3), as it does not
weakly terminate. Hence, Cust1 does not match with OGX3(Bank).

The next theorem is the main theorem of this subsection. It proves that the
X3-operating guideline of an open net N represents all X3-strategies of N .

Theorem 4.3.22 (OGX3(N) represents all X3-strategies of N).
An open net S is an X3-strategy of an open net N iff S matches with OGX3(N).y

Proof.
Let OGX3(N) = (F(N), C(N), φ). From Theorem 4.3.10, we conclude that S
matches with (F(N), C(N)) if and only if the LTS of N ⊕ S weakly terminates.
The annotation function for fragments is defined analogously to the annotation
function for X1-operating guidelines. So we can apply Theorem 4.1.17 and con-
clude that φ is satisfied by SA(S) if and only N ⊕ S is deadlock-free. Thus, φ
does not exclude any X3-strategy, and hence the theorem holds. �

Theorem 4.3.22 justifies that, given any finite-state open net N , we have an
algorithm for constructing OGX3(N) and a procedure to decide whether an open
net S matches with OGX3(N).

4.3.6. Experimental results and discussion

We use a prototypical implementation of the algorithm for constructing the sets
of all fragments and connections for an open net N to experiment with a number
of real-life service models. Furthermore, we compare X1-operating guidelines
and X3-operating guidelines—in particular, some complexity issues—and discuss
related work.

Experimental results

The results presented in this section have also been prototypically implemented
in the service analysis tool Fiona. So, given an open net N , Fiona can calculate
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the most permissive X3-strategy MPX3(N) of N together with the (minimized)
fragments and connections of N . Furthermore, Fiona can also check whether an
open net S matches with the fragments of N by constructing the state space for
N ⊕ S.

In this experiment, we use the same services as in the experiments in Sec-
tions 4.1.4 and 4.2.4.

For each open N , Table 4.3 provides information about the size of N , the size of
its corresponding service automaton, structural properties of N , the state space
of the most permissive X3-strategy MPX3(N) of N , the size of the fragments, and
the time for calculating MPX3(N) and computing the reduced fragments. More
precisely, columns 2–4 refer to the number of places, transitions, and interface
places of N ; columns 5 and 6 refer to the number of states and transitions of
SA(N); columns 7 and 8 provide information whether N has concurrency and
cycles, respectively; columns 9 and 10 refer to the number of states and transitions
of the most permissive X3-strategy of N3; |V | and |Vred | in columns 11 and 12 refer
to the number of states of all fragments before and after applying the reduction
rules; |V |Q and |Vred |

Q in columns 13 and 14 show the average number of states per
fragment before and after applying the reduction rules. Finally, tMP denotes the
time for computing the most permissive X3-strategy of N , and tred shows the
time for reducing the fragments.

As an example, the most permissive X3-strategy of ‘Online Shop 1’ has 12
states. Thus, Fiona computed 12 fragments. The sum of all states of these
12 fragments is |V | = 137. Applying the proposed abstraction rules results in
|Vred | = 15 states. So we have in average 11.4 states per fragment before and
1.3 states per fragment after the reduction. Hence, for matching an open net S
with the reduced fragments of N only 15

137 = 11% of the actual state space has to
be model checked. The time for computing MPX3(N) is 4 seconds; reducing the
fragments takes no time.

Based on the experimental results, we make the following three observations:
The average number of states per fragment is not very high in general; for

example, in nine service models it is lower than 5. Consequently, there is little
scope for reduction in such examples. One reason might be that all open nets
have been structurally reduced using the well-known Murata rules [Mur89] before
transforming their state spaces. We apply these rules, because they significantly
speed up the computation of the most permissive X3-strategy while preserving
all relevant properties.

For three examples, the overall computation time takes more than one hour.
This reflects the high worst-case complexity of the algorithm for calculating the
most permissive X3-strategy. Also the minimization of the fragments takes in
four examples more than 10 minutes. The reason is that the transitive reduction
rule has a worst-case complexity of O(n3) [AGU72] (where n is the number |Q| of
all states of the most permissive X3-strategy), and we were interested in the best

3Fiona does not compute the empty state, as this state is not used for computing fragments.
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Table 4.3.: Calculation of OGX3(N) with Fiona. All experiments were obtained
on an UltraSPARC III processor with 900MHz and 4 GB RAM running
Solaris 10.
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possible reduction. So there is obviously a trade-off between fragment size and
run time that could be tackled—for example, by limiting the number of iterations
through the state space to detect states and transitions that can be removed.
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The proposed abstraction rules seem to be powerful, as the state spaces of the
fragments are reduced significantly. None of the reduced example processes has
more than 2.5 states per fragment in average, and five processes contain only a
single state per each fragment. Consequently, building the LTS TS of N⊕S from
reduced fragments results in all examples in a smaller state space (compared to
the LTS composed from non-reduced fragments). On the one hand, this helps to
hide internals of the service. On the other hand, we assume that those reduced
state spaces can be model checked more efficiently due to the smaller number of
states. A validation of this assumption is, however, subject of ongoing research.

Discussion

We start with a short complexity analysis of X3-operating guidelines.

Computing OGX3(N) is proportional to the product of N and the most per-
missive X3-strategy MPX3(N). To compute MPX3(N), we have to compute
MPX1(N). Hence, the space complexity of OGX3(N) is O(|N | · |MPX1(N)|).
As we assume that calculating MPX3(N) takes the same time than calculating
MPX1(N), time and space complexity of OGX3(N) and OGX1(N) are the same.

Also the time complexity for matching remains the same: Computing the state
spaces of N ⊕ S from fragments of N requires a minimal simulation relation of
S by the most permissive X3-strategy of N , which is proportional to the prod-
uct of OGX3(N) and S. So we have O(|OGX3(N)| · |S|). Model checking the
respective transition system can be done on-the-flight, and hence we have—as
for X1-operating guidelines (see Section 4.1.4)—an overall time complexity of
O(|OGX3(N)| · |S|).

Although the worst-case complexity is exponential, the experimental results
suggest that the proposed X3-operating guideline of an open net is feasible for
practical applications. As in case of X1-operating guidelines, the complexity is
mainly caused by high computation time for the most permissive X3-strategy. To
reduce the average complexity of computing OGX3(N), we combine the two algo-
rithms for calculating the most permissive X1-strategy of N (see Definition 4.1.10)
and the most permissive X3-strategy of N (see Definition 4.3.1).

Comparing the experiments of this section with the one on X1-operating guide-
lines in Section 4.1.4, we observe that calculating MPX3(N) takes more time than
calculating MPX1(N). For example, computing MPX1(N) of the ‘SMTP Proto-
col’ takes 47 minutes, whereas computing MPX3(N) takes more than 4 hours.
At this stage we do not have an explanation for this difference. We assume that
this is caused by some weaknesses in the implementation. We think that the
implementation for both, computation of the most permissive X3-strategy and
minimizing fragments, gives room for improvements.
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4.4. Representing strategies in case of weak
termination and cover

The aim of this section is to introduce a finite representation of all X3-strategies
S of an open net N such that a given set Y of nodes of N is covered in the
composition N ⊕ S. We refer to S as an X4(Y )-strategy of N . In addition, we
are also interested in representing all open nets S′ such that N ⊕ S′ is quasi-live.
We refer to S′ as an X4-strategy of N . We will show that the notion of a global
constraint, which has been introduced in Section 4.2.2 for X1-operating guidelines,
can be adapted to X3-operating guidelines (Section 4.4.1). The achieved results
are discussed in Section 4.4.2.

4.4.1. A finite representation of all X4(Y )-strategies

In Section 4.2.2, we proved that the information for deciding whether an open net
S ensures that in the composition N ⊕S a given set Y of nodes of N are covered
can be derived from the knowledge that the most permissive X1-strategy of N
has of N . We showed that we can construct a global constraint χ encoding this
information. The global constraint specifies which states of OGX1(N) have to
be used in the minimal simulation relation of SA(S) by OGX1(N) such that the
nodes of N are covered in N ⊕S. As the most permissive X3-strategy of N has in
each state knowledge of N , it is easy to see that the notion of a global constraint
can be lifted to X3-operating guidelines. Consequently, extending X3-operating
guidelines by a global constraint with proposition over the states of the most
permissive X3-strategy (i. e., fragments used in the LTS of N ⊕ S) represents
all X4(Y )-strategies of N . Like we did in Section 4.2.3 for X2-strategies, this
representation can then be adjusted to represent all X4-strategies.

Definition 4.4.1 (X4(Y )-operating guideline).
Let N be an open net with a set Y ⊆ P ∪ T of nodes of N . Let OGX3(N) =
(F(N), C(N), φ) be the X3-operating guideline of N , and let MPX3(N) be the
most permissive X3-strategy of N . For a place p ∈ P of N and a state q of
MPX3(N), let p ∼ q iff there is a marking m ∈ kMP(N),N (q), where m(p) > 0. For
a transition t ∈ T of N and a state q of MPX3(N), let t ∼ q iff there is a marking
m ∈ kMP(N),N (q), where t is enabled. Then, OGX4(Y )(N) = (F(N), C(N), φ, χ)
with

χ =
∧

y: y∈Y

∨
q: y∼q

q

is the X4(Y )-operating guideline of N .
Let Y = T . Then OGX4(Y )(N) is the X4-operating guideline OGX4(N) of N .y

The sets F(N) and C(N) of fragments and connections of N , the annotation
function φ, and the global constraint χ represent all X4(Y )-strategies of N . An
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open net S matches with OGX4(Y )(N) if it matches with OGX3(N) and satisfies
the global constraint χ.

If Y = T of N , OGX4(Y )(N) is the X4-operating guideline of N and represents
all X4-strategies of N . An open net S is an X4-strategy of N if (like for X2-
strategies) it matches with OGX4(Y )(N) and, for every state of the corresponding
service automaton SA(S) of S, there exists a state q of MPX3(N) in the minimal
simulation relation % of SA(S) by MPX3(N) and q is not the empty state of
MPX3(N).

Definition 4.4.2 (matching with an X4(Y )-operating guideline).
Let OGX4(Y )(N) = (F(N), C(N), φ, χ) be the X4(Y )-operating guideline of an
open net N . An open net S matches with OGX4(Y )(N) iff

• S matches with (F(N), C(N), φ) using the minimal simulation relation % of
states of SA(S) by states QMP of MPX3(N); and

• χ evaluates to true in the assignment γSA(S) : QMP −→ {true, false}, where
γSA(S)(q) = true, for q ∈ QMP iff there is a state qS of SA(S) such that
(qS , q) ∈ %;

Let OGX4(Y )(N) with Y = TN be the X4-operating guideline of N . Open net
S matches with OGX4(Y )(N) iff

• S matches with OGX4(Y )(N) using the minimal simulation relation % of
states of SA(S) by states QMP of MPX3(N); and

• for all states qS of SA(S), there is a q ∈ QMP with (qS , q) ∈ % and q is not
the empty state q∅ of QMP . y

From Theorem 4.2.5 and from Theorem 4.3.22, we can directly conclude that
the proposed notion of an X4(Y )-operating guideline indeed represents all X4(Y )-
strategies of N .

Corollary 4.4.3 (OGX4(Y )(N) represents all X4(Y )-strategies).
An open net S is an X4(Y )-strategy of an open net N iff S matches with
OGX4(Y )(N). y

Analogously, from Corollary 4.2.8 and from Theorem 4.3.22, we can directly
conclude that the proposed notion of an X4-operating guideline indeed represents
all X4-strategies of N .

Corollary 4.4.4 (X4-operating guideline represents all X4-strategies).
An open net S is an X4-strategy of an open net N iff S matches with OGX4(N).y

The most permissive X3-strategy of Bank is shown in Figure 4.15(b). The repre-
sentation of all X4-strategies of Bank is the X4-operating guideline OGX4(Bank) =
(OGX3(Bank), χ) with χ ≡ q0 ∧ q0 ∧ q6 ∧ q7 ∧ q7, which is equivalent to χ ≡
q0 ∧ q6 ∧ q7.
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Figure 4.15.: Open net Bank and its most permissive X3-strategy MPX3(Bank).

4.4.2. Discussion

Comparing an X4(Y )-operating guideline and an X3-operating guideline of an
open net N , we identify that both representations have the same most permissive
X3-strategy. The reason is that, analog to X1-operating guidelines and X2(Y )-
operating guidelines, each X4(Y )-strategy of N is also an X3-strategy of N . If
the most permissive X3-strategy of N is not an X4(Y )-strategy of N , then the
set of X4(Y )-strategies is empty.

The complexity of X4(Y )-operating guidelines can be derived from the com-
plexity of X3-operating guidelines (cf. Section 4.3.6) and of X2(Y )-operating
guidelines (cf. Section 4.2.4). An X4(Y )-operating guideline of N can be calcu-
lated in time O(|N |·|OGX3(N)|). The space complexity is O(|N |·|OGX3(N)|) for
the fragments and O(|Y | · |Q|) for the global constraint, where |Y | is the number
of nodes of N to be covered, and |Q| denotes the number of states of MPX3(N).
Hence, the overall space complexity is O(|N | · |OGX3(N)|+ |Y | · |Q|). The time
complexity for matching results from matching an open net S with OGX3(N),
which has complexity O(|OGX3(N)| · |S|), and evaluating the global constraint
χ, which can be done in linear time with respect to the size of the constraint. So
the overall complexity is O(|OGX3(N)| · |S|+ |Y | · |Q|).

The notion of an X4(Y )-operating guideline has not been implemented so
far. Thus, we cannot provide any experimental results. However, as this notion
combines X3-operating guidelines and global constraints (from X2(Y )-operating
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guidelines), we believe that it is—as the other three representations—feasible in
practical applications.

The notion of classical soundness [Aal98] for workflow nets ensures that a work-
flow net weakly terminates, and every transition of this net is not dead. The
X4-operating guideline of N represents all open nets S of an open net N such
that the composition N ⊕ S is classical sound.

4.5. Representing strategies in case of strict
termination

The aim of this section is to extend the set X ∈ {X3, X4, X4(Y )} of open-net
properties considered so far by strict termination. Strict termination excludes
those X-strategies S of N that contain a final marking that enables any transition
in inner(S).

We will show that strict termination can be incorporated into the algorithm
for constructing the most permissive X3-strategy of N (Section 4.5.1). Hence,
no further representation has to be introduced. Finally, we discuss some related
work (Section 4.5.2).

4.5.1. Restricting the most permissive X3-strategy to strict
termination

The aim of strict termination is to exclude X3-strategies of an open net N that
can execute any transition in a final state. To represent strictly terminating
X3-strategies, we have to adapt the most permissive X3-strategy MPX3(N) of
N as follows. Consider a state qK of MPX3(N) that contains a marking m in
its knowledge, where m ∈ ΩN and state (m, qK) has no successor state in N ⊕
MPX3(N). Let qK also contain a marking m′ such that a transition of MPX3(N)
is enabled at state (m′, qK) in N ⊕MPX3(N). This scenario corresponds exactly
to a situation where an X3-strategy is in a final state, but it may also be in a state
where it can send or receive. In this case, we treat m like a deadlock, because no
service can satisfy weak termination and strict termination in such a state.

Definition 4.5.1 (restricting X3-OGs to strict termination).
Let MPX3(N) be the most permissive X3-strategy of an open net N . Proceed like
in Definition 4.3.1, but remove each state qK ∈ QMP , where m,m′ ∈ K such that
m ∈ ΩN , (m, qK) does not enable any transition, and (m′, qK) ∗−→ (m′′, qK′) with
qK 6= qK′ . The resulting service automaton is the most permissive X-strategy
MPX(N) of N , for X = {weak termination, strict termination}. y

The algorithm iteratively removes all states that violate strict termination.
As MPX3(N) contains only finitely many states, the algorithm will eventually
terminate.
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Figure 4.16.: Customer Cust′ (b) is an X3-strategy of Credit (a). Credit is not
{weak termination, strict termination}-controllable.

Lemma 4.5.2 (transformation preserves all X-strategies).
For an open net N , let MPX(N) be constructed according to Definition 4.5.1.
Open net N is X-controllable iff QMP 6= ∅. y

Figure 4.16(a) illustrates the credit service from our example contract in Fig-
ure 2.7. A possible X3-strategy of this service must be aware that after having
sent a request, the service may not be interested, in which case no information
will be sent to the customer. Nevertheless, the customer cannot be sure, and
hence he must be able to receive the information of the credit service. Customer
SA(Cust′) in Figure 4.16(b) is an X3-strategy of Credit; however, it violates strict
termination, because it can receive an information message in the final state s1.

To illustrate the algorithm of Definition 4.5.1 consider Figure 4.16(c) depicting
the most permissive X3-strategy of Credit (annotated with the knowledge that it
has of Credit). The state q1 contains a marking [p11] ∈ ΩCredit and a marking
[p11, inf] with ([p11, inf], q1) ?inf−−→ ([p11], q2) in Credit⊕MPX1(Credit). According
to Definition 4.5.1, we have to treat marking [p11] like a deadlock, and hence
we remove q1. That way, also q0 has to be removed, because no final state is
reachable from ([p9], q0). Hence, service Credit is not X-controllable, for X =
{weak termination, strict termination}.

As X4(Y )-operating guidelines use the most permissive X3-strategy, the re-
sults of this section can be directly applied to this notion. Consequently, for
X = X3, X4, X4(Y ) we can strengthen the finite representation of X-strategies
to strictly terminating X-strategies, and the resulting representation is still an
X-operating guideline.
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Figure 4.17.: The overapproximation of most permissive X1-strategy of Credit ac-
cording to the algorithm in [Wol09]. The empty state is not shown
for purposes of simplification.

4.5.2. Discussion

Another approach to remove states that violate strict termination from the most
permissive X3-strategy MPX3(N) of N has been proposed by Wolf [Wol09]. The
approach also starts with the calculation of the most permissive X1-strategy
MPX1(N) of N . For each state q of MPX1(N), an explicit final state #q and
a transition q

τ−→ #q is added during the construction of MPX1(N). Then,
MPX1(N) is transformed into the most permissive X3-strategy MPX3(N) of N .
If MPX3(N) is restricted with respect to strict termination, each state #q is
removed that has an outgoing transition.

Figure 4.17 shows an overapproximation of the most permissive X1-strategy of
Credit according to the approach of [Wol09]. Note that in [Wol09] the notion of
responsiveness is used. Hence, there is no state q3. States #q0, #q1, and #q2
model final states. The most permissive X1-strategy of Credit is obtained from
Figure 4.17 by removing the state #q0, as [p9] is not a final marking in Credit.
The resulting service automaton is also the most permissive X3-strategy of Credit.
Restriction to strict termination results in removing the state #q1, because it has
an outgoing transition (i. e., final states must not be left). As a consequence, there
is a marking [p11] in the state q1 from which the only final marking [p11] in the
final state #q2 is not reachable. So state q1, and therefore the complete service
automaton is removed.

We introduced a different algorithm for constructing the most permissive X1-
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strategy, because in [Wol09] a more restrictive notion of a final state is used, where
only receiving transitions may be enabled in a final marking. In contrast, we do
not put any restriction on the definition of a final marking (cf. Definition 2.3.1).
Furthermore, explicit final states #q cause some overhead and are not mandatory
if no restrictions are put on the final states of a service.

Strict termination has not been implemented in the service analysis tool Fiona
so far. Thus, we cannot provide any experimental results.
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Part III.

Deciding Substitutability
Criteria
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5. Deciding Substitutability Under
Conformance

In Section 3.1, we proposed the notion of X-conformance as a substitutability
criterion in the context of multiparty contracts. An open net N ′ X-conforms to
an open net N if every X-strategy of N is also an X-strategy of N ′.

This chapter presents an approach to decide X-conformance of any two open
nets N and N ′. Therefore, we have a method to check whether N ′ substitutes N
under X-conformance.

DecidingX-conformance of open netsN andN ′ is a nontrivial problem, because
we have to compare the two (in general) infinite sets StratX(N) and StratX(N ′)
of X-strategies. However, StratX(N) and StratX(N ′) can be represented in a
finite manner as shown in Chapter 4.

The idea is to use the corresponding finite representations of StratX(N ′) and
StratX(N) to decide whether N ′ X-conforms to N . To this end, we present,
for each X ∈ {X1, X2(Y )}, a preorder on X-operating guidelines and prove that
this preorder coincides with the X-conformance preorder. The preorder on X-
operating guidelines is then used to construct an algorithm to decide whether N ′

substitutes N under X-conformance; see also Figure 1.4. Currently we do not
have a solution for extending the results from X2(Y ) to X2 and for constructing
a preorder on finite representations based on state-space fragments (i. e., X3-
operating guidelines, X4-operating guidelines, and X4(Y )-operating guidelines).

In the remainder of this chapter, we present a decision algorithm for X1-
conformance (Section 5.1) and for X2(Y )-conformance (Section 5.2). The results
of Section 5.1 have been published in [ALM+09, SMB09]. Section 5.2 is based
on [SW09a].

5.1. Deciding conformance in case of deadlock
freedom

In this section, we present an algorithm to decide X1-conformance of any two
open nets N and N ′. This algorithm enables us to prove that in our example
contract in Figure 2.7 the private view Credit′ of the credit service can substitute
its public view Credit without violating deadlock freedom in the overall contract.
Based on a prototype implementation of this decision algorithm in the service
analysis tool Fiona, we experiment with a number of real-life service models.
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Figure 5.1.: OGX1(Credit′) refines OGX1(Credit).

5.1.1. Refinement of X1-operation guidelines

To avoid a comparison of the in general infinite sets StratX1(N) and StratX1(N ′)
of X1-strategies, we use the finite representations of these sets, the X1-operating
guidelines OGX1(N) and OGX1(N ′), for deciding X1-conformance. To this end,
we define a refinement relation � on X1-operating guidelines. Informally,
OGX1(N ′) refines OGX1(N) if and only if there is a simulation relation of the
states of OGX1(N) by the states of OGX1(N ′) such that the annotations in
OGX1(N) imply the annotations in OGX1(N ′).

Definition 5.1.1 (refinement of X1-operating guidelines).
Let N and N ′ be any interface equivalent open nets, and let OGX1(N) =
(Q,MC I ,MCO, δ, q0, φ) and OGX1(N ′) = (Q′,MC I ,MCO, δ′, q′0, φ

′) be the cor-
responding X1-operating guidelines. OGX1(N ′) refines OGX1(N), denoted by
OGX1(N ′) � OGX1(N), iff

1. there is a minimal simulation relation % ⊆ Q×Q′; and

2. for all (q, q′) ∈ %, the formula φ(q)⇒ φ′(q′) is a tautology. y

Figure 5.1 shows the public and the private view of the credit service and
their corresponding X1-operating guidelines. The only difference between the
two X1-operating guidelines is the annotation in states q1 and s1. A possible
X1-strategy of Credit must be aware that after having sent message fwd, Credit
may not be interested, in which case no information will be sent to the customer.
Nevertheless, the customer cannot be sure, and hence he must be able to receive
the information of Credit. In other words, X1-strategy of Credit must be in a
final state and, in addition, it must be able to receive message inf. In contrast,
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the public view Credit′ will always send information to the customer. Hence, a
customer of Credit′ must only be able to receive message inf.

It is easy to see that the automaton underlying the private view’s X1-operating
guideline OGX1(Credit′) in Figure 5.1(d) simulates the automaton underlying the
public view’s X1-operating guideline OGX1(Credit) in Figure 5.1(c). Additionally,
the implication of an annotation of a state in OGX1(Credit) and the annotation
of the corresponding state in OGX1(Credit′) is a tautology. For instance, for
φ(q1) = (?inf ∧ final) ∨ τ and φ′(s1) = ?inf ∨ τ , the formula φ(q1) ⇒ φ′(s1) is a
tautology. Therefore, we conclude that OGX1(Credit′) � OGX1(Credit).

As a counterexample, OGX1(Credit) does not refine OGX1(Credit′), because
φ′(s1) = ?inf∨ τ does not imply φ(q1) = (?inf∧ final)∨ τ : Being in related states
(s1, q1) ∈ %, for an X1-strategy of Credit′ it is sufficient to receive message inf,
whereas an X1-strategy of Credit must additionally be in a final state.

Intuitively, the first condition in Definition 5.1.1 ensures that every open net
that is simulated by the most permissive X1-strategy MPX1(N) of N is simulated
by the most permissive X1-strategy MPX1(N ′) of N ′. The second condition
in Definition 5.1.1 guarantees that whenever an open net deadlocks with N ′, it
deadlocks with N as well. With the help of the next theorem, we prove that N ′

X1-conforms to N if and only if OGX1(N ′) refines OGX1(N). As a consequence,
refinement of X1-operating guidelines can be used to decide X1-conformance of N
and N ′. This result has been first introduced in [ALM+09] for acyclic open nets
and has been extended to cyclic open nets in [SMB09]. In [Mas09], this theorem
has been proved for arbitrary annotated automata, which are a generalization of
X1-operating guidelines.

Theorem 5.1.2 (checking X1-conformance).
For any two open nets N and N ′ with X1-operating guidelines OGX1(N) and
OGX1(N ′) holds:

N ′ vconf,X1 N iff OGX1(N ′) � OGX1(N) . y

Proof.
Let OGX1(N) = (Q,MC I ,MCO, δ, q0, φ) and OGX1(N ′) = (Q′,MC I ,MCO, δ′,
q′0, φ

′) be the X1-operating guidelines of open nets N and N ′, respectively.
(⇒): Let N ′ vconf,X1 N . We have to prove that OGX1(N ′) � OGX1(N); that

is, (1) there is a minimal simulation relation %OG(N),OG(N ′) ⊆ Q×Q′ such that,
(2) for all (q, q′) ∈ %OG(N),OG(N ′), the formula φ(q)⇒ φ′(q′) is a tautology.

(1): Consider the service automaton A = (Q,MC I ,MCO, δ, q0,Ω) with Ω =
{q | final occurs in φ(q)}, which is by Definition 4.1.10 the most permissive X1-
strategy of N , and PN (A) is by Lemma 4.1.6 an X1-strategy of N . Thus, by
N ′ vconf,X1 N , PN (A) is an X1-strategy of N ′. Being an X1-strategy of N ′,
there is a minimal simulation relation %A,OG(N ′) ⊆ Q × Q′ of the states of A
by the states of OGX1(N ′), and hence there is a minimal simulation relation
%OG(N),OG(N ′) ⊆ Q×Q′ of the states of OGX1(N) by the states of OGX1(N ′).
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(2): We show that, for all (q1, q
′
1) ∈ %OG(N),OG(N ′), φ(q1)⇒ φ′(q′1) is a tautol-

ogy. Let q1 ∈ Q, and let β be an arbitrary assignment to literals occurring in φ(q1)
with β(q1) |= φ(q1). Remove from A all transitions (q1, x, q2) where β(q1)(x) is
false. By Definition 4.1.4 (matching), the corresponding open net of the resulting
service automaton is still an X1-strategy of N and thus by assumption an X1-
strategy of N ′. Using Definition 4.1.4 again, we can see that β satisfies φ′(q′1) as
well. Thus, φ(q1)⇒ φ′(q′1) is a tautology, for all (q1, q

′
1) ∈ %OG(N),OG(N ′).

Hence, we conclude OGX1(N ′) � OGX1(N).

(⇐): Let OGX1(N ′) � OGX1(N), and let S ∈ StratX1(N) be an arbitrary
X1-strategy of N . What remains to be proved is that S is an X1-strategy of N ′.

Because of S ∈ StratX1(N) there is by Definition 4.1.4 (matching) a minimal
simulation relation %SA(S),OG(N) ⊆ QSA(S)×Q of the states of SA(S) by the states
of OGX1(N), and because of OGX1(N ′) � OGX1(N) there is by Definition 5.1.1
a minimal simulation relation %OG(N),OG(N ′) ⊆ Q×Q′ of the states of OGX1(N)
by the states of OGX1(N ′). Define a relation %SA(S),OG(N ′) ⊆ QSA(S)×Q′ of the
states of SA(S) by the states of OGX1(N ′) such that (qS , q′) ∈ %SA(S),OG(N ′) if
and only if there is a state q of OGX1(N) such that (qS , q) ∈ %SA(S),OG(N) and
(q, q′) ∈ %OG(N),OG(N ′). We show that (1) %SA(S),OG(N ′) is a minimal simulation
relation, and (2) for each (qS , q′) ∈ %SA(S),OG(N ′): βSA(S)(qS) |= φ′(q′).

(1): Clearly, the initial states of SA(S) and OGX1(N ′) are related—that is,
(q0S , q

′
0) ∈ %SA(S),OG(N ′). As %SA(S),OG(N) and %OG(N),OG(N ′) are simulation

relations, and simulation is transitive, we conclude that %SA(S),OG(N ′) is a simu-
lation relation as well. Because of OGX1(N) and OGX1(N ′) being deterministic
(by Lemma 4.1.12), %SA(S),OG(N ′) is a minimal simulation relation.

(2): We show, for all (qS , q′) ∈ %SA(S),OG(N ′), qS satisfies φ′(q′). As S matches
with OGX1(N), for all states qS with (qS , q) ∈ %SA(S),OG(N), qS satisfies φ(q) (for
the assignment described in Definition 4.1.4). By OGX1(N ′) � OGX1(N), we
know φ(q) ⇒ φ′(q′), for all (q, q′) ∈ %OG(N),OG(N ′) (cf. Definition 5.1.1). Hence,
qS satisfies φ(q′), for all (qS , q′) ∈ %SA(S),OG(N ′).

Thus, S is an X1-strategy of N ′, and we conclude N ′ vconf,X1 N . �

Note that in the proof we make use of the assumption that X1-operating guide-
lines are in normal form: For X1-operating guidelines being not in normal form,
the corresponding open net of service automaton A is not necessarily an X1-
strategy (see Lemma 4.1.6).

Based on the preceding considerations, we conclude for our example that the
private view Credit′ of the credit service X1-conforms to its pubic view Credit.
Hence, Credit′ is a valid implementation of Credit, and hence Credit′ can substitute
Credit without affecting deadlock freedom of the overall contract in Figure 2.7. As
for acyclic and bounded open nets deadlock freedom and weak termination coin-
cide (cf. Lemma 2.6.3), we conclude that Credit′ X3-conforms to Credit. However,
Credit does not X1-conform to Credit′. In other words, the private view introduces
new X1-strategies. An X1-strategy of Credit′ can be sure that it will eventually
receive an information message, which was not the case for the public view Credit.
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The value of Theorem 5.1.2 is that X1-conformance can be checked indepen-
dently of the X1-strategies of N , and only open nets N and N ′ have to be known
to decide X1-conformance.

Based on the equivalence result of Theorem 5.1.2, we conclude that the preorder
property and the precongruence result of X1-conformance, shown by Lemma 3.1.2
and Lemma 3.1.3, respectively, also hold for the refinement relation on X1-
operating guidelines.

Corollary 5.1.3 (properties of �).
Relation � on X1-operating guidelines is a preorder and a precongruence with
respect to ⊕. y

This corollary shows that with the refinement relation on X1-operating guide-
lines we have found an internal preorder for the external preorderX1-conformance.
That means, the X1-conformance preorder relates open nets N and N ′ according
to their X1-strategies, whereas the preorder � on X1-operating guidelines is based
on the respective internal characteristics of OGX1(N) and OGX1(N ′).

In the next step, we extend the refinement relation on X1-operating guidelines
of Definition 5.1.1 to an equivalence relation. So if an X1-operating guideline
OGX1(N ′) refines an X1-operating guideline OGX1(N) and vice versa, we say
that both X1-operating guidelines are equivalent.

Definition 5.1.4 (equivalence of X1-operating guidelines).
Any two X1-operating guidelines OGX1(N) and OGX1(N ′) are equivalent iff
OGX1(N) � OGX1(N ′) and OGX1(N ′) � OGX1(N). y

The two X1-operating guidelines in Figure 5.1 are not equivalent, because
OGX1(Credit) does not refine OGX1(Credit′).

To check X1-conformance equivalence of two open nets, we can check equiva-
lence of their respective X1-operating guidelines. As X1-conformance equivalence
means X1-conformance in both directions, we apply Theorem 5.1.2 in both direc-
tions.

Lemma 5.1.5 (checking X1-conformance equivalence).
Any two open nets N and N ′ are X1-conformance equivalent iff their correspond-
ing X1-operating guidelines are equivalent. y

Using that X-conformance equivalence is an equivalence relation (see Lem-
ma 3.1.6) and Lemma 5.1.5, we immediately conclude that the equivalence of
X1-operating guidelines is indeed an equivalence relation.

Corollary 5.1.6 (equivalence relation for X1-operating guidelines).
Equivalence on X1-operating guidelines is an equivalence relation. y
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5. Deciding Substitutability Under Conformance

5.1.2. Implementation of the X1-conformance check in Fiona

For an implementation of the criteria in Theorem 5.1.2, finding the relation % is
the crucial task. As both OGX1(N) and OGX1(N ′) are deterministic, this task
actually amounts to a depth-first search through OGX1(N), which is mimicked
in OGX1(N ′). The time and space required for finding % is thus linear in the
product of the number of states and edges of OGX1(N) and OGX1(N ′). This
size, in turn, is equal to the product of the number of states and edges of the
most permissive X1-strategies of N and N ′, respectively.

The X1-conformance check based on Theorem 5.1.2 has been implemented in
the service analysis tool Fiona [MW08]. Based on this implementation and the
example services we used in the experiments in Chapter 4, we present some ex-
perimental results.

For this experiment, we computed for each open net N its X1-operating guide-
line OGR

X1
(N) (remember, Fiona implements responsiveness instead of deadlock

freedom). To get a meaningful X1-operating guideline that can be checked for
refinement with OGR

X1
(N), we computed the minimal X1-operating guideline

(OGR
X1

(N))min of N . The minimal X1-operating guideline of N [Mas09] is the
smallest annotated automaton that represents the X1-strategies of N . Hence, by
construction, OGR

X1
(N) and (OGR

X1
(N))min are equivalent.

Table 5.1 provides information about the size of the X1-operating guideline
of N (number of states and transitions), the size of the minimal X1-operating
guideline of N , and the time for checking refinement of the two X1-operating
guidelines. The experiment illustrates that the refinement check is very efficient.
In all examples, it took at most 7 seconds.

5.2. Deciding conformance in case of deadlock
freedom and cover

In this section, we present an algorithm to decide whether the set of {deadlock
freedom, cover(Y )}-strategies of an open net N is contained in the set of
{deadlock freedom, cover(Z)}-strategies of an open net N ′. In Chapter 4, we
denoted these sets of open-net properties by X2(Y ) and X2(Z), respectively. In
other words, we decide whether N ′ (X2(Y ), X2(Z))-conforms to N . As in the
previous section, we develop an internal preorder on the finite representations of
X2(Y )-strategies of N and of X2(Z)-strategies of N ′. We will prove that this in-
ternal preorder coincides with the external (X2(Y ), X2(Z))-conformance preorder
of Definition 3.1.1.

In the rest of this section, we develop three conditions—similar to those of
Theorem 5.1.2—that enable us to decide whether N ′ (X2(Y ), X2(Z))-conforms to
N . To this end, we start in Section 5.2.1 with taking care of the structure and the
local annotations of the X2(Y )-operating guideline of N and the X2(Z)-operating
guideline of N ′. Afterwards, in Section 5.2.2, we concern with checking the global
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5.2. Deciding conformance in case of deadlock freedom and cover

Table 5.1.: Deciding X1-conformance with Fiona. All experiments were obtained
on an UltraSPARC III processor with 900MHz and 4 GB RAM running
Solaris 10.

MPR
X1

(N) (MPR
X1

(N))min time
Service |Q| |δ| |Q| |δ| sec
Loan Approval 8 30 8 30 0
Purchase Order 169 1,182 169 1,182 0
Olive Oil Ordering 17 67 13 51 0
Travel Service 1 57 300 57 300 0
Travel Service 2 289 2,252 289 2,252 1
Online Shop 1 13 50 10 41 0
Online Shop 2 8 35 7 32 0
Beverage Machine 12 54 12 54 0
Philosophers #3 68 243 27 108 0
Philosophers #5 1,433 8,390 243 1,620 0
SMPT Protocol 1,217 8,408 381 2,822 1
Registration 8 30 7 27 0
Process 1 897 13,548 641 10,012 1
Process 2 1,608 16,445 1,608 16,445 1
Process 3 237 1,437 173 1,133 0
Process 4 6,821 103,165 6,821 103,165 7

constraints. We explain the algorithmic solution and establish its correctness in
Section 5.2.3. The cover property violates the symmetry of X-strategies. Hence,
the algorithm for deciding (X2(Y ), X2(Z))-conformance cannot be used in the
setting of contracts (see also our comment below Theorem 3.1.4). So far we do
not have a solution to extend the result to X2-conformance. This will be discussed
in Section 5.2.4.

Let, for the rest of this section, N and N ′ be interface equivalent open nets.
Let Y ⊆ PN ∪ TN and Z ⊆ PN ′ ∪ TN ′ be the respective sets of nodes of N and
N ′ to be covered. Let OGX2(Y )(N) = (OGX1(N), χ) be the X2(Y )-operating
guideline of N with OGX1(N) = (Q,MC I ,MCO, δ, q0, φ) and global constraint
χ. Let OGX2(Z)(N ′) = (OGX1(N ′), χ′) be the X2(Z)-operating guideline of N ′

with OGX1(N ′) = (Q′,MC I ,MCO, δ′, q′0, φ
′) and global constraint χ′. In this

setting, (X2(Y ), X2(Z))-conformance of N and N ′ should guarantee that every
X2(Y )-strategy of N is an X2(Z)-strategy of N ′ as well.

5.2.1. Structure and local annotations

Subsequently, we show that the same conditions as in Theorem 5.1.2—minimal
simulation relation and implication of the local annotations—actually hold in
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5. Deciding Substitutability Under Conformance

presence of global constraints; that is, the global constraints cannot compensate
incompatible local annoations.

The next lemma proves if N ′ (X2(Y ), X2(Z))-conforms to N , then there exists
a minimal simulation relation of OGX2(Y )(N) by OGX2(Z)(N ′). The intuition
is that the most permissive X1-strategy of N , which defines the structure of
OGX2(Y )(N), is also an X2(Z)-strategy of N ′.

Lemma 5.2.1 (structure).
If N ′ vconf,(X2(Y ),X2(Z)) N , then there is a minimal simulation relation of
OGX2(Y )(N) by OGX2(Z)(N ′). y

Proof.
Let N ′ vconf,(X2(Y ),X2(Z)) N , let MPX1(N) be the most permissive X1-strategy
of N . The structure of OGX2(Y )(N) is determined by MPX1(N), which clearly
satisfies the global constraint χ as well. That is, PN (MPX1(N)) ∈ StratX1(N)
and therefore PN (MPX1(N)) ∈ StratX1(N ′). By Definition 4.2.3 (matching),
this implies the claimed minimal simulation relation. �

Now we show that (X2(Y ), X2(Z))-conformance of N by N ′ also implies that
the local annotation in OGX2(Y )(N) imply the local annotations in OGX2(Z)(N ′).

Lemma 5.2.2 (local annotations).
If N ′ vconf,(X2(Y ),X2(Z)) N , then, for every (q, q′) ∈ %OG(N),OG(N ′), the formula
φ(q)⇒ φ′(q′) is a tautology. y

Proof.
Let N ′ vconf,(X2(Y ),X2(Z)) N . We construct from OGX1(N) the following modifi-
cation MP ′X1

(N) to the most permissive X1-strategy MPX1(N) of N . For each
state q of MPX1(N), remove all transitions leaving q. For each satisfying as-
signment β(q) to the propositions of φ(q), insert a new state qβ and a τ -labeled
transition from q to qβ . If β(q)(final) = true, make qβ a final state. Furthermore,
for all transitions (q, a, q∗) in MPX1(N) with β(q)(a) = true, add an a-labeled
transition from qβ to the former a-successor q∗ of q. In addition, if β(q)(τ) = true,
add an τ -labeled transition from qβ to q. The construction is illustrated in Fig-
ure 5.2.

The corresponding open net of the obtained service automaton MP ′X1
(N) is

by construction an X2(Y )-strategy of N , because every inserted state qβ has
successors according to a satisfying assignment of φ(q). The global constraint χ
is satisfied as well, because no state is removed from MPX1(N), and no state
becomes unreachable.

As by assumption N ′ (X2(Y ), X2(Z))-conforms to N , the corresponding open
net of MP ′X1

(N) has to be an X2(Z)-strategy of N ′ as well. Let the minimal sim-
ulation relation of MP ′X1

(N) by OGX2(Z)(N ′) be denoted by %MP ′,OG(N ′), and let
%OG(N),OG(N ′) be the minimal simulation relation of OGX2(Y )(N) (i. e., the un-
derlying automaton of MPX1(N)) by OGX2(Z)(N ′). Existence of %OG(N),OG(N ′)
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Figure 5.2.: A modification MP ′X1
(N) to MPX1(N). Consider state q0 of

OGX1(N). For each satisfying assignment for φ(q0), we add a succes-
sor state of q0. State q0a,τ denotes a state where β(q0)(a) = true and
β(q0)(τ) = true. Presence of transition (q0, !a, q1) in OGX1(N) yields
a transition (q0a,τ , !a, q1) in MP ′X1

(N). In addition, a τ -transition
from q0a,τ to q0 is added.

is justified by Lemma 5.2.1. For all qβ with q
τ−→ qβ in MP ′X1

(N) and (q, q′) ∈
%OG(N),OG(N ′), we have (q, q′) ∈ %MP ′,OG(N ′) and (qβ , q′) ∈ %MP ′,OG(N ′). As
the corresponding open net of MP ′X1

(N) is an X2(Z)-strategy of N ′, the edges
leaving qβ , which make assignment β(qβ), need to satisfy φ(q′). Consequently,
the claimed implication holds. �

With Lemma 5.2.1 and Lemma 5.2.2, we justified if every X2(Y )-strategy of N
is an X2(Z)-strategy of N ′, then OGX2(Y )(N) and OGX2(Z)(N ′) satisfy the two
conditions of Theorem 5.1.2. In the next subsection, we concern with the global
constraint.

5.2.2. Global constraint

In this section, we define the third condition that must hold such that every
X2(Y )-strategy of N is an X2(Z)-strategy of N ′ as well. The remaining third
condition specifies when an X2(Y )-strategy of N satisfies the global constraint χ′

of OGX2(Z)(N ′). Again, as the set of X2(Y )-strategies of N is infinite, we are
interested in a finite criterion.

Throughout this section, we assume that there is a minimal simulation rela-
tion of OGX2(Y )(N) by OGX2(Z)(N ′) and local annotations imply each other
as stated in Lemmata 5.2.1 and 5.2.2. Without this assumption, N ′ would not
(X2(Y ), X2(Z))-conform to N , and there would be no reason for considering the
global constraints.
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(c) lcm(OG(N),OG(N ′))

Figure 5.3.: Motivation for lcm: Although every subautomaton of OGX2(Y )(N)
that satisfies χ (i. e., only the subautomaton having the same struc-
ture as OGX2(Y )(N)) can be transformed into an open net that
matches with OGX2(Z)(N ′), the bold subautomaton in (c) witnesses
that OGX2(Z)(N ′) does not refine OGX2(Y )(N). For the sake of sim-
plicity, we omit empty states, τ -labeled selfloops, and τ -literals in the
annotations.

A finite generator set for checking the global constraint

We aim at constructing a finite automaton B that satisfies the following condition:
If there is an X2(Y )-strategy S of N that violates χ′ of OGX2(Z)(N ′), then there
is also a subautomaton of B—that is, a subgraph of B that contains the initial
state—which can be transformed into a service automaton A by making some
states final. The corresponding open net PN (A) of A is an X2(Y )-strategy of N
and violates χ′, too. As B is finite; that is, it has only finitely many states and
transitions, it has only finitely many subautomata. Hence, we reduce an infinite
check to a finite one.

The apparent candidate for the desired automaton B would be the most per-
missive X1-strategy MPX1(N) of N . However, as Figure 5.3 explains, this does
not work. In essence, the problem with MPX1(N) is that there may be several
states q′ of OGX2(Z)(N ′) related to a single state q of MPX1(N). This problem
can be avoided by constructing B differently.

The idea is to use the simulation relation %OG(N),OG(N ′) of OGX2(Y )(N) by
OGX2(Z)(N ′) as the set of states. It then turns out that simulations of
OGX2(Y )(N) by B as well as of OGX2(Z)(N ′) by B are very regularly structured.
We call the constructed automaton B the least common multiple and denote it
by lcm. This name is inspired by the observation that if OGX2(Y )(N) is a simple
loop of length m and OGX2(Z)(N ′) a simple loop of length n, then B would have
exactly lcm(m,n) states.
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Definition 5.2.3 (least common multiple).
Let A and A′ be deterministic automata with alphabets MC I

A = MC I
A′ and

MCO
A = MCO

A′ . Let there be a minimal simulation relation % of A by A′. The least
common multiple of A and A′, lcm(A,A′) = (Qlcm ,MC I

lcm ,MCO
lcm , δlcm , q0lcm),

is the automaton defined by

• Qlcm = {(q, q′) | (q, q′) ∈ %};
• MC I

lcm = MC I
A ∧MCO

lcm = MCO
A;

• δlcm = {((q1, q
′
1), x, (q2, q

′
2)) | ∃x : (q1, q

′
1), (q2, q

′
2) ∈ % ∧ (q1, x, q2) ∈ δA ∧

(q′1, x, q
′
2) ∈ δA′}; and

• q0lcm = (q0, q
′
0). y

The least common multiple lcm(A,A′) is an automaton whose states are given
by the minimal simulation relation of A by A′. So by construction, every transition
of lcm(A,A′) can be mimicked by A and by A′. Automaton lcm(A,A′) is further
interface equivalent to A and A′.

The least common multiple is an automaton rather than a service automaton,
because the underlying structure of an X2(Y )-operating guideline is an automa-
ton. For the same reason, the restriction to deterministic automata does not harm.
As by Lemma 5.2.1 OGX2(Z)(N ′) simulates OGX2(Y )(N),
lcm(OGX2(Y )(N),OGX2(Z)(N ′)) is the synchronous product [HU79] of the un-
derlying automata.

As an example, the least common multiple of OGX2(Y )(N) and OGX2(Z)(N ′)
in Figures 5.3(a) and 5.3(b), respectively, is illustrated in Figure 5.3(c).

The least common multiple lcm(A,A′) has some important properties. First,
for all states (q1, q

′
1), (q2, q

′
2) with (q1, q

′
1) x−→ (q2, q

′
2) holds that states q2 and q′2

are uniquely determined by states q1, q′1 and transition x, because A and A′ are
by definition deterministic. Second, q1

x−→ q2 implies q′1
x−→ q′2, because there is

a minimal simulation relation of A by A′. Third, there are three simulation rela-
tions: A simulates lcm(A,A′), denoted by %lcm(A,A′),A; A′ simulates lcm(A,A′),
denoted by %lcm(A,A′),A′ ; lcm(A,A′) simulates A, denoted by %A,lcm(A,A′). The
next lemma proves that the three simulation relations are, in fact, minimal sim-
ulation relations.
Lemma 5.2.4 (minimal simulation relation of lcm).
Let A and A′ be deterministic automata, and let %lcm(A,A′) be the minimal
simulation relation of A by A′ that is used to construct lcm(A,A′). Relations
%lcm(A,A′),A = {((q, q′), q) | (q, q′) ∈ Qlcm(A,A′)}, %lcm(A,A′),A′ = {((q, q′), q′) |
(q, q′) ∈ Qlcm(A,A′)}, and %A,lcm(A,A′) = {(q, (q, q′)) | (q, q′) ∈ Qlcm(A,A′)} are
minimal simulation relations. y

Proof.
Let (q0, q

′
0) ∈ %lcm(A,A′). Let (q0lcm(A,A′), q0) = ((q0, q

′
0), q0) ∈ %lcm(A,A′),A,

(q0, q0lcm(A,A′)) = (q0, (q0, q
′
0)) ∈ %A,lcm(A,A′), and (q0lcm(A,A′), q

′
0) =

((q0, q
′
0), q′0) ∈ %lcm(A,A′),A′ be the respective initial elements.
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Let (q1, q
′
1) x−→ (q2, q

′
2) be a transition in lcm(A,A′). By construction of

lcm(A,A′), we have q1
x−→ q2 and q′1

x−→ q′2; so %lcm(A,A′),A and %lcm(A,A′),A′

are indeed simulation relations. Let the other way around q1
x−→ q2 be a transi-

tion in A and (q1, (q1, q
′
1)) ∈ %A,lcm(A,A′). As there is a simulation relation of A

by A′, there is a state q′2 with q′1
x−→ q′2 in A′, which is uniquely determined, be-

cause A′ is deterministic. Consequently, transition (q1, q
′
1) x−→ (q2, q

′
2) is present

in lcm(A,A′) and thus (q2, (q2, q
′
2)) ∈ %A,lcm(A,A′). So there is also a simula-

tion relation of lcm(A,A′) by A. We continue by proving that these simulation
relations are minimal.

Presence of ((q1, q
′
1), q1) indeed implies presence of ((q2, q

′
2), q2) in the simulation

relation of lcm(A,A′) by A, because A is deterministic; so there is no other
choice to match x in A. Analogously, presence of ((q2, q

′
2), q′2) and (q2, (q2, q

′
2))

are required in the respective simulation relations. Consequently, all considered
simulation relations are minimal. �

As a consequence of Lemma 5.2.4, the minimal simulation relation of lcm(A,A′)
by A is a bisimulation relation, because lcm(A,A′) simulates A and vice versa,
and A and A′ are deterministic.

Corollary 5.2.5 (bisimulation relation between lcm(A, A′) and A).
Let lcm(A,A′) be the least common multiple of any two deterministic automata
A and A′. There is a bisimulation relation between lcm(A,A′) and A. y

Consider again Figure 5.3. OGX2(Y )(N) in Figures 5.3(a) and OGX2(Z)(N ′) in
Figure 5.3(b) are simulated by the least common multiple in Figure 5.3(c), and
there is a bisimulation between the automata in Figures 5.3(a) and 5.3(c).

Next, we consider the least common multiple lcm(OGX2(Y )(N),OGX2(Z)(N ′))
of the two X2(Y )-operating guidelines of open nets N and N ′. The structure
of the least common multiple ensures that it simulates every service automaton
SA(S), for all X2(Y )-strategies S of N . This is proved by the next lemma.

Lemma 5.2.6 (lcm simulates X2-strategies of N).
For any S ∈ StratX2(Y )(N), there is a minimal simulation relation of SA(S) by
lcm(OGX2(Y )(N),OGX2(Z)(N ′)). y

Proof.
Let S ∈ StratX2(Y )(N) and lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)). There
is by Definition 4.2.3 (matching) a minimal simulation relation of SA(S) by
OGX2(Y )(N). By Lemma 5.2.4, there is a minimal simulation relation of
OGX2(Y )(N) by lcm. As simulation is transitive and both, OGX2(Y )(N) and
lcm are deterministic, there is a minimal simulation of SA(S) by lcm. �

With lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)) we have constructed a finite au-
tomaton that simulates every X2(Y )-strategy of N . Now we can show the main
claim of this section. Assume that N ′ does not (X2(Y ), X2(Z))-conform to N .
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Then, there is an X2(Y )-strategy S of N , which is not an X2(Z)-strategy of N ′.
Using the minimal simulation relation of SA(S) by lcm, we construct a service
automaton, where the underlying automaton is a subautomaton of lcm. The cor-
responding open net of this service automaton is an X2(Y )-strategy of N as well,
and again no X2(Z)-strategy of N ′. We call the constructed service automaton
the image Im(SA(S)) of SA(S) in lcm.

Definition 5.2.7 (image).
Let S ∈ StratX2(Y )(N), and let lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)). The
image Im(A) = (QIm ,MC I

Im ,MCO
Im , δIm , q0Im ,ΩIm) of A = SA(S) is the service

automaton defined by

• QIm = {(q, q′) | ∃qA : (qA, (q, q′)) ∈ %A,lcm};

• MC I
Im = MC I

A ∧MCO
Im = MCO

A;

• δIm = δlcm ∩ (QIm ×MC I
Im ∪MCO

Im ∪ {τ} ×QIm);

• q0Im = q0lcm ; and

• ΩIm = {(q, q′) ∈ QIm | ∃qA ∈ ΩA : (qA, (q, q′)) ∈ %A,lcm}. y

The image Im(SA(S)) of SA(S) restricts lcm(OGX2(Y )(N),OGX2(Z)(N ′)) to
those states that are contained in the minimal simulation relation with SA(S).
That way, infinitely many open nets may have the same image.

As an example, Figure 5.4(a) depicts a service automaton SA(S) of an open net
S (not shown) that matches with OGX2(Y )(N) in Figure 5.3(a). The automaton
lcm in Figure 5.3(c) simulates SA(S). The automaton of the minimal simulation
relation of SA(S) by lcm is depicted in Figure 5.4(b). The image Im(SA(S))
can be derived from Figure 5.4(b). For each related pair (qS , qlcm), remove the
state qS of SA(S) and fold up the resulting service automaton. As the minimal
simulation relation in the example covers every state and every transition of lcm,
the resulting image of SA(S) has the structure of the least common multiple in
Figure 5.3(c).

To apply the idea of using subautomata Im(SA(S)) of
lcm(OGX2(Y )(N),OGX2(Z)(N ′)) for our approach, we have to prove that
PN (Im(SA(S))) is an X2-strategy of N . For this proof, we make use of an-
other fact. If S is an X2(Y )-strategy of N , then SA(S) and Im(SA(S)) touch the
same states of OGX2(Y )(N) when being simulated by OGX2(Z)(N). This fact is
proved by the next lemma.

Lemma 5.2.8 (A and Im(A) touch the same states in OGX2(Z)(N)).
Let S ∈ StratX2(Z)(N) and A = SA(S). If (qA, (q, q′)) ∈ %A,Im(A), then (qA, q) ∈
%A,OG(N). y

Proof.
For an open net S ∈ StratX2(Y )(N), let A = SA(S), and let Im(A) be the image
of A in lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)). Let the minimal simulation
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(b) Minimal simulation relation of SA(S) by
lcm(OGX2(Y )(N),OGX2(Z)(N

′)).

Figure 5.4.: Example illustrating the idea of an image.

relation of A by OGX2(Y )(N) and of A by Im(A) be denoted by %A,OG(N) and
%A,Im(A), respectively.

The lemma is obviously true for the initial states. Let (qA, (q1, q
′
1)) ∈ %A,Im(A),

(qA, q) ∈ %A,OG(N), and qA
x−→ q′A in A. By construction of Im(A), there is a

minimal simulation relation of A by Im(A). Hence, there exists a state (q2, q
′
2)

such that (q1, q
′
1) x−→ (q2, q

′
2) is in Im(A). This implies (q′A, (q2, q

′
2)) ∈ %A,Im(A).

There is a minimal simulation relation of A by OGX2(Y )(N), because S is by
assumption an X2(Y )-strategy of N . So there is a state q3 in OGX2(Y )(N), with
q1

x−→ q3. This implies (q′A, q3) ∈ %A,OG(N). By construction of lcm, we have
q2 = q3; so the lemma holds. �

With the help of Lemma 5.2.8, we can prove that if S is an X2(Y )-strategy of
N , then the corresponding open net PN (Im(SA(S))) of Im(SA(S)) is an X2(Y )-
strategy of N , too.

Lemma 5.2.9 (PN (Im(SA(S))) is X2(Y )-strategy of N).
For any X2(Y )-strategy S of N holds: PN (Im(SA(S))) is an X2(Y )-strategy of
N . y

Proof.
Let S ∈ StratX2(Y )(N), let lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)), and let A =
SA(S). Let Im(A) be as defined. According to Definition 4.2.3 (matching) we
have to show: (1) there is a minimal simulation relation of Im(A) by OGX2(Y )(N),
(2) Im(A) satisfies the local annotations of OGX2(Y )(N), and (3) Im(A) satisfies
the global constraint χ of OGX2(Y )(N).

(1): The underlying automaton of Im(A) is by Definition 5.2.7 a subautomaton
of lcm. As lcm and OGX2(Y )(N) are by Corollary 5.2.5 bisimilar, a simulation
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relation of Im(A) by OGX2(Y )(N) clearly exists, and the minimal simulation
relation is the restriction of the simulation relation to the states QIm(A) of Im(A).

(2): Now we show that Im(A) satisfies the local annotations of OGX2(Y )(N).
Let ((q, q′), q) ∈ %Im(A),OG(N) = %lcm,OG(N). By construction of Im(A), there
is a state qA of A where (qA, (q, q′)) ∈ %A,Im(A) = %A,lcm . By Lemma 5.2.8,
(qA, q) ∈ %A,OG(N). As S is an X2(Y )-strategy of N , the edge labels leaving
qA, with the “final” status of qA, form a satisfying assignment βqA

(q) for φ(q).
As %A,Im(A) is a minimal simulation relation (by Lemma 5.2.6), the edge labels
leaving (q, q′) include the ones that leave qA. If the final proposition is true in
state qA, then it is by Definition 5.2.7 true in (q, q′). So the assignment βqIm(A)(q),
used for checking φ(q) in (q, q′), assigns true to at least those propositions where
the assignment βqA

(q) used in qA is true. As φ(q) is monotonous, φ(q) is true in
(q, q′).

(3): By Lemma 5.2.8, %A,OG(N) and %Im(A),OG(N) touch the same states of
OGX2(Y )(N). Consequently, the assignment to χ is the same for both, A and
Im(A). As A is an X2(Y )-strategy of N , χ evaluates to true.

Hence, PN (Im(A)) ∈ StratX2(Y )(N), and the lemma holds. �

Lemma 5.2.9 states that, for each X2(Y )-strategy S of N , there is a service
automaton Im(SA(S)) whose underlying automaton is a subautomaton in lcm =
lcm(OGX2(Y )(N),OGX2(Z)(N ′)), and the corresponding open net of Im(SA(S))
is an X2(Y )-strategy of N as well. The other way around, for each subautomaton
of lcm that can be extended to a service automaton A (by making some states
final) such that PN (A) is an X2(Y )-strategy of N , there is trivially an X2(Y )-
strategy S of N with Im(SA(S)) = A. Consequently, the least common multiple
and its subautomata serve as a generator set for X2(Y )-strategies of N .

Recall that the image Im(SA(S)) of SA(S) in Figure 5.4(a) has the structure
of the least common multiple in Figure 5.3(c). Hence, its corresponding open net
matches with OGX2(Y )(N) in Figure 5.3(a); that is, there is a minimal simula-
tion relation, and Im(SA(S)) satisfies the local annotations as well as the global
constraint χ of OGX2(Y )(N).

Finally, we prove that PN (Im(SA(S))) is not an X2(Z)-strategy of N ′ if S is
none. Remember that we assume throughout this section that there is a mini-
mal simulation relation of OGX2(Y )(N) by OGX2(Z)(N ′) and an implication of
the local annotations of OGX2(Y )(N) and of OGX2(Z)(N ′). Thus, OGX2(Z)(N ′)
simulates SA(S), and SA(S) satisfies the local annotations of OGX2(Z)(N ′). It is
consequently sufficient to show that if SA(S) violates the global constraint χ′ of
OGX2(Z)(N ′), so does Im(SA(S)). Using monotonicity of χ′, the following lemma
is sufficient for establishing this claim. It proves that SA(S) touches at least as
many states in OGX2(Z)(N ′) as Im(SA(S)). Thus, if Im(SA(S)) satisfies χ′, so
does SA(S).

Lemma 5.2.10 (A touches at least as many states as Im(A)).
Let S be an X2(Y )-strategy of N , and let A = SA(S). For every state q′ of
OGX2(Z)(N ′) holds: If there is a state qIm(A) of Im(A) such that (qIm(A), q

′) ∈
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%Im(A),OG(N ′), then there is a state qA such that (qA, q′) ∈ %A,OG(N ′). y

Proof.
Let S ∈ StratX2(Y )(N), let lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)), and let A =
SA(S). Let Im(A) be as defined. We argue by induction on the construction of
%A,Im(A) = %A,lcm .

By construction of Im(A), for all qIm(A) of Im(A), there is a state qA of A
such that (qA, qIm(A)) ∈ %A,Im(A). For a state (q, q′) ∈ Im(A), the minimal
simulation relation of lcm by OGX2(Z)(N ′) (see Lemma 5.2.4) and hence a mini-
mal simulation relation %Im(A),OG(N ′) of Im(A) by OGX2(Z)(N ′) guarantees that
((q, q′), q′1) ∈ %Im(A),OG(N ′) implies that q′ = q′1. Thus, it remains to show that,
for each (qA, (q, q′)) ∈ %A,Im(A), (qA, q′) ∈ %A,OG(N ′). This is obviously true
for the initial element (q0A, (q0, q

′
0)). Assume that (qA, (q, q′)) ∈ %A,Im(A) and

(qA, q′) ∈ %A,OG(N ′). Let (q′A, (q1, q
′
1)) be the element of %A,Im(A) that is inserted

due to (qA, (q, q′)) and transition x. Then clearly qA
x−→ q′A and (q, q′) x−→ (q1, q

′
1),

which implies by the construction of lcm that q′ x−→ q′1 in OGX2(N ′). Conse-
quently, (q′A, q

′
1) ∈ %A,OG(N ′). �

The result of this lemma enables us to characterize refinement of X2(Y )-opera-
ting guidelines.

Refinement of X2(Y )-operating guidelines

In the following, we define refinement of X2(Y )-operating guidelines and prove
that this refinement notion can be used to decide (X2(Y ), X2(Z))-conformance of
open nets.

With the help of Lemma 5.2.1, of Lemma 5.2.2, and of Lemma 5.2.10, we can
characterize refinement of X2(Y )-operating guidelines.

Definition 5.2.11 (refinement of X2(Y )-operating guidelines).
Let N and N ′ be any interface equivalent open nets, and let OGX2(Y )(N) =
((Q,MC I ,MCO, δ, q0, φ), χ) and OGX2(Z)(N ′) = ((Q′,MC I ,MCO, δ′, q′0, φ

′), χ′)
be the corresponding X2(Y )- and X2(Z)-operating guidelines. OGX2(Z)(N ′) re-
fines OGX2(Y )(N), denoted by OGX2(Z)(N ′) � OGX2(Y )(N), iff

1. there is a minimal simulation relation % ⊆ Q×Q′;
2. for all (q, q′) ∈ %, the formula φ(q)⇒ φ′(q′) is a tautology; and

3. for all subautomata of lcm(OGX2(Y )(N),OGX2(Z)(N ′)), which can be ex-
tended to a service automaton A by making some states final such that
PN (A) is in StratX2(Y )(N), the global constraint χ′ is satisfied. y

The X2(Y )-operating guidelines OGX2(Y )(N) and OGX2(Z)(N ′) in Figure 5.3
satisfy the first two criteria of Definition 5.2.11. To verify the third criterion of
Definition 5.2.11, we need to check nine subautomata. The bold subautomaton
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in Figure 5.3(c) can be extended to a service automaton A by adding the empty
set of final states. The corresponding open net of A is an X2(Y )-strategy of N .
However, A violates χ′, as it does not assign true to the state s1. Hence, we
conclude that OGX2(Z)(N ′) does not refine OGX2(Y )(N).

The following theorem proves that OGX2(Z)(N ′) refines OGX2(Y )(N) if and
only if N ′ (X2(Y ), X2(Z))-conforms to N . That way, we can decide
(X2(Y ), X2(Z))-conformance of any two open nets N and N ′ on their corre-
sponding X2(Y )-operating guidelines. This result is a generalization of the result
in [SW09a], as in [SW09a] open nets were considered, where no sending transition
is enabled in any final marking.

Theorem 5.2.12 (checking (X2(Y ), X2(Z))-conformance).
For any two open nets N and N ′ with X2(Y )-operating guidelines OGX2(Y )(N)
and OGX2(Z)(N ′) holds:

N ′ vconf,(X2(Y ),X2(Z)) N iff OGX2(Z)(N ′) � OGX2(Y )(N) . y

Proof.
(⇒): Suppose that N ′ vconf,(X2(Y ),X2(Z)) N . Then Lemma 5.2.1 and 5.2.2 estab-
lish the first two conditions of Definition 5.2.11, whereas the third one is evident
from the assumption.

(⇐): Suppose that OGX2(Z)(N ′) � OGX2(Y )(N). Hence, all three conditions
of Definition 5.2.11 hold. Let S ∈ StratX2(Y )(N). What remains to prove is that
S ∈ StratX2(Z)(N ′).

The first and second condition guarantee that there is a minimal simulation re-
lation of SA(S) by OGX2(Z)(N ′) and all local annotations are satisfied. The third
condition guarantees by Lemma 5.2.9 that Im(SA(S)) can be constructed from
one of the subautomata (that serve as a starting point for the third item). Con-
sequently, the global constraint χ′ is satisfied as well, as otherwise Lemma 5.2.10
would state that the third condition of Definition 5.2.11 was invalid. �

From the earlier considerations and Theorem 5.2.12, we conclude that in our
example in Figure 5.3 N ′ does not (X2(Y ), X2(Z))-conform to N (the two open
nets are not shown). Thus, we cannot substitute N by N ′.

Based on the equivalence result of Theorem 5.2.12, we conclude that the pre-
order property and the precongruence result of (X2(Y ), X2(Z))-conformance sta-
ted by Lemma 3.1.2 and Lemma 3.1.3, respectively, also hold for the refinement
of X2(Y )-operating guidelines.

Corollary 5.2.13 (properties of �).
Relation � on X2(Y )-operating guidelines is a preorder and a precongruence with
respect to ⊕. y

So with the refinement relation on X2(Y )-operating guidelines, we have found
an internal preorder for the external preorder (X2(Y ), X2(Z))-conformance.
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In the next step, we extend the refinement relation on X2(Y )-operating guide-
lines of Definition 5.2.11 to an equivalence. If OGX2(Z)(N ′) refines OGX2(Y )(N)
and vice versa, we say that both X2(Y )-operating guidelines are equivalent.

Definition 5.2.14 (equivalence of X2(Y )-operating guidelines).
An X2(Y )-operating guideline OGX2(Y )(N) and an X2(Y )-operating guideline
OGX2(Z)(N ′) are equivalent iff OGX2(Y )(N) � OGX2(Z)(N ′) and
OGX2(Z)(N ′) � OGX2(Y )(N). y

Clearly, to decide (X2(Y ), X2(Z))-conformance equivalence of two open nets, we
can check equivalence of their respective X2(Y )-operating guidelines. As equiv-
alence means (X2(Y ), X2(Z))-conformance in both directions, we apply Theo-
rem 5.2.12 in both directions.
Lemma 5.2.15 (checking (X2(Y ), X2(Z))-conformance equivalence).
Any two open nets N and N ′ are (X2(Y ), X2(Z))-conformance equivalent iff
OGX2(Y )(N) and OGX2(Z)(N ′) are equivalent. y

Using that X-conformance equivalence is an equivalence relation (see Lem-
ma 3.1.6) and Lemma 5.2.15, we immediately conclude that the equivalence of
X2(Y )-operating guidelines is indeed an equivalence relation.

Corollary 5.2.16 (equivalence relation on X2(Y )-operating guidelines).
Equivalence on X2(Y )-operating guidelines is an equivalence relation. y

5.2.3. An algorithm for checking (X2(Y ), X2(Z))-conformance

The least common multiple lcm = lcm(OGX2(Y )(N),OGX2(Z)(N ′)) of
OGX2(Y )(N) and OGX2(Z)(N ′) is finite, and thus it contains only finitely many
subautomata. Consequently, Theorem 5.2.12 already reduces the (X2(Y ), X2(Z))-
conformance problem to a finite check. Nevertheless, we propose to implement
the verification in a slightly different manner. To this end, we make use of a
particular assignment, the maximal-false assignment.

Definition 5.2.17 (maximal-false assignment).
A maximal-false assignment assigns to each literal of a Boolean formula a Boolean
value such that (1) the formula is evaluated to false and (2) changing the truth
value of any literal from false to true yields an assignment that satisfies the for-
mula. y

As an example, for χ′ in Figure 5.3(b), we have two maximal-false assignments:
assigning false to s1 (the first) and assigning false to s5 (the second).

To verify (X2(Y ), X2(Z))-conformance of two open nets N and N ′, we start
with checking the first two conditions of Definition 5.2.11. This yields, in partic-
ular, the minimal simulation relation %OG(N),OG(N ′), which we need for building
the least common multiple lcm. Then, we propose to iterate through all maximal-
false assignments that violate the global constraint χ′ of OGX2(Z)(N ′). For each
such maximal-false assignment, proceed as follows:
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1. Remove all states (q, q′) from lcm where false is assigned to q′ by the
maximal-false assignment.

2. Iteratively remove all states (q, q′) from lcm where the local annotation of q
in OGX2(Y )(N) is violated, even if the respective state is made a final state.

3. For the remaining subautomaton, evaluate the global constraint χ of
OGX2(Y )(N). If it evaluates to true, exit with result ‘not (X2(Y ), X2(Z))-
conformant’; otherwise, continue with the next maximal-false assignment.

This procedure is justified with the monotonicity of the global constraints. The
subautomaton, say A, constructed in the second step is the largest subautomaton
of lcm that satisfies the local annotations of OGX2(Y )(N) and violates the global
constraint χ′ of OGX2(Z)(N ′) with some assignment less or equal to the considered
one. If A violates χ, every other subautomaton of A does, too. Hence, it is
sufficient to consider only those subautomata A.

Consider again the example in Figure 5.3. For the first maximal-false assign-
ment (i. e., assigning false to s1), we remove state (q1, s1) and its adjacent edges.
This yields the subautomaton, depicted bold in Figure 5.3(c). The removal does
not violate the local annotations in OGX2(Y )(N) (2). As the resulting subau-
tomaton satisfies χ, we exit with ‘not (X2(Y ), X2(Z))-conformant’ (3). Note
that starting with the second maximal-false assignment (i. e., assigning false to
s5) yields a subautomaton that satisfies χ and hence proves non-(X2(Y ), X2(Z))-
conformance as well.

Discussion

At this stage, we cannot provide experimental results. However, we believe—
confirmed by our experiments in Section 4.2.4—that global constraints do not
tend to be too large for practical service models; so the number of maximal-false
assignments to be considered should be tractable. The construction in the second
step of the proposed procedure is part of the standard algorithm for computing
most permissive X1-strategies in Fiona and is known to be quite efficient. Con-
sequently, we believe that the verification of (X2(Y ), X2(Z))-conformance could
be tractable in realistic cases even if worst case complexity is beyond the limits
of theoretical tractability.

Recently, an alternative approach for deciding (X2(Y ), X2(Z))-conformance has
been published. Kaschner and Wolf [KW09] propose to check StratX2(Y )(N) ∩
StratX2(Z)(N ′) = ∅ instead of the equivalent inclusion StratX2(Y )(N) ⊆
StratX2(Z)(N ′). That means, it is verified whether the set of X2(Y )-strategies
of N and the set of open nets that are not an X2(Z)-strategy of N ′ are dis-
joint. To this end, the set StratX2(Z)(N ′) is represented as an extended annotated
automaton (where the Boolean formulae may contain negated literals) [KW09].
Furthermore, algorithms to compute the intersection and to check for emptiness
are presented. Checking for emptiness instead of inclusion has the advantage that
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in case emptiness does not hold, an element of StratX2(Y )(N) ∩ StratX2(Z)(N ′)
serves as a counterexample. As a drawback, the emptiness check is proved to be
NP-complete in worst case [KW09].

5.2.4. Towards deciding X2-conformance

The previously presented algorithm enables us to decide whether an open net
N ′ substitutes an open net N under (X2(Y ), X2(Z))-conformance. Due to the
presence of cover in the sets of open-net properties X2(Y ) and X2(Z), the respec-
tive sets of X-strategies are not symmetric. Consequently, the (X2(Y ), X2(Z))-
conformance relation cannot be used in the setting of contracts (because Theo-
rem 3.1.4 does not hold). Therefore, it would be valuable to extend the algorithm
for deciding (X2(Y ), X2(Z))-conformance to X2-conformance, a similar notion
that can be used in the contract setting. Recall that we denoted with X2 the set
{deadlock freedom, quasi-liveness} of open-net properties.

The X2-operating guideline of N coincides with the X2(Y )-operating guide-
line of N with Y = TN . However, the X2-operating guideline requires a stricter
matching criterion than the X2(Y )-operating guideline: An open net S matches
with OGX2(N) if it matches with OGX2(Y )(N) and, in addition, for every state
of the corresponding service automaton SA(S) of S, there exists a state q of
OGX2(N) in the minimal simulation relation % of SA(S) by OGX2(N) and q is
not the empty state of OGX2(N). As the notions of X2(Y )-operating guideline
and X2-operating guideline are very similar, it seems that the decision algorithm
for (X2(Y ), X2(Z))-conformance can be easily adjusted to X2-conformance. How-
ever, in the following we sketch that this is not the case.

Suppose an open net N ′ X2-conforms to an open nets N . Clearly, there is
a minimal simulation relation % of OGX2(N) by OGX2(N ′). To deal with the
additional matching criterion of X2-operating guidelines, we can ensure that, for
every pair of related states (q, q′) ∈ %, if q′ is the empty state of OGX2(N ′), then q
is the empty state of OGX2(N). Hence, if a state of the corresponding automaton
SA(S) of an open net S is related to a non-empty state of OGX2(N ′) in the mini-
mal simulation relation with OGX2(N ′), this state is also related to a non-empty
state of OGX2(N) in the minimal simulation relation with OGX2(N). Further-
more, the annotations of OGX2(N) must imply the annotations of OGX2(N ′)
(see Lemma 5.2.2).

Now let us investigate the third criterion, specifying when an X2-strategy S
of N satisfies the global constraint χ′ of OGX2(N ′). According to the proof
idea in Section 5.2.2, for every X2(Y )-strategy S of N , the image Im(SA(S))
of S is an X2(Y )-strategy of N . Figure 5.5 illustrates that this, however, does
not hold for X2-conformance. The example shows an open net N with final states
Ω = {[p2], [p4]} and the corresponding service automaton SA(S) of an X2-strategy
of N. We can observe that the information that state s1 of SA(S) is not only
related to the empty state of MPR

X2
(N) but also to state q3 is not preserved by

the image Im(SA(S)). As a consequence, PN (Im(SA(S))) is no X2-strategy of
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Figure 5.5.: Although PN (SA(S)) is an X2-strategy of N, PN (Im(SA(S))) is not
an X2-strategy of N, thus violating Lemma 5.2.9. For the sake of
simplicity, MPR

X2
(N) denotes the most permissive X2-strategy of N

for responsiveness and τ -labeled selfloops are omitted.

N. Thus, for deciding X2-conformance, we need a proof technique different from
the one of Section 5.2.2.

A solution to this problem is part of the future work.
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6. Deciding Substitutability Under
Preservation

In this chapter, we introduce an approach to decide substitution of an open net N
by an open net N ′ under X-preservation of a set S ⊆ StratX(N) of X-strategies
of N . With this approach, we can decide service substitution in the setting of
service improvement; see also Figure 1.4.

To decide service substitution under X-preservation, we have to check that
every open net S ∈ S is an X-strategy of N ′. If S is finite, we can match every
open net S ∈ S with OGX(N ′). For an infinite set S, matching is, however, not
feasible. If we assume that S is represented as an X-operating guideline OGX ,
then deciding X-preservation of S reduces to check that OGX(N ′) refines OGX .
That way, we can use an internal preorder on X-operating guidelines to decide
substitutability under X-preservation instead of using an external preorder on
infinite sets of X-strategies.

The decision procedure for a finite set S becomes particularly complex if S
contains many services and if we want to check several N ′. Therefore, we con-
sider the following alternative: As the notion of an X-strategy is symmetric (if
cover(Y ) /∈ X), it is equivalent to check whether N ′ is an X-strategy of all S ∈ S.
In other words, N ′ ∈

⋂
S∈S StratX(S) must hold. We show that the intersection⋂

S∈S StratX(S) of sets of X-strategies can be represented by the product of the
X-operating guidelines OGX(S) of all open nets S ∈ S.

The product can also be used for specifying an infinite set S of X-strategies of
N . To this end, we present an approach to specify behavioral constraints as an
annotated automaton Cφ. Then, the product of OGX(N) and Cφ characterizes
exactly those X-strategies of N that satisfy Cφ—for example, all X-strategies of
N that will never pay by credit card.

In the remainder of this chapter, we introduce the notion of a product of X-
operating guidelines in Section 6.1. Afterwards, in Section 6.2, we define several
notions of substitutability under X-preservation and present for each notion a
decision procedure. The results of this chapter are an extension of [SMB09].

6.1. The product of finite strategy representations

In this section, we introduce a product operator ⊗ of X-operating guidelines.
Given two open nets N and N ′, the product of their corresponding X-operating
guidelines OGX(N) and OGX(N ′) represents exactly the intersection
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StratX(N) ∩ StratX(N ′) of the X-strategies of N and N ′. As the product is
commutative and associative, we can generalize this result to a finite set S of
open nets. In this case, the intersection

⋂
S∈S StratX(S) of sets of X-strategies

can be represented by the product of the X-operating guidelines OGX(S) of all
open nets S ∈ S.

In the two subsequent subsections, we define the product of X-operating guide-
lines for open-net properties X ∈ {X1, X2(Y ), X3, X4(Y )} and prove that it char-
acterizes the intersection of the open nets represented by these X-operating guide-
lines. For X2 and X4, the notion of a product is future work.

6.1.1. X2(Y )-operating guidelines

In this section, we define the product of extended annotated automata. As ex-
tended annotated automata are more general than X2(Y )-operating guidelines,
the results of this section can be applied to X2(Y )-operating guidelines without
any restriction. The results of this section can also be directly applied to an-
notated automata, because we can transform every annotated automaton into
an extended annotated automaton with equivalent behavior by adding a global
constraint χ ≡ true.

For annotated automata the results of this section have been first presented
by Bretschneider in [Bre07] and have been published in [SMB09]. We generalize
these results to extended annotated automata in the sequel.

A state of the product of two extended annotated automata A1 and A2 is a
pair consisting of a state of each extended annotated automaton. The transition
relation of the product is derived by those transitions that can be executed in both
extended annotated automata. The local annotation of a state of the product is
the conjunction of the annotations of the corresponding states of the extended
annotated automata. Analogously, the product of the global constraints is the
conjunction of these global constraints. This causes, however, some technicality.
The reason is that each global constraint χ1 and χ2 ranges over some alphabet Q1

and Q2, respectively. The alphabet of the product of A1 and A2 is, however, the
product Q1 × Q2. The idea is to replace each literal q1 of χ1 by the disjunction∨
q2∈Q2

(q1, q2). That way we achieve that if upon matching true is assigned to a
state (q1, q2) with q1 is a literal of χ1, then the corresponding disjunction will be
evaluated to true. Likewise, each literal q2 of χ2 is replaced by the disjunction∨
q1∈Q1

(q1, q2).

Definition 6.1.1 (product of extended annotated automata).
The product Aφ1,χ1

1 ⊗ Aφ2,χ2
2 = ((Q,MC I ,MCO, δ, q0, φ), χ) of any two extended

annotated automata Aφ1,χ1
1 = ((Q1,MC I

1,MCO
1 , δ1, q01, φ1), χ1) and Aφ2,χ2

2 =
((Q2,MC I

2,MCO
2 , δ2, q02, φ2), χ2) with the same alphabets (i. e., MC I

1 = MC I
2

and MCO
1 = MCO

2 ) is defined by

• Q = Q1 ×Q2;

156



6.1. The product of finite strategy representations

c0:∨x ∈ MC x τ

c1: true

a

MC \ {a}

c0: true

c1: false

a

MC \ {a}

MC

MC

(r0, s0):
!as !req τ

(r1, s1):
final τ

(r2, s2):
(?ap ?i) τ

(r4, s ):
final τ

(r3, s ):
!as !req τ

(r5, s ):
?i τ

!as !req

?i

?i!req!as

(r , s ):
true 

?ap

r0:
!as !req τ

r1:
final τ

r2:
?i τ

r4:
final τ

r3:
!as !req τ

r5:
?i τ

!as !req

?i

?i!req!as

r :
true 

?ap, 
?i

?ap

?ap

s0:
!as !req τ

s1:
final τ

s2:
?ap τ

s3:
final τ

!as !req

?ap

s :
true 

?i (r , s3):
final τ

?ap

c0: true

c1: false

!h,!i

?as, 
?req, !ap

(q0, c0):
(?as ?req) τ

(q1, c0):
final τ

(q2, c0):
!ap τ

(q5, c0):
final τ

?as ?req

!ap

(q7, c0):
true 

?as, 
?req

?as, 
?req

?as, 
?req

r0

r1

!as !req

r2
?ap

r3

Bank’’

q10:
(?as ?req) τ

q11:
final τ

q12:
!ap τ

q13:
final τ

?as ?req

!ap

q14:
true 

?as, 
?req

?as, 
?req

?as, 
?req

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap,
?i

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?ap, 
?i

?ap, 
?i

?ap, 
?i

!as,!req,
?ap,?i,τ

c0: true
τ,!ap,

?as,?req

c0: true

c1: ?ap

?req

τ,!ap,
!i,?as

((r0, s0), c0):
!as τ

((r1, s1), c0):
final τ

!as

((r , s ), c0):
true 

?ap, 
?i

?ap, 
?i

!as,
?ap,?i,τ

c1: true

!ap

τ,!ap,!i,
?as,?req

(a) OGX1 (Cust1)

c0:∨x ∈ MC x τ

c1: true

a

MC \ {a}

c0: true

c1: false

a

MC \ {a}

MC

MC

(r0, s0):
!as !req τ

(r1, s1):
final τ

(r2, s2):
(?ap ?i) τ

(r4, s ):
final τ

(r3, s ):
!as !req τ

(r5, s ):
?i τ

!as !req

?i

?i!req!as

(r , s ):
true 

?ap

r0:
!as !req τ

r1:
final τ

r2:
?i τ

r4:
final τ

r3:
!as !req τ

r5:
?i τ

!as !req

?i

?i!req!as

r :
true 

?ap, 
?i

?ap

?ap

s0:
!as !req τ

s1:
final τ

s2:
?ap τ

s3:
final τ

!as !req

?ap

s :
true 

?i (r , s3):
final τ

?ap

c0: true

c1: false

!h,!i

?as, 
?req, !ap

(q0, c0):
(?as ?req) τ

(q1, c0):
final τ

(q2, c0):
!ap τ

(q5, c0):
final τ

?as ?req

!ap

(q7, c0):
true 

?as, 
?req

?as, 
?req

?as, 
?req

r0

r1

!as !req

r2
?ap

r3

Bank’’

q10:
(?as ?req) τ

q11:
final τ

q12:
!ap τ

q13:
final τ

?as ?req

!ap

q14:
true 

?as, 
?req

?as, 
?req

?as, 
?req

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap,
?i

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?ap, 
?i

?ap, 
?i

?ap, 
?i

!as,!req,
?ap,?i,τ

c0: true
τ,!ap,

?as,?req

c0: true

c1: ?ap

?req

τ,!ap,
!i,?as

((r0, s0), c0):
!as τ

((r1, s1), c0):
final τ

!as

((r , s ), c0):
true 

?ap, 
?i

?ap, 
?i

!as,
?ap,?i,τ

c1: true

!ap

τ,!ap,!i,
?as,?req

(b) OGX1 (Cust3)

c0:∨x ∈ MC x τ

c1: true

a

MC \ {a}

c0: true

c1: false

a

MC \ {a}

MC

MC

(r0, s0):
!as !req τ

(r1, s1):
final τ

(r2, s2):
(?ap ?i) τ

(r4, s ):
final τ

(r3, s ):
!as !req τ

(r5, s ):
?i τ

!as !req

?i

?i!req!as

(r , s ):
true 

?ap

r0:
!as !req τ

r1:
final τ

r2:
?i τ

r4:
final τ

r3:
!as !req τ

r5:
?i τ

!as !req

?i

?i!req!as

r :
true 

?ap, 
?i

?ap

?ap

s0:
!as !req τ

s1:
final τ

s2:
?ap τ

s3:
final τ

!as !req

?ap

s :
true 

?i (r , s3):
final τ

?ap

c0: true

c1: false

!h,!i

?as, 
?req, !ap

(q0, c0):
(?as ?req) τ

(q1, c0):
final τ

(q2, c0):
!ap τ

(q5, c0):
final τ

?as ?req

!ap

(q7, c0):
true 

?as, 
?req

?as, 
?req

?as, 
?req

r0

r1

!as !req

r2
?ap

r3

Bank’’

q10:
(?as ?req) τ

q11:
final τ

q12:
!ap τ

q13:
final τ

?as ?req

!ap

q14:
true 

?as, 
?req

?as, 
?req

?as, 
?req

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap, 
?i

?ap,
?i

!as,!req,
?ap,?i,τ

?ap, 
?i

?ap, 
?i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?as, ?req, 
!ap, !h, !i

?ap, 
?i

?ap, 
?i

?ap, 
?i

!as,!req,
?ap,?i,τ

c0: true
τ,!ap,

?as,?req

c0: true

c1: ?ap

?req

τ,!ap,
!i,?as

((r0, s0), c0):
!as τ

((r1, s1), c0):
final τ

!as

((r , s ), c0):
true 

?ap, 
?i

?ap, 
?i

!as,
?ap,?i,τ

c1: true

!ap

τ,!ap,!i,
?as,?req

(c) OGX1 (Cust1)⊗OGX1 (Cust3)

Figure 6.1.: Product of OGX1(Cust1) and OGX1(Cust3) of the customers Cust1
and Cust3 (cf. Figure 2.4). For purposes of simplification, we show
the smaller X1-operating guidelines in case of responsiveness and omit
τ -labeled selfloops.

• MC I = MC I
1 ∧MCO = MCO

1 ;

• ((q1, q2), x, (q′1, q
′
2)) ∈ δ iff (q1, x, q

′
1) ∈ δ1 ∧ (q2, x, q

′
2) ∈ δ2;

• q0 = (q01, q02);

• φ((q1, q2)) = φ1(q1) ∧ φ2(q2), for all (q1, q2) ∈ Q; and

• χ ≡ χ̂1 ∧ χ̂2, where χ̂1 results from replacing any occurrence of q1 in χ1 by∨
q2∈Q2

(q1, q2), for all q1 ∈ Q1, and χ̂2 results from replacing any occurrence
of q2 in χ2 by

∨
q1∈Q1

(q1, q2), for all q1 ∈ Q1. y

In a way, the product of extended annotated automata is defined analogously
to the synchronous product of finite automata [HU79]. Clearly, the product of
two extended annotated automata is again an extended annotated automaton.

As an example, consider the two X1-operating guidelines OGX1(Cust1) and
OGX1(Cust3) in Figures 6.1(a) and 6.1(b), respectively. To calculate the prod-
uct OGX1(⊗) = OGX1(Cust1) ⊗ OGX1(Cust3), we relate the initial states of
OGX1(Cust1) and OGX1(Cust3) yielding state (r0, s0). The annotation of state
(r0, s0) is defined by φCust1(r0) ∧ φCust3(s0), which is equal to !as ∨ !req ∨ τ . As
r0 and s0 enable transitions !as, !req and τ , state (r0, s0) has outgoing transitions
!as, !req, and τ . The resulting product is shown in Figure 6.1(c).

The empty states of OGX1(Cust1) and of OGX1(Cust3) play an important role
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6. Deciding Substitutability Under Preservation

in the product. Consider state (r2, s2), for instance. Its annotation (?ap ∧ ?i) ∨ τ
requires that an X1-strategy must be able to receive messages ap and i (or do an
internal transition). However, message i can only be sent by Cust1, and hence
state (r3, s∅) contains the empty state s∅ of OGX1(Cust3). Analogously, message
ap can only be sent by Cust3, and thus (r∅, s3) contains the empty state r∅ of
OGX1(Cust1).

The next theorem justifies that the product of two extended annotated au-
tomata characterizes the intersection of the sets of open nets represented by these
automata.

Theorem 6.1.2 (product characterizes intersection).
For the product Aφ,χ = Aφ1,χ1

1 ⊗Aφ2,χ2
2 of any two extended annotated automata

Aφ1,χ1
1 and Aφ2,χ2

2 holds:

Match(Aφ,χ) = Match(Aφ1,χ1
1 ) ∩Match(Aφ2,χ2

2 ) . y

Proof.
Let Aφ1,χ1

1 = ((Q1,MC I ,MCO, δ1, q01, φ1), χ1), Aφ2,χ2
2 = ((Q2,MC I ,MCO, δ2,

q02, φ2), χ2), and Aφ,χ = Aφ1,χ1
1 ⊗Aφ2,χ2

2 = ((Q,MC I ,MCO, δ, (q01, q02), φ), χ).
(⇒): Let open net S ∈ Match(Aφ,χ), and let %⊗ be a minimal simulation rela-

tion of SA(S) by Aφ,χ. We show that S ∈ Match(Aφ1,χ1
1 ) and S ∈ Match(Aφ2,χ2

2 ).
Let (qS , (q1, q2)) ∈ %⊗ be arbitrary. As %⊗ is a minimal simulation relation,

there is a sequence σ such that qS is reached from q0S via σ in SA(S), and (q1, q2)
is reached from (q01, q02) via σ in Aφ,χ. By construction of Aφ,χ, q01 and q02

are reached via σ in Aφ1,χ1
1 and Aφ2,χ2

2 , too. By Definition 4.2.3 (matching), we
have (qS , q1) ∈ %1 and (qS , q2) ∈ %2. Let there be an x-transition leaving state
qS . From S ∈ Match(Aφ,χ) and from Definition 4.2.3, we conclude that there is
an x-transition leaving (q1, q2), too. By the construction of δ in Definition 6.1.1,
there is an x-transition leaving state q1 and one leaving state q2. Hence, %1 and
%2 are minimal simulation relations, too.

Furthermore, we conclude from S ∈ Match(Aφ,χ) and from Definition 4.2.3
that the assignment βSA(S)(qS) satisfies φ((q1, q2)). Hence, by the construction
of φ in Definition 6.1.1, βSA(S)(qS) also satisfies φ1(q1) and φ2(q2).

By S ∈ Match(Aφ,χ), we conclude that SA(S) satisfies χ. As χ is according to
Definition 6.1.1 the conjunction of χ̂1 and χ̂2, SA(S) also satisfies χ̂1 and χ̂2 and
hence also χ1 and χ2.

Consequently, S matches with Aφ1,χ1
1 and Aφ2,χ2

2 , and therefore
S ∈ Match(Aφ1,χ1

1 ) ∩Match(Aφ2,χ2
2 ).

(⇐): Let S ∈ Match(Aφ1,χ1
1 ) and S ∈ Match(Aφ2,χ2

2 ). We show that S ∈
Match(Aφ,χ).

By S ∈ Match(Aφ1,χ1
1 ) and by Definition 4.2.3 (matching), there is a minimal

simulation relation %1 of SA(S) by Aφ1,χ1
1 . Let (qS , q1) ∈ %1 be arbitrary. As %1 is

a minimal simulation relation, there is a sequence σ such that qS is reached from
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6.1. The product of finite strategy representations

q0S via σ in SA(S), and q1 is reached via σ in Aφ1,χ1
1 . By S ∈ Match(Aφ2,χ2

2 )
and Definition 4.2.3, there is a minimal simulation relation %2 and a state q2 such
that (qS , q2) ∈ %2 and q2 is reached via σ in Aφ2,χ2

2 . By the construction of δ
in Definition 6.1.1, state (q1, q2) is reachable in Aφ,χ via σ, too. Let there be an
x-transition leaving state qS . From S ∈ Match(Aφ1,χ1

1 ), from S ∈ Match(Aφ2,χ2
2 ),

and from Definition 4.2.3 we conclude that there is an x-transition leaving q1 and
q2. Hence, by construction of δ in Definition 6.1.1, transition x leaves state (q1, q2)
of Aφ,χ, too. Consequently, there is a minimal simulation relation of SA(S) by
Aφ,χ.

From S ∈ Match(Aφ1,χ1
1 ), from S ∈ Match(Aφ2,χ2

2 ), and from Definition 4.2.3
we conclude that the assignment βSA(S)(qS) satisfies φ1(q1) and φ2(q2). Hence,
by the construction of φ in Definition 6.1.1, βSA(S)(qS) also satisfies φ((q1, q2)).

From S ∈ Match(Aφ1,χ1
1 ), from S ∈ Match(Aφ2,χ2

2 ), and from Definition 4.2.3
we conclude that SA(S) satisfies χ1 and χ2. By the construction of χ̂1 and χ̂2

(see Definition 6.1.1) we conclude that SA(S) also satisfies χ̂1 and χ̂2 and hence
χ, the conjunction of χ̂1 and χ̂2.

Consequently, S matches with Aφ,χ, and therefore S ∈ Match(Aφ,χ). �

The product⊗ of extended annotated automata is commutative and associative;
that is, for extended annotated automata Aφ1,χ1

1 , Aφ2,χ2
2 , Aφ3,χ3

3 holds Aφ1,χ1
1 ⊗

Aφ2,χ2
2 = Aφ2,χ2

2 ⊗ Aφ1,χ1
1 and (Aφ1,χ1

1 ⊗ Aφ2,χ2
2 ) ⊗ Aφ3,χ3

3 = Aφ1,χ1
1 ⊗ (Aφ2,χ2

2 ⊗
Aφ3,χ3

3 ).

Lemma 6.1.3 (product operator is commutative and associative).
The product operator, ⊗, of extended annotated automata is commutative and
associative. y

Lemma 6.1.3 enables us to apply the product operator to an arbitrary but
finite set of extended annotated automata. By Theorem 6.1.2, we conclude that
the product of n extended annotated automata represents exactly the intersection
of the respective n sets of matching open nets.

Corollary 6.1.4 (intersection of a set of extended annotated automata).
For any finite set {Aφ1,χ1

1 , . . . , Aφn,χn
n } of extended annotated automata with the

same alphabets holds:

Match(Aφ1,χ1
1 ⊗ · · · ⊗Aφn,χn

n ) = Match(Aφ1,χ1
1 ) ∩ · · · ∩Match(Aφn,χn

n ) . y

The product of any finite set of X2(Y )-operating guidelines represents the inter-
section of the sets of open nets characterized by these X2(Y )-operating guidelines.
Hence, given any finite set S of open nets and a set YS of nodes to be covered
in each S ∈ S, we can represent all open nets that are an X2(YS)-strategy of
each S of S. These open nets are, in fact, represented by the product of the
X2(YS)-operating guidelines OGX2(YS)(S), for all S ∈ S.
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Figure 6.2.: Service automaton SA(S) of an open net S that matches with
OGX1(Cust1)⊗OGX1(Cust3).

Corollary 6.1.5 (product represents intersection of a set of strategies).
Let S be a set of interface equivalent open nets, let YS be the set of open-net nodes
that should be covered in S ∈ S, and let OGX2(YS)(S) be the X2(YS)-operating
guideline of S. For the product OG⊗ of all OGX2(YS)(S) holds

Match(OG⊗) =
⋂
S∈S

StratX2(YS)(S) .
y

If no places and transitions of any S ∈ S have to be covered, then the problem
reduces to constructing the product of a set of X1-operating guidelines for S ∈ S.

In [KW09], the results presented in this section have been extended to extended
annotated automata with annotations that may contain negated literals.

According to Corollary 6.1.5, the product in Figure 6.1(c) represents all open
nets that are X1-strategies of Cust1 and Cust3. For instance, the correspond-
ing open net S of the service automaton SA(S) in Figure 6.2 matches with the
product, and it is an X1-strategy of Cust1 and Cust3.

Implementation in Fiona

The calculation of the product of any two annotated automata has been imple-
mented in the service analysis tool Fiona. Time and space for calculating the
product is proportional to the product of the two annotated automata. Based
on this implementation and the example services we used in the experiments in
Chapter 4 and in Section 5.1.2, we present some experimental results.

As in case of X1-conformance (see Section 5.1.2), we computed for each open net
N its X1-operating guideline OGR

X1
(N) (remember, Fiona implements responsive-

ness). To get a meaningful X1-operating guideline for the product with OGR
X1

(N),
we computed the minimal X1-operating guideline (OGR

X1
(N))min of N . The min-

imal X1-operating guideline of N [Mas09] is the smallest annotated automaton
that represents the X1-strategies of N . Hence, by construction, OGR

X1
(N) and

(OGR
X1

(N))min are equivalent. Therefore, the product has the structure of the
bigger annotated automaton OGR

X1
(N).
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6.1. The product of finite strategy representations

Table 6.1.: Constructing the product of X1-operating guidelines with Fiona. All
experiments were obtained on an UltraSPARC III processor with
900MHz and 4 GB RAM running Solaris 10.

MPR
X1

(N) (MPR
X1

(N))min time
Service |Q| |δ| |Q| |δ| m:ss
Loan Approval 8 30 8 30 0:00
Purchase Order 169 1,182 169 1,182 0:00
Olive Oil Ordering 17 67 13 51 0:00
Travel Service 1 57 300 57 300 0:00
Travel Service 2 289 2,252 289 2,252 0:01
Online Shop 1 13 50 10 41 0:00
Online Shop 2 8 35 7 32 0:00
Beverage Machine 12 54 12 54 0:00
Philosophers #3 68 243 27 108 0:00
Philosophers #5 1,433 8,390 243 1,620 0:07
SMPT Protocol 1,217 8,408 381 2,822 0:08
Registration 8 30 7 27 0:00
Process 1 897 13,548 641 10,012 0:09
Process 2 1,608 16,445 1,608 16,445 0:19
Process 3 237 1,437 173 1,133 0:01
Process 4 6,821 103,165 6,821 103,165 6:16

Table 6.1 provides information about the size of the X1-operating guideline of N
(number of states and transitions), the size of the minimal X1-operating guideline
of N , and the time for computing the product of the two X1-operating guidelines.
The experiment illustrates that calculating the product is rather efficient. Only
‘Process 4’ took more than 6 minutes; all other examples took less than 20 seconds.

6.1.2. X4(Y )-operating guidelines

In this section, we define the product of X4(Y )-operating guidelines. With X4(Y )
we denote the set {weak termination, cover(Y )} of open-net properties. As we can
transform every X3-operating guideline into an X4(Y )-operating guideline with
equivalent behavior by adding a global constraint χ ≡ true (i. e., Y = ∅), the
results of this section can be directly applied to X3-operating guidelines.

The idea for constructing the product OG⊗ of OGX4(Y )(N) and OGX4(Z)(N ′)
is to construct the synchronous product MP⊗ of the most permissive X3-strategies
MPX3(N) and MPX3(N ′) and the product of the global constraints. Each state
of MP⊗ forms a fragment of OG⊗, and a transition of MP⊗ is a connection of
OG⊗. The states of a fragment of MP⊗ are the Cartesian product of the states
of the corresponding fragments in OGX4(Y )(N) and OGX4(Z)(N ′).

In the product MP⊗, the empty state of MPX3(N) and a nonempty state
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6. Deciding Substitutability Under Preservation

of MPX3(N ′) can be related. The current definition of fragments (cf. Defini-
tion 4.3.8) defines for the empty state of MPX3(N) a fragment, which is not
connected to any other fragment, and this fragment does not have states. The
reason is that the empty state cannot be reached in the composition of N and
any open net. However, for a reasonable definition of a product OG⊗ of any two
X4-operating guidelines, the fragment that corresponds to the empty state must
be reachable in an X4-operating guideline. Therefore, we introduce a “dummy”
construct, the empty fragment F∅. The empty fragment corresponds to the empty
state of the most permissive X3-strategy. It has only a single state v∅. This state
is by definition a final state, as otherwise from a state (v∅, v′) in the product OG⊗
no final state is reachable. We add the empty fragment to the set of fragments of
an open net N . Furthermore, for each transition in MPX3(N) that has the empty
state as its target, we add a connection.

Definition 6.1.6 (empty fragment).
For any open net N , let MPX3(N) = (Q,MC I ,MCO, δ, q0,Ω) be the most per-
missive X3-strategy of N , and let OGX4(Y )(N) = (F(N), C(N), φ, χ). For the
empty state q∅ of MPX3(N), define the empty fragment by F∅ = ({v∅},MC I ∪
MCO ∪ {τ}, ∅, {v∅}). The extension of OGX4(Y )(N) by the empty fragment is
defined as OG ′X4(Y )(N) = (F ′(N), C′(N), φ, χ) with

• F ′(N) = F(N) ∪ {F∅};
• C′(N) = C(N) ∪ {C(F∅,x,F∅) | x ∈ MC I ∪MCO ∪ {τ}}

∪ {C(Fq,x,F∅) | (q, x, q∅) ∈ δ},with
C(Fq,x,F∅) = (VFq

× {x} × {v∅}).
y

As an example, the X3-operating guidelines of Cust1 and Cust3 are illustrated in
Figure 6.3. For the smaller representation, OGX3(Cust3), the empty fragment F∅
and the corresponding connections are depicted. For example, the most permissive
X3-strategy of Cust3—that is, the underlying automaton in Figure 6.1(b)—has
two transitions ?ap and ?i in state s1 that have the empty state s∅ as its target.
Hence, we add in Figure 6.3(b) two connections ?ap and ?i from every state of
fragment Fs1 to state v∅ .

We can now define the product of two X4(Y )-operating guidelines. Fragments
and connections are defined similar to the synchronous product of ordinary au-
tomata. As a fragment is an LTS, the product of two fragments is defined as the
Cartesian product of two LTSs. Analog to X2(Y )-operating guidelines, the anno-
tation of a fragment in the product is defined as the conjunction of the annotations
of the corresponding fragments of the X4(Y )-operating guidelines. Furthermore,
the product of the global constraints is the conjunction of these global constraints.
To deal with the empty state, we consider X4(Y )-operating guidelines that are
extended by the empty fragment.
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Figure 6.3.: X3-operating guidelines of the customers Cust1 and Cust3.
OGX3(Cust3) is extended by the empty fragment F∅.

Definition 6.1.7 (product of X4(Y )-operating guidelines).
Let N and N ′ be any two interface equivalent open nets with X4(Y )-operating
guidelines extended by the empty fragment OGX4(Y )(N) = (F(N), C(N), φ, χ)
and OGX4(Z)(N ′) = (F(N ′), C(N ′), φ′, χ′). Let Q and Q′ be the states of the most
permissive X3-strategy of N and N ′, respectively. The product
OGX4(Y )(N)⊗OGX4(Z)(N ′) = (F⊗, C⊗, φ⊗, χ⊗) is defined by

• F⊗ = F(N)×F(N ′) and the product of any two fragments F ∈ F(N) and
F ′ ∈ F(N ′) is defined as the fragment (F ,F ′) = (V(F ,F ′),Σ, E(F ,F ′),Ω(F ,F ′))
with

– V(F ,F ′) = VF × VF ′ ;

– E(F ,F ′) = {((vF , vF ′), τ, (v′F , vF ′)) | (vF , vF ′) ∈ V(F ,F ′)

∧ (vF , τ, v′F ) ∈ EF}
∪ {((vF , vF ′), τ, (vF , v′F ′)) | (vF , vF ′) ∈ V(F ,F ′)

∧ (vF ′ , τ, v′F ′) ∈ EF ′};
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(c) OGX3 (Cust1)⊗OGX3 (Cust3)

Figure 6.4.: Reduced X3-operating guidelines OGX3(Cust1) and OGX3(Cust3)
and their product. τ -loops are omitted.

– Ω(F ,F ′) = ΩF × ΩF ′ .

• C((q1,q′1),x,(q2,q′2)) ∈ C⊗ iff C(q1,x,q2) ∈ C(N) ∧ C(q′1,x,q
′
2) ∈ C(N ′);

• ((v1, v
′
1), x, (v2, v

′
2)) ∈ C((q1,q′1),x,(q2,q′2)) iff (v1, x, v2) ∈ C(q1,x,q2)

∧ (v′1, x, v
′
2) ∈ C(q′1,x,q

′
2);

• φ⊗((F ,F ′)) = φ(F ) ∧ φ′(F ′), for all (F ,F ′) ∈ F⊗; and

• χ⊗ ≡ χ̂ ∧ χ̂′, where χ̂ results from replacing any occurrence of q in χ by∨
q′∈Q′(q, q

′), for all q ∈ Q, and χ̂′ results from replacing any occurrence of
q′ in χ′ by

∨
q∈Q(q, q′), for all q ∈ Q.

Let the initial state of the product be defined by the product of the respective
initial states of OGX4(Y )(N) and OGX4(Z)(N ′). y

The set F⊗ of fragments may contain a fragment that is the product of the
empty fragments of OGX4(Y )(N) and of OGX4(Z)(N ′). This ensures that the
product is again an X4(Y )-operating guideline extended by the empty fragment.

As an example, the product of the reduced X3-operating guidelines
OGX3(Cust1) and OGX3(Cust3) is illustrated in Figure 6.4. The initial state
is derived by the fragments Fr0 and Fs0 and the product of their initial states v1
and v20.

The product of X4(Y )-operating guidelines with an extended annotated au-
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tomaton is a special case of Definition 6.1.7. Each state of the extended anno-
tated automaton corresponds to a fragment (without any internal states), and
each transition corresponds to a connection.

The product of any two X4(Y )-operating guidelines characterizes the intersec-
tion of the sets of open nets represented by these X4(Y )-operating guidelines.

Theorem 6.1.8 (product characterizes intersection).
For the product OG⊗ = OGX4(Y )(N)⊗OGX4(Z)(N ′) of any two X4(Y )-operating
guidelines of N and N ′ extended by the empty fragment holds

Match(OG⊗) = Match(OGX4(Y )(N)) ∩Match(OGX4(Z)(N ′)) . y

Proof.
Let OGX4(Y )(N) = (F(N), C(N), φ, χ), OGX4(Z)(N ′) = (F(N ′), C(N ′), φ′, χ′),
and OG⊗ = OGX4(Y )(N) ⊗ OGX4(Z)(N ′) = (F⊗, C⊗, φ⊗, χ⊗). Let TS⊗, TS ,
and TS ′ denote the LTS constructed from a service automaton SA(S) and frag-
ments of OG⊗, OGX4(Y )(N), and OGX4(Z)(N ′), respectively. Let MPX3(N) and
MPX3(N ′) be the respective most permissive X3-strategies of N and N ′, and let
MP⊗ = MPX3(N)⊗MPX3(N ′).

(⇒): Let S ∈ Match(OG⊗). It remains to show that S ∈ Match(OGX4(Y )(N))
and S ∈ Match(OGX4(Z)(N ′)). According to Definition 4.4.2, we have to show
that

(i) MPX3(N) and MPX3(N ′) simulate SA(S);

(ii) SA(S) satisfies the annotations φ and φ′;

(iii) TS and TS ′ weakly terminate; and

(iv) SA(S) satisfies the global constraints χ and χ′.

Conditions (i), (ii), and (iv) follow the same argumentation as in the proof of
Theorem 6.1.2, because the product is constructed similarly. So it remains to
show (iii).

Let ((mN , qMP ), (mN ′ , qMP ′), qS) be an arbitrary state of TS⊗. By assump-
tion, TS⊗ weakly terminates; that is, a final state ((m′N , q

′
MP ), (m′N ′ , q

′
MP ′), q

′
S)

is reachable from state ((mN , qMP ), (mN ′ , qMP ′), qS). State ((mN , qMP ), qS) is by
(i) and (ii) reachable in TS . We show that a final state in TS can be reached
from ((mN , qMP ), qS).

Case 1: Suppose (mN , qMP ) 6= v∅ and (m′N , q
′
MP ) 6= v∅; that is, both states

are not in the respective empty fragments. Then, state ((m′N , q
′
MP ), q′S) can be

reached in TS , because (i) ensures that (q′S , q
′
MP ) are related by the minimal simu-

lation relation of SA(S) by MPX3(N), and hence the fragment of q′MP is reachable
in TS . Furthermore, the Cartesian product of states in a fragment of OG⊗ ensures
reachability of m′N in the fragment of q′MP . As ((m′N , q

′
MP ), (m′N ′ , q

′
MP ′), q

′
S) is a

final state and by the definition of final states in the product (cf. Definition 6.1.7),
((m′N , q

′
MP ), q′S) is a final state in TS .
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Case 2: Now suppose (mN , qMP ) 6= v∅ and (m′N , q
′
MP ) = v∅; that is, (mN , qMP )

is a state of TS and (m′N , q
′
MP ) is the empty fragment). In this case, the

state ((m′N , q
′
MP ), q′S) is not reachable in TS . Let ((m′′N , q

′′
MP ), (m′′N ′ , q

′′
MP ′), q

′′
S)

be the last state on a path from state ((mN , qMP ), (mN ′ , qMP ′), qS) to state
((m′N , q

′
MP ), (m′N ′ , q

′
MP ′), q

′
S) with (m′′N , q

′′
MP ) 6= v∅. From (ii) we conclude that

in fragment q′′MP of OGX3(N) either a final state is reachable or there is another
transition in state ((m′′N , q

′′
MP ), (m′′N ′ , q

′′
MP ′), q

′′
S) such that the empty fragment of

OGX4(N) is not entered. As TS⊗ is by assumption weakly terminating, a fi-
nal state is reachable via this transition. That way, a final state of TS⊗ can be
reached such that OGX4(N) is not in its empty fragment. By Case 1, this path
is possible in TS , too.

Case 3: Suppose (mN , qMP ) = v∅; that is, (mN , qMP ) is the empty fragment. In
this case, nothing has to be shown, because state ((mN , qMP ), qS) is not reachable
in TS .

As the same argumentation also holds for the states in TS ′, we conclude that
S ∈ Match(OGX4(Y )(N)) and S ∈ Match(OGX4(Z)(N ′)).

(⇐): Let S ∈ Match(OGX4(Y )(N)) ∩ Match(OGX4(Z)(N ′)). We show that
S ∈ Match(OG⊗). According to Definition 4.4.2, we have to show that

(i) MP⊗ simulates SA(S);

(ii) SA(S) satisfies φ⊗ in each states of the minimal simulation relation;

(iii) TS⊗ weakly terminates; and

(iv) SA(S) satisfies the global constraint χ⊗.

Conditions (i), (i), and (iv) follow the same argumentation as in the proof of
Theorem 6.1.2, because the product is constructed similarly. So it is sufficient to
show condition (iii); that is, TS⊗ weakly terminates.

Let ((mN , qMP ), (mN ′ , qMP ′), qS) be an arbitrary state of TS⊗. We show
that a final state can be reached from this state. By the definition of OG⊗,
((mN , qMP ), qS) is a state of TS , and as TS is by assumption weakly terminating,
a final state ((m′N , q

′
MP ), q′S) is reachable from ((mN , qMP ), qS) with qS

σ−→ q′S .
The respective sequence σ is also possible in TS⊗ (follows from condition (i))
yielding a state ((m′N , q

′
MP ), (m′N ′ , q

′
MP ′), q

′
S). We distinguish two cases.

Case 1: Let (m′N ′ , q
′
MP ′) = v∅; that is, (m′N ′ , q

′
MP ′) is the empty fragment.

Then state ((m′N , q
′
MP ), (m′N ′ , q

′
MP ′), q

′
S) is by Definition 6.1.6 (empty fragment)

a final state.
Case 2: Let (m′N ′ , q

′
MP ′) 6= v∅; that is, (m′N ′ , q

′
MP ′) is not the empty fragment.

If (m′N ′ , q
′
MP ′) is a final state, then state ((m′N , q

′
MP ), (m′N ′ , q

′
MP ′), q

′
S) is a final

state as well. Otherwise, we know that a final state is reachable from (m′N ′ , q
′
MP ′)

in TS ′. The respective path is also possible in TS (follows from (i) and (ii)).
Hence, a final state is reachable, where both OGX4(Y )(N) and OGX4(Z)(N ′) are
in a final state. By the definition of a final state in Definition 6.1.7, this is a final
state of the product.
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Hence, we conclude that TS⊗ weakly terminates. �

Also the product ⊗ of X4(Y )-operating guidelines is commutative and associa-
tive.

Lemma 6.1.9 (product is commutative and associative).
The product operator, ⊗, of X4(Y )-operating guidelines is commutative and as-
sociative. y

Lemma 6.1.9 enables us to apply the product operator to an arbitrary but finite
set of X4(Y )-operating guidelines. By Theorem 6.1.8, the product characterizes
the intersection of the respective sets of open nets. Hence, given any finite set S
of open nets, we can represent all open nets that are an X4(YS)-strategy of each S
of S where YS denotes the nodes of S to be covered. This set can be represented
by the product of X4(YS)-operating guidelines OGX4(YS)(S) of all S ∈ S.

Corollary 6.1.10 (product represents intersection of a set of strategies).
Let S be a set of interface equivalent open nets, let YS be the set of nodes that
should be covered in S, and let OGX4(YS)(S) be the X4(YS)-operating guideline
of S. For the product OG⊗ of all OGX4(YS)(S) holds

Match(OG⊗) =
⋂
S∈S

StratX4(YS)(S) .
y

If quasi-liveness is not required, then the problem reduces to generating the
product of a set of X3-operating guidelines for S ∈ S.

The product of OGX3(Cust1) and OGX3(Cust3) in Figure 6.4(c) represents by
Corollary 6.1.10 all open nets that match with OGX3(Cust1) and OGX3(Cust3).
As an example, the corresponding open net S of SA(S) in Figure 6.2 matches with
the product of the X3-operating guidelines in Figure 6.4(c): Remove fragment
(Fr1,Fs1) from Figure 6.4(c). The resulting state space is the composition of S
and the product of Cust1 and Cust3. It is easy to see that the weak termination
property holds for this state space.

6.2. Preservation check with the product

In this section, we present a procedure to decide substitutability under X-preser-
vation. To this end, we use the notion of a product of X-operating guidelines as
defined in the previous section.

Given two interface equivalent open nets N and N ′ and a set S ∈ StratX(N) of
X-strategies of N , we want to decide whether N ′ substitutes N under preservation
of S. Clearly, the decision procedure for substitutability under X-preservation de-
pends on the set S. In this section, we consider the following three representations
of S:
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• The set S of open nets is a finite. For instance, N ′ shall restrict N to its
core functionalities, or it shall only support N ’s major clients.

• The set S characterizes infinitely many open nets, and it is represented as
an X-operating guideline. For example, this representation might result
from the product OGX(S1)⊗ · · · ⊗OGX(Sn) of a finite set of X-operating
guidelines—that is, S = Match(OGX(S1) ⊗ · · · ⊗ OGX(Sn)). A possible
application would be that only clients that are compatible to all Si shall be
preserved by N ′.

• The set S characterizes all those X-strategies of N that follow a behavioral
constraint. Such a behavioral constraint can be described as an annotated
automaton Cψ. Formally, the set S can be characterized by the product of
the X-operating guideline of N and Cψ—that is, S = Match(OGX(N) ⊗
Cψ). Applications include to exclude customers that pay by credit card.

Each of the three representations of S is addressed in a separate subsection,
where we formalize the respective notion of substitutability under X-preservation
and present an algorithm to decide this substitutability criterion.

6.2.1. Deciding X-preservation of a finite set of strategies

This section presents a decision procedure for substitutability of N by N ′ under
X-preservation of a finite set S of open nets. We propose two solutions for
deciding substitutability in this setting.

The first solution is obvious: Open net N ′ X-preserves S if and only if every
open net S ∈ S matches with N ′. As S is finite, substitutability can be decided.

The second solution to solve this problem requires the notion of a product of
X-operating guidelines. The next theorem shows that substituting N by N ′ X-
preserves S if and only if N ′ is an X-strategy characterized by the product of the
X-operating guidelines OGX(S), for all S ∈ S. As the proof of this theorem makes
use of the fact that X-strategies are symmetric, we have to exclude cover(Y ) from
the set of open-net properties.

Theorem 6.2.1 (preservation check with product).
Let N and N ′ be interface equivalent open nets, let X be a set of open-net
properties with cover(Y ) /∈ X, and let S ⊆ StratX(N). Let OGX(S) be an X-
operating guideline of S ∈ S, and let OG⊗ denote the product of all OGX(S).
Open net N ′ X-preserves S iff N ′ ∈ Match(OG⊗). y

Proof.
We show that Match(OG⊗) characterizes all open nets N ′ that can substitute N
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while preserving S. We have:

Match(OG⊗) =
⋂
S∈S

StratX(S) (by Corollaries 6.1.5 and 6.1.10)

= {N ′ | for all S ∈ S : N ′ ∈ StratX(S)}
= {N ′ | for all S ∈ S : S ∈ StratX(N ′)}

(X-strategy is symmetric)
= {N ′ | N ′ preserves S} (by Definition 3.2.1)

Consequently, the theorem holds. �

Intuitively, the fewer X-strategies shall be preserved by the substitution (i. e.,
the smaller S is), the more open nets N ′ exist that may substitute N (i. e., the
bigger is Match(OG⊗)).

To decide whether substituting N by N ′ X-preserves S ⊆ StratX(N), we have
to construct the X-operating guideline of each S ∈ S. Then we calculate the
product of these representations. Time and space complexity for calculating the
product of two such representations is proportional to the product of their states.
Therefore, this complexity effort only pays off if we check several N ′. The re-
striction check based on Theorem 6.2.1 has been implemented for X1-strategies
(i. e., for X1-operating guidelines) in the service analysis tool Fiona (see also the
experimental results in Section 6.1.1).

As Theorem 6.2.1 requires a symmetric X-strategy notions and the product
has not been defined for X2- and X4-operating guidelines, the decision procedure
of Theorem 6.2.1 can only be applied for open-net properties X1 and X3.

As an example, Figure 6.5 shows the online bank Bank′′. Suppose we are
interested in substituting Bank by Bank′′ under X1-preservation of customers
Cust1 and Cust3 in Figure 6.1. Then, we have to check whether Bank′′ matches
with the product OGX1(Cust1) ⊗ OGX1(Cust3) in Figure 6.1(c). This does not
hold, because after having sent message req, Bank′′ can only receive message ap.
In contrast, the product requires in state (r2,s2) that an online bank can also
receive message i or accepts an internal transition. Consequently, Bank cannot be
substituted by Bank′′.

6.2.2. Deciding X-preservation of an infinite set of strategies

The application scenario, presented in the previous section, cannot always be
applied; for example, if the set S contains too many open nets or is even infinite.
In this case, we prefer a finite representation of all X-strategies of N , which have
to be preserved by the substitution.

Lemma 6.2.2 (X-preservation of an infinite set of X-strategies).
Let N and N ′ be interface equivalent open nets, and let S ⊆ StratX(N) be
specified by an X-operating guideline OGX , i. e., S = Match(OGX). Open net
N ′ X-preserves S iff Match(OGX(N ′)) ⊇ Match(OGX). y
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Figure 6.5.: An improved version Bank′′ of the online bank Bank in Figure 3.3(a).

That way, deciding whether N ′ substitutes N under X-preservation of S re-
duces to check whether OGX(N ′) refines the X-operating guideline OGX that
represents S. Based on our results on X-conformance in Chapter 5, we can decide
X-preservation for X1-strategies (cf. Theorem 5.1.2) and for X2(Y )-strategies (cf.
Theorem 5.2.12).

It is worthwhile to mention that OGX may be the product of some X-operating
guidelines. For example, one might be interested in all open nets that are com-
patible to an open net N1 and to an open net N2. In this case, we have OGX =
OGX(N1) ⊗ OGX(N2). Another application is the restriction of the set of X-
strategies of N according to a behavioral constraint. This is addressed in the
following.

6.2.3. Deciding constraint-conforming substitutability

In this section, we show another possibility to specify an X-operating guideline
that represents a set S ⊆ StratX(N). The idea is to restrict S to those X-
strategies of N that satisfy a behavioral constraint, such as “do not pay by credit
card”.

To this end, we have to describe all open nets that satisfy a behavioral con-
straint. In this section, we restrict ourselves to those behavioral constraints, where
the corresponding set of open nets can be represented by a constraint automaton
Cψ [LMW07a]. A constraint automaton is an annotated automaton that con-
strains labels of the input and of the output alphabet of an X-operating guideline
OGX(N) of N . Here, to constrain means to exclude some labels or to exclude a
particular order of the labels.

Definition 6.2.3 (constraint automaton).
Let OGX(N) be an X-operating guideline of an open net N . An annotated
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automaton Cψ with the same alphabet as SA(N) is a constraint automaton for
OGX(N). y

Intuitively, OGX(N) represents the set of X-strategies of N , and the constraint
automaton Cψ describes the behavior we want to allow or disallow in the restricted
subset of X-strategies. Their product characterizes all X-strategies of N that
conform to Cψ. In Section 6.1, we showed that the product of an X-operating
guideline and an annotated automaton is again an X-operating guideline.

Given a product OGX(N)⊗Cψ, each open net N ′, where OGX(N ′) character-
izes exactly these X-strategies, is a well-suited candidate for substituting N . This
yields a more fine-grained notion of substitutability under preservation, which is
covered by the following definition.

Definition 6.2.4 (constraint-conforming substitution).
Let N and N ′ be any interface equivalent open nets with X-operating guidelines
OGX(N) and OGX(N ′). Let Cψ be a constraint automaton for OGX(N). The
substitution of N by N ′ conforms to Cψ iff Match(OGX(N ′)) =
Match(OGX(N)⊗ Cψ). y

Note that the equation is necessary, as otherwise there might exist an X-
strategy of N ′, which is not contained in Match(OGX(N)⊗Cψ) but violates the
constraint automaton Cψ. If we are only interested in preserving
Match(OGX(N) ⊗ Cψ) and do not want to guarantee that every X-strategy of
N ′ satisfies Cψ, then symbol ‘=’ in Definition 6.2.4 can be replaced by ‘⊇’.

For a given open net N ′, we can check whether or not it is a valid constraint-
conforming substitution of N . To this end, we apply Lemma 6.2.2 and reduce the
decision procedure to decide equivalence of X-operating guidelines. Remember
that this thesis only presents decision algorithms for X1-operating guidelines and
X2-operating guidelines.

The notion of a constraint automaton and the substitutability check based on
Definition 6.2.4 has been implemented for X1-strategies in the service analysis
tool Fiona.

To illustrate the notion of a constraint automaton, consider Figure 6.6. The
constraint automaton Cψ1 in Figure 6.6(a) represents all open nets that do not
send any information message. As another example, the constraint automaton
Cψ2 in Figure 6.6(b) represents all open nets that if they send a suggestion for an
appointment ap, then this happens immediately after having received a request
for an appointment req.

Let us now pick up the example of Section 3.2. There, we argued that the
improved banking service Bank′′ (see Figure 6.5) can substitute the banking ser-
vice Bank (see Figure 2.3) under X1-preservation of all X1-strategies of Bank that
do not send any information message i. The constraint automaton Cψ2 in Fig-
ure 6.6(a) represents all open nets that do not send an information message. The
product of OGX1(Bank) (see Figure 4.5) and Cψ3 represents all X1-strategies of
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Figure 6.6.: Examples for constraint-conforming substitutability.

Bank that have to be preserved by the substitution. This product results in re-
moving the states q4, q7, q8, q9 and their adjacent transitions from OGX1(Bank).
Using Fiona, we can check that the X1-operating guideline of Bank′′ refines the
product—as OGX1(Bank′′) has too many states, we do not show this example.
Hence, we conclude that Bank′′ can substitute Bank.

The notion of a constraint automaton is not very expressive. It can be used
to specify simple constraints—that is, excluding single labels or simple message
causalities; see also [Wol09]. Clearly, we can combine such simple constraints to
more complex constraints. The semantics of such complex constraints is, however,
the conjunction of its simple constraints. To specify more expressive constraints,
we need besides the intersection of X-strategies (i. e., the product) also operators
for negation and union of sets of X-strategies. For sets of X2(Y )-strategies,
these operators have been presented in [KW09]. Negation, union, and product
define an algebra on X2(Y )-operating guidelines; see [KW09]. With the help
of this algebra, more expressive constraints can be constructed, and hence the
applicability of constraint-preserving substitution can be extended.
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Constructing Substitutable
Services
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7. Deriving Substitutable Services
with Transformation Rules

In the setting of multiparty contracts, each party has to design a private view for
its public view. The resulting private view has to X-conform to its corresponding
public view. Using the results of the two previous chapters, we can decide X-
conformance as well as preservation. However, the design of a private view is
a nontrivial and error-prone task even for experienced service designers. The
main reason is that supporting the design process of service implementations
and checking whether the implementation can substitute its specification is not
a particular strength of the BPM tools currently available on the marketplace.
Hence, the current chapter is devoted to introduce methods to construct open
nets N ′ that can substitute an open net N .

In this chapter, we introduce an approach to refine open nets; see also Fig-
ure 1.4. Given an open net N , we want to incrementally transform N into an
open net N ′ such that every transformation step preserves X-conformance. To
this end, patterns of N are incrementally replaced by other patterns. In this
approach, a pattern M of N is replaced by another pattern M ′ yielding the open
net N ′. We prove that if M ′ X-conforms to M , then N ′ X-conforms to N .

We present several transformation rules in this chapter. Some of them are
inherited from the literature—for example, the projection-inheritance preserving
transformation rules of Basten and Van der Aalst [BA01, AB02] in Section 7.2.
These rules are restricted to add or remove internal transitions. We further present
some rules that also affect the interface transitions of an open net. Some of these
rules preserve X-conformance equivalence (see Section 7.3), whereas other rules
only preserve X-conformance in one direction (see Section 7.4). A transforma-
tion rule does not necessarily guarantee quasi-liveness. Hence, we refrain from
preserving quasi-liveness, and we restrict ourselves throughout this chapter to
open-net properties X3 = {weak termination}. As strict termination does not
change the finite representation of X3-strategies (see Section 4.5) and a pattern
will never contain a final marking, the results of this section can also be applied
if {weak termination, strict termination} is the chosen open-net property.

The transformation rules are sufficient, but they are not complete, meaning
they do not cover all possible service implementations. However, we think that
these rules are highly relevant in practise. Real-life service models are often
well-structured rather than complicated, because many enterprises have strict
modeling guidelines that only allow the use of a limited set of modeling constructs.
In that sense, our transformation rules should meet the requirements in practice.

175



7. Deriving Substitutable Services with Transformation Rules
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Figure 7.1.: Illustration of the transformation approach.

Before we present the different transformation rules in Sections 7.2–7.4, we
introduce the transformation approach and provide the formalities in Section 7.1.
The work of this chapter has been partly published in [ALM+08, AMSW09]

7.1. The transformation approach

In this section we provide the basic concepts of our transformation approach. We
introduce the notion of a pattern of an open net N , and we define the composition
of two patterns to specify more general patterns. Finally, we justify the correctness
of the transformation approach.

The idea of the transformation approach is to identify a pattern M in an open
net N and to substitute M by a pattern M ′ under X3-conformance. To this
end, a transformation rule specifies a pair (M,M ′) of patterns that fulfill X3-
conformance. Basically, we see a pattern as a set of open nets with some property.
A member of a pattern—that is, a single open net—is a pattern instance. In the
rest of this chapter, we will not distinguish between pattern and pattern instance
and only use the term pattern. Figure 7.1 illustrates the transformation approach.
We continue by formalizing patterns in terms of open nets.

An open net M is a pattern of an open net N if there is an open net Nrest and
the composition of M and Nrest is the open net N . The set P I of input places
of M is divided into two sets: some internal places R ⊆ P I of N and some input
places P I \ R of N . Likewise the set PO of output places of N is divided into
two sets: some internal places S ⊆ PO of N and some output places PO \ S of
N . Places R are the input places and places S are the output places of M to
Nrest . For technical reasons, we require that the initial marking of a pattern is
the empty marking, and the set of final markings is the singleton set with the
empty marking.

Definition 7.1.1 (pattern).
Let N , M be any two open nets with M = (P, T, F, P I , PO, [ ], {[ ]}), and let
R ⊆ P I and S ⊆ PO. Open net M is a pattern of N iff there exists an open net

176



7.1. The transformation approach

bill

req

inf

p0

p3

p2

p1

t1

t0

t2

Figure 7.2.: Client of the contract in Figure 2.7.

Nrest = (Pr, Tr, Fr, P Ir , P
O
r ,m0r,Ωr) such that N = M ⊕Nrest and P Ir ∩ P I = R

and POr ∩ PO = S. y

In order that an open net M can serve as a pattern, its initial marking must be
the empty marking, and its set of final markings must be the singleton set with
the empty marking. This restriction is necessary, as otherwise the composition of
M and Nrest may contain tokens on the shared interface places R∪S in the initial
and final markings violating Definition 2.4.2 (open-net composition). The second
requirement concerns with the fact that a pattern M is defined in the context of a
particular open net N . To this end, we require the existence of an open net Nrest

with N = M ⊕Nrest . The composition ensures that, for all transitions t ∈ Tr, we
have •t∩R = ∅ and t• ∩ S = ∅. Furthermore, there are no other arcs from nodes
of Nrest to nodes of M and vice versa than those to and from the shared interface
places R ∪ S.

As an example, Figure 7.2 depicts the open net Client. A possible pattern M
would be the open net with PM = {p1, p2, bill}, TM = {t1}, and the adjacent
arcs. In this case, RM = {p1} and SM = {p2}.

The next corollary states that if an open net N has a pattern M and there
is another pattern M ′ that X3-conforms to M , then we can substitute M by
M ′ without affecting any X3-strategy of N . Such transformations can be ap-
plied incrementally and thus refine a service specification to an implementation
by applying transformation steps. The resulting implementation is correct by
construction; that is, it preserves all X3-strategies of the specification.

Corollary 7.1.2 (justification of transformation rules).
Let N1 ⊕ N2 be an X3-open net, let M be a pattern of N1, and let Nrest be an
open net such that N1 = M ⊕Nrest . For any open net M ′ that X3-conforms to
M , the composition (M ′ ⊕Nrest)⊕N2 is an X3-open net. y
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Corollary 7.1.2 is an application of Theorem 3.1.4. In contrast to Theorem 3.1.4,
we do not substitute a party’s public view by a private view, but a pattern of a
party’s public view by another pattern.

In the rest of this chapter, we present several transformation rules; that is, pairs
(M,M ′) of open nets M , M ′ that fulfill (1) the requirement of the initial and final
markings, see Definition 7.1.1 and (2) X3-conformance. Hence, transformation
rules (M,M ′) can defined independently of any context. The context only matters
if we try to identify M to be a pattern of a concrete open net N .

7.2. Projection-inheritance preserving transformation
rules

Inheritance is one of the key concepts of object-orientation. In object-oriented
design, inheritance is typically restricted to the static aspects (e. g., data and
methods) of an object class. In many cases, however, the dynamics is of prime im-
portance. Therefore, projection inheritance [BA01, AB02] focuses on the dynam-
ics. Projection inheritance compares process models by establishing a subclass-
superclass relationship. The subclass process is indeed a subclass if it inherits
particular dynamic properties of its superclass.

Projection inheritance is based on branching bisimulation [GW96] (to compare
the processes) and abstraction (to hide methods). The assumption is that the
subclass adds methods to the superclass. The subclass and the superclass are
related by projection inheritance if, after hiding all methods from the subclass
that are not contained in the superclass, the subclass and the superclass are
equivalent.

Projection inheritance was defined for workflow nets in [BA01, AB02], but in
this definition projection inheritance refers to “methods” rather than the “send-
ing and receiving of messages”. However, projection inheritance can be reformu-
lated for open nets by the following mapping [ALM+08]: An interface transition
presents a method, which is present in both the superclass and the subclass.

To decide whether two open nets are related by projection inheritance, it is
sufficient to check if their corresponding service automata are branching bisimilar
(cf. Definition 2.1.5). In contrast to [BA01, AB02], we do not need to define
an abstraction operator. In our mapping, the comparison of the two open nets
is restricted to the interface transitions. We abstract from all internal transi-
tions by labeling them with τ . The labeling, however, is fixed in Definition 2.7.2
(transition label) and thus no additional definition of an abstraction is necessary.
Consequently, we can define projection inheritance of two open nets as follows.

Definition 7.2.1 (projection inheritance).
Two open nets N and N ′ are related by projection inheritance iff SA(N) and
SA(N ′) are branching bisimilar. y
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(b) M1: Adding a
loop to M0.
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(c) M2: Putting transi-
tion d in parallel to b.
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(d) M3: Inserting transi-
tion d in-between a and b.

Figure 7.3.: X3-conformance equivalent-preserving transformation rules based on
projection inheritance.

Notice that our definition of branching bisimulation (cf. Definition 2.1.5) re-
spects final states. Hence, projection inheritance compares the behaviors of N
and N ′ and also their final markings.

In Section A.1, we proved that fair testing implies X3-conformance. As it is
well-known that branching bisimulation implies fair testing, we can immediately
conclude that X3-conformance is more liberal than projection inheritance; that
is, projection inheritance implies X3-conformance. As projection inheritance is
an equivalence, the implication holds even in both directions.

Theorem 7.2.2 (projection inheritance implies conformance).
Let N and N ′ be two open nets. If N and N ′ are related by projection inheritance,
then N is X3-conformance equivalent to N ′. y

Based on the notion of projection inheritance, three inheritance-preserving
transformation rules have been defined in [BA01, AB02]. These rules correspond
to design patterns for extending a superclass to incorporate new behavior: (1)
adding an internal loop, (2) put a new internal transition in parallel with existing
transitions, and (3) insert an internal transition in-between existing transitions.

Instead of redefining these rules, we exemplify them in Figure 7.3. Note that
Figure 7.3 presents a strong simplification of the rules presented in [BA01, AB02].
In these papers, transitions d correspond to subnets satisfying a particular prop-
erty. For our purposes, these simplified rules are sufficient.

Figure 7.3(a) represents a pattern M0 of an open net N . M0 contains transitions
a, b, and c. By Definition 7.1.1, there are no other connections of a, b, c, p1, and
p2 than those shown in Figure 7.3(a). Each transition is connected to an input
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7. Deriving Substitutable Services with Transformation Rules

and an output place. However, as indicated by the capital letters, each interface
place may correspond to a set of places. Note that Ai, Ao, Bi, Bo, Ci, Co do not
need to be disjoint. Places R and S denote the input and output places to Nrest .
Again, R and S may be sets of places. Similar remarks hold for the other three
patterns M1, M2, and M3. For example, M1 is obtained by adding transition d
to M0.

If one considers the behavior of these open nets, then M0, M1, M2, and M3 are
branching bisimilar. Hence, each pair of these four patterns is related by projec-
tion inheritance. From Theorem 7.2.2, we conclude that the three transformation
rules depicted in Figure 7.3 preserve X3-conformance equivalence.

Inheritance-preserving transformation rules only change internal transitions of
an open net. Next we present transformation rules that affect interface transitions.

7.3. Conformance-equivalence preserving
transformation rules

In this section, we present four X3-conformance-equivalence preserving transfor-
mation rules. Given an open net N , each transformation rule specifies a pattern
M of N (see Definition 7.1.1), which can be substituted by another open net
M ′ yielding an implementation of N . For each transformation rule, we present a
textual description and an illustrating example. Furthermore, we prove that each
rule preserves X3-conformance equivalence. Based on this proof, Corollary 7.1.2
justifies that this substitution preserves all X3-strategies of N .

Interestingly, the proof of each transformation rule follows always the same
proof idea. In a first step, we transform the patterns M and M ′. We add to each
interface place a transition, and this transition is connected to a new interface
place. We did a similar transformation in case of open-net normalization (see
Definition 2.7.1). On these transformed nets, we can show that the respective
patterns M and M ′ (i. e., their corresponding service automata) are branching
bisimilar.

To check branching bisimulation, we remove the newly added interface places;
that is, we consider two transition-bordered open nets. That way, we transform
an asynchronously communicating open net into a synchronously communicating
open net. Transforming an asynchronously communicating model into a syn-
chronously communicating model is a well-known approach in process theory and
has also been applied to Petri nets; see [Vog92], for instance. Branching bisim-
ulation compares the state spaces of these open nets. As the state spaces of
transition-bordered open nets are infinite, we will represent the branching bisim-
ulation relation symbolically. Informally speaking, we have to show that for ev-
ery run of M , there exists a run of M ′ and these two runs fulfill the criteria
of branching bisimulation. As branching bisimulation preserves X3-conformance
equivalence, the transformation is valid.
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7.3.1. Receive-only rules

The first transformation rule, Rule 1, is restricted to receiving transitions.

Rule 1: receive-only. A sequence of receiving transitions can be executed
simultaneously and concurrently. All transformations can be applied in both
directions.
Example for Rule 1:
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split
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t1

p4

Rule 1 specifies that a sequence of receiving transitions can be merged, and
the messages can be received simultaneously. Furthermore, the messages can
also be received concurrently. In other words, there is no causality of receiving
messages a1 and a2. Rule 1 is formalized by the patterns M4, M5, and M6 in
Definitions 7.3.1, 7.3.2, and 7.3.3, respectively.

Pattern M4 specifies an open net that receives n messages a1, . . . , an sequen-
tially. Pattern M4′ in Rule 1 illustrates M4, for n = 2.

Definition 7.3.1 (pattern M4).
Let n > 0. Pattern M4 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , pn−1};
• T = {t1, . . . , tn};
• F = {(r, t1) | r ∈ R}

∪ {(tn, s) | s ∈ S}
∪ {(ti, pi), (pi, ti+1) | i = 1, . . . , n− 1}
∪ {(ai, ti) | i = 1, . . . , n};

• P I = {a1, . . . , an} ∪R;

• PO = S; y

Pattern M5 specifies an open net that receives n messages a1, . . . , an simulta-
neously. Pattern M5′ in Rule 1 illustrates M5, for n = 2.
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7. Deriving Substitutable Services with Transformation Rules

Definition 7.3.2 (pattern M5).
Let n > 0. Pattern M5 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO;

• T = {t};
• F = {(r, t) | r ∈ R}

∪ {(t, s) | s ∈ S}
∪ {(ai, t) | i = 1, . . . , n};

• P I = {a1, . . . , an} ∪R;

• PO = S. y

Receiving n messages a1, . . . , an concurrently is specified by pattern M6. Pat-
tern M6′ in Rule 1 illustrates M6, for n = 2.

Definition 7.3.3 (pattern M6).
Let n > 0. Pattern M6 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , p2n};
• T = {t1, . . . , tn, split , join};
• F = {(r, split) | r ∈ R}

∪ {(join, s) | s ∈ S}
∪ {(split , pi) | i = 1, . . . , n}
∪ {(pi, join) | i = n+ 1, . . . , 2n}
∪ {(pi, ti), (ti, pn+i) | i = 1, . . . , n}
∪ {(ai, ti) | i = 1, . . . , n};

• P I = {a1, . . . , an} ∪R;

• PO = S; y

Correctness of Rule 1 is justified by the following lemma.

Lemma 7.3.4 (justification of Rule 1).
Patterns M4, M5, and M6 are X3-conformance equivalent. y

Proof.
We show that the behavior of the patterns M4, M5, and M6 is branching bisimi-
lar, which is a sufficient condition for X3-conformance equivalence. To this end,
we add a transition to each interface place of all patterns. This transition is la-
beled with the label of the interface place; all other transitions are relabeled to
an internal transition. For the sake of simplicity, we also relabeled all places such
that each label consists only of a single symbol without subscript. The resulting
patterns (for two receiving transitions) are illustrated in Figure 7.4. As the be-
haviors of these open nets are infinite, we represent the branching bisimulation
relation % symbolically.
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(b) modified pattern M5′
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(c) modified pattern M6′

Figure 7.4.: Proof of Rule 1. The patterns M4′, M5′, and M6′ are branching
bisimilar.

Consider M4′ and M5′ in Figure 7.4. We show that
(I) v + w + x = k + l

(II) y + w + x = m+ l
(III) x+ z = n+ l

(with v, w, x, y, z, k, l,m, n ≥ 0) is the required relation %. We have to show, for all
transitions in M4′ and M5′, the resulting markings maintain %. Clearly, % holds for
the initial markings (where no place is marked). Consider now the τ -transitions.
Suppose we are in related markings (m4,m5) ∈ % and firing a τ -transition of M4′

in marking m4 yields a marking m′4. Then, (m′4,m5) must be in %. For example,
firing of τt1 yields

(I) (v − 1) + (w + 1) + x = k + l
(II) (w + 1) + x+ (y − 1) = m+ l

(III) z + x = n+ l

Hence, % is maintained. Relation % also holds for transitions τt2 and τt.
Next, we consider the case that a visible transition is enabled at a marking

m4 (resp. m5). Then, this transition must be enabled at m5 (resp. at m4) as
well, or a run of τ -transitions enabling the respective visible transition exists (cf.
Definition 2.1.5). Clearly, transitions R, a, and b are enabled at m4 if and only
if they are enabled at m5 and again, % is maintained. Suppose S is enabled at
m4 (i. e., x > 0). If S is also enabled at m5 (i. e., l > 0), then % is maintained as
well. Suppose S is not enabled at m5 (i. e., l = 0). From x > 0, l = 0, and % we
conclude that k > 0 (by (I)), m > 0 (by (II)), and n > 0 (by (III)). Hence, τt is
enabled at m5 and firing this transition yields a marking m′5, and S is enabled at
m′5. The other way around, suppose l > 0 and x = 0; that is, S is only enabled
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7. Deriving Substitutable Services with Transformation Rules

at m5. Then, we conclude from (III) that z > 0. If w > 0, τt2 is enabled at m4

yielding marking m′4, and S is enabled at m′4. Otherwise, if w = 0, we conclude
from (I) and (II) that v > 0 and y > 0. Recall that also z > 0. Hence, a run
τt1τt2S starting from m4 clearly exists. Finally, as the final markings of a pattern
are defined by the singleton set of the empty marking, % is trivially fulfilled for
the final markings. Hence, % is indeed a branching bisimulation.

Consider M5′ and M6′ in Figure 7.4. We show that
(I) o+ p = k + l

(II) q + r = k + l
(III) s+ p = m+ l
(IV) t+ r = n+ l

(with k, l,m, n, o, p, q, r, s, t ≥ 0) is the required branching bisimulation relation %.
Clearly, % holds for the initial marking, the internal transitions, and for transitions
R, a, b.

So the only interesting case is the firing of S. Suppose p > 0 and r > 0, and
let l = 0. From (I), (III), and (IV) follows that k > 0, m > 0, n > 0; hence, τt
is enabled and after firing of τt, S is enabled. Now suppose l > 0, and let p = 0
and r = 1. We conclude from (III) and (I) that s > 0 and o > 0. Hence, τt1 is
enabled, and firing τt1 enables S. For p = 1 and r = 0, we conclude from (II)
and (IV) that q > 0 and t > 0. Thus, τt2 is enabled, and firing τt2 enables S.
Finally, for p = 0 and r = 0, we conclude that both, τt1 and τt2 are enabled. As
% is for final markings trivially fulfilled, we conclude that % is indeed a branching
bisimulation relation. As a branching bisimulation is transitive, M4′ and M6′ are
branching bisimilar as well.

These proofs can be generalized (by induction) to any number of receiving
transitions. Thus, we conclude that branching bisimulation holds also for the
general patterns M4, M5, and M6. �

From Lemma 7.3.4, we conclude that a sequence of receiving transitions can
also be reordered while preserving X3-conformance equivalence.

Corollary 7.3.5 (reordering of receiving transitions).
Let pattern M4 be as defined. Let ti, tj be any two transitions of M4 with i 6= j.
Let ai, aj be any two input places of M4 with ai, aj /∈ R and (ai, ti), (aj , tj).
Replacing arcs (ai, ti), (aj , tj) by (ai, tj), (aj , ti) preserves X3-conformance equiv-
alence. y

7.3.2. Send-only rules

The next transformation rule, Rule 2, is restricted to sending transitions. It
corresponds to Rule 1, where every receiving transition is replaced by a sending
transition.
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Rule 2: send-only. A sequence of sending transitions can be executed simulta-
neously and concurrently. All transformations can be applied in both directions.
Example for Rule 2:
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Rule 2 specifies that a sequence of sending transitions can be merged, and the
messages can be sent simultaneously. Furthermore, the messages can also be sent
concurrently. That means, there is no causality of sending messages b1 and b2.
Rule 2 is formalized by the patterns M7, M8, and M9 in Definitions 7.3.6, 7.3.7,
and 7.3.8, respectively.

Pattern M7 specifies an open net that sends n messages b1, . . . , bn sequentially.
An illustration of M7, for n = 2, is given by M7′ in Rule 2.

Definition 7.3.6 (pattern M7).
Let n > 0. Pattern M7 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , pn−1};
• T = {t1, . . . , tn};
• F = {(r, t1) | r ∈ R}

∪ {(tn, s) | s ∈ S}
∪ {(ti, pi), (pi, ti+1) | i = 1, . . . , n− 1}
∪ {(ti, bi) | i = 1, . . . , n};

• P I = R;

• PO = {b1, . . . , bn} ∪ S; y

Pattern M8 specifies an open net that sends n messages b1, . . . , bn simultane-
ously. An illustration of M8, for n = 2, is given by M8′ in Rule 2.

Definition 7.3.7 (pattern M8).
Let n > 0. Pattern M8 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO;
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• T = {t};
• F = {(r, t) | r ∈ R}

∪ {(t, s) | s ∈ S}
∪ {(t, bi) | i = 1, . . . , n};

• P I = R;

• PO = {b1, . . . , bn} ∪ S. y

Sending n messages b1, . . . , bn concurrently is specified by pattern M9. Pattern
M9′ in Rule 2 illustrates M9, for n = 2.

Definition 7.3.8 (pattern M9).
Let n > 0. Pattern M9 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , p2n};
• T = {t1, . . . , tn, split , join};
• F = {(r, split) | r ∈ R}

∪ {(join, s) | s ∈ S}
∪ {(split , pi) | i = 1, . . . , n}
∪ {(pi, join) | i = n+ 1, . . . , 2n}
∪ {(pi, ti), (ti, pn+i) | i = 1, . . . , n}
∪ {(ti, bi) | i = 1, . . . , n};

• P I = R;

• PO = {b1, . . . , bn} ∪ S; y

Correctness of Rule 2 is justified by the following lemma.

Lemma 7.3.9 (justification of Rule 2).
Patterns M7, M8, and M9 are X3-conformance equivalent. y

Proof.
We show that the behavior of the patterns M7, M8, and M9 is branching bisimilar,
which is a sufficient condition for X3-conformance equivalence. As in the proof
of Lemma 7.3.4 we transform the respective patterns. The resulting patterns
(for two receiving transitions) are illustrated in Figure 7.5. As the behaviors of
these open nets are infinite, we represent the branching bisimulation relation %
symbolically.

Consider M7′ and M8′ in Figure 7.5. We show that
(I) v + w + x = k + l

(II) v + y = k +m
(III) v + w + z = k + n

(with v, w, x, y, z, k, l,m, n ≥ 0) is the required relation %. Clearly, the proof holds
for the initial marking, the internal transitions, and for transition R.
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(b) modified pattern M8′
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(c) modified pattern M9′

Figure 7.5.: Proof of Rule 2. The patterns M7′, M8′, and M9′ are branching
bisimilar.

To prove correctness of transition b1, we distinguish the following cases: Rela-
tion % holds for y > 0 and m > 0. For y > 0 and m = 0 we conclude from (II)
that k > 0 and hence τt can fire which enables b1. Likewise, for y = 0 and m > 0
we conclude from (II) that v > 0 and hence τt1 can fire which enables b1.

Next, consider transition b2. For z > 0 and n > 0 relation % holds. If z > 0
and n = 0, we conclude from (III) that k > 0 and hence τt can fire which enables
b2. If z = 0 and n > 0, then there are two cases. Either w > 0 and hence τt2 can
fire which enables b2 or w = 0. If w = 0, we conclude from (III) that v > 0 and
hence a run τt1τt2 exists yielding a token on z.

Consider transition S. For x > 0 and l > 0 relation % holds. If x > 0 and l = 0,
we conclude from (I) that k > 0 and hence τt can fire which enables S. If x = 0
and l > 0, then there are two cases. Either w > 0 and hence τt2 can fire which
enables S or w = 0. If w = 0, we conclude from (I) that v > 0 and hence a run
τt1τt2 exists yielding a token on x.

Finally, as the final markings of a pattern are defined by the singleton set of the
empty marking, % is trivially fulfilled for the final markings. Hence, % is indeed a
branching bisimulation.

Consider M8′ and M9′ in Figure 7.5. We show that
(I) o+ p = k + l

(II) q + r = k + l
(III) o+ s = k +m
(IV) q + t = k + n

(with k, l,m, n, o, p, q, r, s, t ≥ 0) is the required branching bisimulation relation %.
Clearly, % holds for the initial marking, the internal transitions, and for transition
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R. Consider transition b1. Relation % holds for m > 0 and s > 0. For m > 0 and
s = 0 we conclude from (III) that o > 0 and hence τt1 can fire which enables b1.
Likewise, for m = 0 and s > 0 we conclude from (III) that k > 0 and hence τt
can fire which enables b1.

Consider next transition b2. Relation % holds for n > 0 and t > 0. For n > 0
and t = 0 we conclude from (IV) that q > 0 and hence τt2 can fire which enables
b2. Likewise, for n = 0 and t > 0 we conclude from (IV) that k > 0 and hence τt
can fire which enables b2.

Consider transition S. For l > 0, p > 0, and r > 0 relation % holds. We
distinguish three case: If l > 0, p > 0, and r = 0, we conclude from (II) that
q > 0 and hence τt2 can fire which enables S. If l > 0, p = 0, and r > 0, then
o > 0 because of (I) and hence τt1 can fire which enables S. If l = 0, p > 0, and
r > 0, then we conclude from (II) that k > 0 and hence τt can fire yielding a
token on l.

Finally, as the final markings of a pattern are defined by the singleton set of the
empty marking, % is trivially fulfilled for the final markings. Hence, % is indeed a
branching bisimulation. As a branching bisimulation is transitive, M7′ and M9′

are branching bisimilar as well.
These proofs can be generalized (by induction) to any number of receiving

transitions. Thus, we conclude that branching bisimulation holds also for the
general patterns M7, M8, and M9. �

From Lemma 7.3.9, we conclude that a sequence of sending transitions can also
be reordered while preserving X3-conformance equivalence.

Corollary 7.3.10 (reordering of sending transitions).
Let pattern M7 be as defined. Let ti, tj be any two transitions of M7 with
i 6= j. Let bi, bj be any two output places of M7 with bi, bj /∈ S and (ti, bi),
(tj , bj). Replacing arcs (ti, bi), (tj , bj) by (ti, bj), (tj , bi) preserves X3-conformance
equivalence. y

7.3.3. Send-and-receive rules

So far, we considered sending and receiving transitions in isolation. In this sec-
tion, we combine sequences of sending and receiving transitions. We present two
X3-conformance-equivalence preserving transformation rules and show some dis-
allowed rules.

First send and then receive

Transformation rule, Rule 3, shows that a sequence of sending transitions followed
by a sequence of receiving transitions can be executed concurrently.
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Rule 3: send-receive. A sequence of first sending transitions and then receiv-
ing transitions can be executed concurrently and vice versa.
Example for Rule 3:
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Rule 3 is formalized by the patterns M10 and M11 in Definition 7.3.11 and
Definition 7.3.12, respectively.

Pattern M10 consists of a sequence of n sending transitions, which is followed
by a sequence of m receiving transitions. Pattern M10′ in the example for Rule 3
illustrates M10, for m = 1 and n = 1.

Definition 7.3.11 (pattern M10).
Let n > 0 and m > 0. Pattern M10 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , pm+n−1};
• T = {t1, . . . , tm+n};
• F = {(r, t1) | r ∈ R}

∪ {(tm+n, s) | s ∈ S}
∪ {(ti, pi), (pi, ti+1) | i = 1, . . . ,m+ n− 1}
∪ {(ai, tn+i) | i = 1, . . . ,m}
∪ {(ti, bi) | i = 1, . . . , n};

• P I = {a1, . . . , am} ∪R;

• PO = {b1, . . . , bn} ∪ S; y

Pattern M11 defines an open net that executes two branches concurrently. The
first branch is a sequence of any number n of sending transitions, and the second
branch is a sequence of m receiving transitions. Pattern M11′ in the example for
Rule 3 illustrates M11, for m = 1 and n = 1.

Definition 7.3.12 (pattern M11).
Let n > 0, m > 0. Pattern M11 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by
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(a) modified pattern M10′
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(b) modified pattern M11′

Figure 7.6.: Proof of Rule 3. The patterns M10′ and M11′ are branching bisimilar.

• P = P I ∪ PO ∪ {p1, . . . , pm+n+2};
• T = {t1, . . . , tm+n, split , join};
• F = {(r, split) | r ∈ R}

∪ {(join, s) | s ∈ S}
∪ {(split , p1), (split , pm+2)}
∪ {(pm+1, join), (pm+n+2, join)}
∪ {(pi, ti), (ti, pi+1) | i = 1, . . . ,m}
∪ {(pm+1+i, tm+i), (tm+i, pm+2+i) | i = 1, . . . , n}
∪ {(ai, ti) | i = 1, . . . ,m}
∪ {(tm+i, bi) | i = 1, . . . , n};

• P I = {a1, . . . , am} ∪R;

• PO = {b1, . . . , bn} ∪ S; y

Correctness of Rule 3 is justified by the following lemma.

Lemma 7.3.13 (justification of Rule 3).
Patterns M10 and M11 are X3-conformance equivalent. y

Proof.
We show that the behavior of the patterns M10 and M11 is branching bisimilar,
which is a sufficient condition for X3-conformance equivalence. As in the proof
of Lemma 7.3.4 we transform the respective patterns. The resulting patterns (for
one receiving and one sending transition) are illustrated in Figure 7.6. As the
behaviors of these open nets are infinite, we represent the branching bisimulation
relation % symbolically.
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Consider M10′ and M11′ in Figure 7.6. We show that
(I) v + w + x = o+ p

(II) v + w + x = q + r
(III) v + z = q + t
(IV) y + x = s+ p

(with v, w, x, y, z, o, p, q, r, s, t ≥ 0) is the required relation %. Clearly, the proof
holds for the initial marking, the internal transitions, and for transitions R and
a1.

To prove correctness of transition b1, we distinguish the following cases: Rela-
tion % holds for z > 0 and t > 0. For z > 0 and t = 0 we conclude from (III) that
q > 0 and hence τt2 can fire which enables b1. Likewise, for z = 0 and t > 0 we
conclude from (III) that v > 0 and hence τt1 can fire which enables b1.

Consider transition S. For x > 0, p > 0, and r > 0 relation % holds. If x > 0,
p > 0, and r = 0, we conclude from (II) that q > 0. Hence τt2 can fire which
enables S. If x > 0, p = 0, and r > 0, we conclude from (I) and (IV) that o > 0
and s > 0, respectively. Hence, τt1 can fire which enables S. The case x > 0,
p = 0, and r = 0 follows the same arguments. Consider now x = 0, p > 0, and
r > 0. By (IV) we know that y > 0. We distinguish two cases. If w > 0, then τt2
can fire which enables S. If w = 0, then we conclude from (II) that v > 0. Hence
there exists a run τt1τt2 yielding a token on x.

Finally, as the final markings of a pattern are defined by the singleton set of the
empty marking, % is trivially fulfilled for the final markings. Hence, % is indeed a
branching bisimulation.

This proof can be generalized (by induction) to any number of sending and
receiving transitions. Thus, we conclude that branching bisimulation holds also
for the general patterns M10 and M11. �

First receive and then send

So far we excluded the possibility that a receiving transition can be followed by
a sending transition. Rule 4 specifies that a sequence of receiving transitions
followed by a sequence of sending transitions can also be executed simultaneously
and vice versa.
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Rule 4: receive-send. A sequence of first receiving transitions and then
sending transitions can be executed simultaneously and vice versa.
Example for Rule 4:
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Rule 4 is formalized by the patterns M12 and M13 in Definition 7.3.14 and
Definition 7.3.15, respectively.

Pattern M12 executes a sequence of first m receiving transitions and then n
sending transitions. Pattern M12′ in the example for Rule 4 illustrates M12, for
m = 1 and n = 1.

Definition 7.3.14 (pattern M12).
Let n > 0 and m > 0. Pattern M12 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO ∪ {p1, . . . , pm+n−1};
• T = {t1, . . . , tm+n};
• F = {(r, t1) | r ∈ R}

∪ {(tm+n, s) | s ∈ S}
∪ {(ti, pi), (pi, ti+1) | i = 1, . . . ,m+ n− 1}
∪ {(ai, ti) | i = 1, . . . ,m}
∪ {(tm+i, bi) | i = 1, . . . , n};

• P I = {a1, . . . , am} ∪R;

• PO = {b1, . . . , bn} ∪ S; y

An open net that executes simultaneously m receiving and n sending transitions
is specified by pattern M13. Pattern M13′ in the example for Rule 4 illustrates
M13, for m = 1 and n = 1.

Definition 7.3.15 (pattern M13).
Let n > 0 and m > 0. Pattern M13 = (P, T, F, P I , PO, [ ], {[ ]}) is defined by

• P = P I ∪ PO;

• T = {t};
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(a) modified pattern M12′
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(b) modified pattern M13′

Figure 7.7.: Proof of Rule 4. The patterns M12′ and M13′ are branching bisimilar.

• F = {(r, t) | r ∈ R}
∪ {(t, s) | s ∈ S}
∪ {(ai, t) | i = 1, . . . ,m}
∪ {(t, bi) | i = 1, . . . , n};

• P I = {a1, . . . , am} ∪R;

• PO = {b1, . . . , bn} ∪ S; y

With the following lemma we prove correctness of Rule 4.

Lemma 7.3.16 (justification of Rule 4).
Patterns M12 and M13 are X3-conformance equivalent. y

Proof.
We show that the behavior of the patterns M12 and M13 is branching bisimilar,
which is a sufficient condition for X3-conformance equivalence. As in the proof
of Lemma 7.3.4 we transform the respective patterns. The resulting patterns (for
one receiving and one sending transition) are illustrated in Figure 7.7. As the
behaviors of these open nets are infinite, we represent the branching bisimulation
relation % symbolically.

Consider M12′ and M13′ in Figure 7.7. We show that
(I) v + w + x = k + l

(II) y + w + x = m+ l
(III) v + w + z = k + n
(IV) y + w + z = m+ n

(with v, w, x, y, z, k, l,m, n ≥ 0) is the required relation %. Clearly, the proof holds
for the initial marking, the internal transitions, and for transitions R and a1.
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7. Deriving Substitutable Services with Transformation Rules

To prove correctness of transition b1, we distinguish the following cases: Rela-
tion % holds for z > 0 and n > 0. For z > 0 and n = 0 we conclude from (III)
and (IV) that k > 0 and m > 0, respectively. Hence τt can fire which enables b1.
If z = 0 and n > 0, we distinguish two cases: If w > 0, then τt2 can fire which
enables b1. Otherwise, if w = 0, then we conclude from (III) and (IV) that v > 0
and y > 0, respectively. Hence, there exists a run τt1τt2 yielding a token on z.

Consider transition S. For x > 0 and l > 0 relation % holds. If x > 0 and l = 0,
we conclude from (I) and (II) that k > 0 and m > 0, respectively. Hence τt can
fire which enables S. If x = 0 and l > 0, we distinguish two cases: If w > 0, then
τt2 can fire which enables S. Otherwise, if w = 0, then we conclude from (I) and
(II) that v > 0 and y > 0, respectively. Hence, there exists a run τt1τt2 yielding
a token on x.

Finally, as the final markings of a pattern are defined by the singleton set of the
empty marking, % is trivially fulfilled for the final markings. Hence, % is indeed a
branching bisimulation.

This proof can be generalized (by induction) to any number of sending and
receiving transitions. Thus, we conclude that branching bisimulation holds also
for the general patterns M12 and M13. �

Anti-rules

Now we combine the results of Rule 3 and Rule 4 and show that further transfor-
mations do not hold. To this end, we present some anti-rules. Such an anti-rule
refers to a problematic modification of a service; that is, a modification that
violates X3-conformance.
Anti-rule. A sequence of first sending and then receiving cannot be transformed
into first receiving and then sending and vice versa.
Example for Anti-rule:
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The anti-rule shows that first sending and then receiving cannot be reordered
in general: M10 does not X3-conform to M12, and M12 does not X3-conform to
M10. This anti-rule shows that there is a causality if we first receive a message
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(b) X3-strategy of M12′ but not of M10′.

Figure 7.8.: Counterexamples.

and afterwards send a message. It can be easily observed that for example M10′

and M12′ are not branching bisimilar: In the former open net first a token has
to produced on R and then t1 can be fired yielding a token on b1, but not in the
latter open net. However, proving that a branching bisimulation does not exist
is not enough to prove that X3-conformance does not hold. Hence, we present a
concrete counterexample.

Suppose the final markings to be equivalent to the singleton set with the empty
marking. Then, the open net in Figure 7.8(a) is an X3-strategy of M10′, but no
X3-strategy of M12′, and the open net in Figure 7.8(b) is an X3-strategy of M12′

but not of M10′.

From the counterexamples in Figure 7.8 it follows that first receiving and then
sending (cf. M12) cannot be transformed into a pattern that sends and receives
concurrently (e. g., M11), because we could transform the latter open net into
M10 by applying Rule 3. Consequently, first receiving then sending does not X3-
conform to sending and receiving concurrently and vice versa. Analogously, first
sending then receiving (M10) cannot be transformed into sending and receiving
simultaneously (M13), because the latter can be transformed into M12 by applying
Rule 4. Thus, first sending then receiving does not X3-conform to sending and
receiving simultaneously and vice versa.
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7.4. Conformance-preserving transformation rules

The transformation rules presented in the previous section preserve X3-confor-
mance equivalence. In this section, we show two rules that preserve X3-confor-
mance only in one direction. Consequently, branching bisimulation cannot be
applied for justifying correctness of these rules. Unfortunately, so far we do not
have a proper proof technique to decide X3-conformance of two patterns. So the
idea is to put some restrictions on the context of a pattern such that the decision
procedure reduces to X1-conformance. For X1-conformance, we presented in Sec-
tion 5.1 a decision algorithm based on X1-operating guidelines. We apply these
algorithm and prove the correctness of the two transformation rules for restricted
contexts and a fixed communication bound.

7.4.1. Adding an alternative branch

The first X3-conformance-preserving transformation, Rule 5, specifies a way to
add an alternative branch to a pattern M14.

Rule 5: adding an alternative branch.
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M14 M15

f

t7

f

The pattern M14 first receives a and then enters either the left or the right
branch. In the left (right) branch, message b (c) is sent, and then message d (e) is
received. The pattern M14 can be transformed into M15 by adding an alternative
branch. In this branch, d is received, and then a message f is sent. Afterwards,
there is a direct continuation in S. Rule 5 preserves X3-conformance in only
one direction. The intuition behind this rule is that any X3-strategy of M15 has
to wait for the decision of M14 which branch it will enter. Otherwise, it could
happen that an environment sends d, but M14 enters the left branch and waits
for message e.

As we do not have a proof technique for X3-conformance yet, we prove the
correctness of this transformation rule for a certain context. Recall that for acyclic
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and bounded open nets weak termination and deadlock freedom coincide; see
Lemma 2.6.3. Consequently, X3-conformance reduces to X1-conformance. For
a fixed communication bound, we can decide X1-conformance; see Section 5.1.
Hence, we require that M14 is a pattern of an acyclic and bounded open net N .

To apply Lemma 2.6.3 to M14, we have to make sure that M14 is acyclic and
bounded as well. The latter is, however, not the case, because the inner subnet of
M14 is unbounded. To overcome this, we have to put some additional restriction
to the context N of M14. We require that transition t1 can fire at most once in
the inner subnet of N . In this case, we can add a place p0 that is initially marked
and an arc (p0, t1) to M14. Clearly, adding p0 does not change the semantics of
N ; that is, transition t1 still fires at most once in the inner subnet of N . This
construction has a nice effect. The inner subnet of M14 is now bounded, and we
have a fixed initial marking m0 = [p0] for M14.

Definition 7.4.1 (pattern M14).
Let N be an acyclic and bounded open net. Open net M14 is a pattern of N iff
transition t1 fires at most once in the inner subnet of N . y

Lemma 7.4.2 (Rule 5: adding an alternative branch).
Let N be an open net such that M14 is a pattern of N . Pattern M14 X3-conforms
to pattern M15 in the context of N . y

To prove that M15 X3-conforms to M14, we restrict the sets R and S of both
patterns to singleton sets. As described above, we further add to each pattern a
place p0 that is initially marked. In M14, we add an arc (p0, t1), and in M15 we
add two arcs (p0, t1) and (p0, t6). Hence, we have the initial marking, m0 = [p0],
and define the set of final markings by Ω = {[ ]}. For the resulting open nets, the
tool Fiona calculated the X1-operating guidelines and checked that OGX1(M15)
refines OGX1(M14). As the two X1-operating guidelines have too many states,
we do not show them.

Note that the other direction of the lemma does not hold: An open net that
first sends message d and then waits for message f is an X1-strategy of M15 but
not of M14.

7.4.2. Parallelization send-receive

Subsequently, we present anotherX3-conformance-preserving transformation rule.
The idea is to add more behavior by adding concurrency.
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Rule 6: parallelization send-receive.

p1

t3

t1 a

b

c

d

R

S

p2

t4 t5

t2

M16

t1

a

b

c

d

R

S

p4p3

p2

t3 t4

p1

t2

split

join

M17

Starting point is a pattern M16 with an implicit choice. Pattern M16 sends
either message a or message b. If the left branch is entered, then only message d
can be received, whereas in the right branch either message c or message d can
be received. Clearly, we can add behavior to pattern M16 if we add this choice
also to the left branch. Instead of adding this choice to the left branch, pattern
M17 executes the sending and the receiving choice concurrently.

To prove that pattern M16 X3-conforms to pattern M17, we follow the same
approach as in the previous section and restrict the context of M16.

Definition 7.4.3 (pattern M16).
Let N be an acyclic and bounded open net. Open net M16 is a pattern of N iff
the sum of firings of transitions t1 and t2 in the inner subnet of N is at most 1.y

Lemma 7.4.4 (Rule 6: parallelization send-receive).
Let N be an open net such that M16 is a pattern of N . Pattern M16 X3-conforms
to pattern M17 in the context of N . y

We apply the same proof strategy as for Lemma 7.4.2 and prove the correctness
of Lemma 7.4.4 using the tool Fiona. Again, we do not show the corresponding
X1-operating guidelines, because they have too many states.

The other direction of this lemma does not hold; for example, an open net that
first sends message c and afterwards can receive either message a or message b is
an X1-strategy of M17, but not of M16.
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8. Extending the Equivalence Notion
for Abstract WS-BPEL Processes

BPEL is a standard for executable processes. An executable process is a business
process that can be automated through an IT infrastructure. The BPEL specifica-
tion also introduces the concept of abstract processes. In contrast to an executable
process, an abstract process is not executable and can have parts where business
logic is hidden.

The BPEL specification introduces a notion of observable equivalence between
an abstract process and an executable process. Basically, this equivalence notion
defines a set of syntactical rules that can be augmented or restricted by profiles. As
a limiting factor, none of these profiles considers the semantics (i. e., the behavior)
of the processes. Consequently, the set of executable processes that are observable
equivalent to an abstract process is unnecessarily restricted.

In this chapter, we present a more general approach to decide equivalence be-
tween an abstract and an executable process. We propose a novel profile and
define an equivalence on the observable behavior of processes; see also Figure 1.4.
To this end, we adapt our notion of X3-conformance equivalence to BPEL pro-
cesses and reformulate the X3-conformance-equivalence preserving transformation
rules, which we defined in Chapter 7. These reformulated rules provide a neces-
sary condition to decide whether two BPEL processes are equivalent. That way,
more executable processes can be considered equivalent to an abstract process
without the loss of general applicability.

In the remainder of this chapter, we sketch the basic concepts of BPEL (Sec-
tion 8.1) and introduce the concept of abstract processes (Section 8.2). Section 8.3
presents the novel abstract profile and defines a notion of equivalence based on
a set of transformation rules. The results of this chapter have been published
in [KLM+08].

8.1. A glimpse on BPEL

The Web Services Business Process Execution Language (WS-BPEL, or BPEL
for short) offers a standards-based approach to build distributed applications for
business-to-business interactions. A BPEL process implements one Web service
by specifying the interactions with other Web services. This allows for building
flexible business processes by orchestrating multiple other Web services. Such
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8. Extending the Equivalence Notion for Abstract WS-BPEL Processes

applications then follow the architectural pattern of an SOA. Business processes
implemented in BPEL are a key element in an SOA infrastructure [ABH+07].

The BPEL specification [Alv07] distinguishes two different kinds of business
processes: executable processes and abstract processes. Executable processes must
contain all the details that are necessary to be executed by a BPEL engine. To
execute a BPEL process means to create a running instance of this process. In
contrast, abstract processes are not executable and can have parts where business
logic is left unspecified or explicitly marked as opaque (i. e., hidden). In the
following, we introduce the basic language constructs of BPEL.

For the specification of the internal behaviour of a business process, BPEL
provides two kinds of activities: basic activities and structured activities. A
basic activity models an elementary action in the process, whereas a structured
activity defines some causal order between other activities. Structured activities
can be nested, and the activity structure in the process resembles a tree, where
the process itself is its root and the basic activities are its leafs. As such, any
structured activity contains a number of child activities.

A basic activity can communicate with other processes by messages (invoke,
receive, reply), manipulate or check data (assign, validate), wait for some time
(wait) or just do nothing (empty), signal faults (throw), or end the entire process
instance (exit).

The structured activities are sequential execution (sequence), parallel execution
(flow), data-dependent branching (if ), timeout- or message-dependent branching
(pick), and repeated execution (while, repeatUntil, forEach). The most important
structured activity is a scope. It links an activity to a transaction management
and provides fault, compensation, event, and termination handling. A process is
the outmost scope of the described business process.

Activities, which are embedded in a flow, can be further ordered by links. A
link connects a source activity with a target activity. The source may specify a
Boolean expression, the status of the link. The target may also specify a Boolean
expression—that is, the join condition—which evaluates the status of all incoming
links. The target activity is only executed when its join condition holds.

For each communicating activity, a BPEL process specifies a partner link and
an operation. A partner link defines the name of the Web service that sends and
receives the message, respectively; an (WSDL) operation specifies the correspond-
ing channel the message uses.

As an illustration, Figure 8.1 depicts again the open-net model of the broker
service. Recall that the broker receives a credit request from a client. Then
he concurrently forwards the request to a credit service and sends the bill to
the client. Figure 8.1(b) graphically illustrates the broker specified in BPEL.
Receiving the client’s request is modeled by a receive activity; each sending is
modeled by an invoke activity. The ordering of these three activities is achieved
by embedding the two invoke activities into a flow and sequentially execute the
receive activity and the flow. Finally, the sequence is embedded into a process.
Figure 8.1(c) shows the respective code snippet. The code snippet shows that for
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(b) Broker specified in BPEL

<process name="broker" ...>
<partnerLinks>
<partnerLink name="client" ... />
<partnerLink name="credit" ... />

</partnerLinks>
<sequence>
<receive partnerLink="client" operation="req" ... />
<flow>
<invoke partnerLink="client" operation="bill" ... />
<invoke partnerLink="credit" operation="fwd" ... />

</flow> 
</sequence>

</process>

(c) BPEL code snippet of the Broker

Figure 8.1.: Illustration of BPEL using the broker service of Figure 2.7.

every partner of the broker—that is, the client and the credit service—a partner
link is defined, and an operation refers to the respective message channel.

8.2. Abstract processes in BPEL

The BPEL standard introduces the notion of abstract processes. An abstract
process is either used to hide language elements of an executable process or is not
yet fully specified. We explain the idea of abstract processes by the help of two
use cases.

In a first use case, an abstract process serves as a public view of an executable
BPEL process. A BPEL process usually implements a stateful Web service, which
requires its exposed operations to be invoked in a particular order. Therefore, if
an enterprise publishes a process P , it must not only provide a description of
the interface of P , but it also might want to specify a public view of P . Such a
public view—in BPEL, the term interaction protocol is used—can be represented
by an abstract process. Like in the setting of service contracts, the abstract
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process describes the rules of engagement that P has to fulfill. The abstract
process shows only the externally observable behavior of P while hiding other
process model elements; that is, it avoids the disclosure of internal (potentially
confidential) business process logic. A partner interacting with P would then have
to design its service such that it is compatible to the abstract process of P .

In a second use case, an abstract process serves as a template for further refine-
ment. To illustrate this, imagine a business analyst capturing and sketching out
a business process. This business process is recorded as an abstract process by
omitting all the technical details. In a next step, this abstract process is handed
over to an IT department to add details required for the process to become exe-
cutable, but are not relevant for the business. Such an abstract process may have
been generated by business-level process modeling tools.

The syntax of an abstract process is defined by the Common Base. The Com-
mon Base also describes two types of transformations between abstract and exe-
cutable processes. The first transformation is a replacement of explicitly modeled
opaque activities of an abstract process by activities of an executable process.
Alternatively, it is also possible to replace an opaque expression by a concrete
expression—for example, the condition of a while loop. The second transforma-
tion consists of inserting entities of an executable process at specific places in a
process model; for example, it is possible to insert a start activity. Reordering of
activities, removing of activities, or changing the control flow is never permitted.

Based on these transformations, the Common Base defines two relations be-
tween an abstract process and a set of executable processes: the Executable Com-
pletion and the Basic Executable Completion. The Executable Completion allows
to use both transformations, and it requires that the resulting executable process
satisfies all BPEL static validation rules. The Basic Executable Completion is
more restrictive than the Executable Completion, because it limits the allowed
transformations; for example, it is not allowed to add start activities. The set of
executable processes, which are related to an abstract process according to these
two relations, are the executable completions.

Beyond these two general syntactical transformations, the specification further
allows to define additional syntactical restrictions by means of profiles. A profile
defines a set of rules that specify syntactically a subset of executable comple-
tions. For abstract processes, the BPEL standard provides two concrete profiles:
the Abstract Process Profile for Observable Behavior (APPOB) and the Abstract
Process Profile for Templates (APPT). The APPOB handles the bottom-up way
of providing a public view generated out of an executable process; see the first
use case. In contrast, the APPT describes a top-down refinement, where abstract
processes can be used as an exchange format between different roles within an
enterprise; see the second use case.

The abstract process profiles are used to define permitted completions of ab-
stract processes to executable processes. Figure 8.2 illustrates the relationship
between abstract and executable processes as well as abstract process profiles.

Both use cases for abstract processes have in common that the abstract process
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Figure 8.2.: Relationships between abstract processes, executable completions,
and abstract process profiles.

definition is regarded as a specification, whereas an executable process can then
be seen as one implementation thereof. When one artifact serves as a specifica-
tion and one artifact provides an implementation of that specification, obviously
there must be a way to ensure that they conform to each other1. The BPEL
specification defines that an executable process conforms to an abstract one if
“the executable process is one of the executable completions in the set of permit-
ted completions specified by the abstract process profile”. The definition of an
executable completion stops at a syntactical level. Additional syntactic rules are
provided by profiles addressing particular use cases. These rules restrict the set
of allowed executable completions.

As we are interested in the public view use case, we consider the APPOB in
more detail. The set of executable completions of an abstract process is restricted
by this profile such that the externally observable interactions defined in the
abstract process are preserved in all its executable completions. In other words,
when creating an executable process, no transformation must be applied that
modifies interactions via partner links already defined in the abstract process.
For example, according to the APPOB, in abstract processes

• join conditions are not allowed to be hidden (otherwise, the synchronization
of links and hence the control flow could be changed);

1The BPEL specification uses the term compatibility instead of conformance.

203



8. Extending the Equivalence Notion for Abstract WS-BPEL Processes

• an exit activity must not be inserted (otherwise, the process could end at a
different point of the control flow);

• the nesting structure of structured activities around any activity in an ab-
stract process remains unchanged; for example, it is disallowed to insert a
loop activity as a new parent of an existing activity;

• the ability to introduce new branches, handlers, links to existing activities,
or scoped declarations is substantially restricted, in particular, modifications
must be avoided, which affect the branching behavior in a way that conflicts
with the specifications in the abstract process;

• the ability to throw new faults is limited to avoid affecting the existing
control flow; and

• new partner links may be added and used in additional communicating
activities.

Without going into the details of the rules specified by the APPOB, consider
the following example, which shows the actual weakness of this profile. Suppose
an abstract process specifies that first message a is sent and then message b is
sent. In this case, an executable process that executes the sending of a and b
concurrently is not permitted according to the APPOB. So the APPOB excludes
executable processes that have the same observable behavior, but do not follow
the syntactical restrictions.

In the next section, we define a novel profile (see Figure 8.2) and provide some
additional rules to check equivalence.

8.3. A novel abstract profile for BPEL

This section defines a novel abstract profile for BPEL. Motivated by the limita-
tions of the APPOB, we extend the set of executable completions of an abstract
process P by all those executable processes that are behaviorally equivalent to
P . To this end, we formally define behavioral equivalence of BPEL processes by
X3-conformance equivalence. To decide behavioral equivalence, we reformulate
the X3-conformance-equivalence preserving transformation rules of the previous
chapter.

As the BPEL specification does not make assumptions about protocols, bind-
ings, and quality of service attributes of interactions, it is necessary to distin-
guish between transformation rules that are valid for synchronous bindings (Sec-
tion 8.3.1) and those that are also valid for asynchronous bindings (Section 8.3.2).
Section 8.3.3 presents some disallowed transformation rules and, finally, Sec-
tion 8.3.4 discusses the achieved results.
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8.3.1. An equivalence notion for BPEL processes

The APPOB in BPEL allows adding new partner links and communicating activ-
ities using these new partner links. We introduce a variation of the APPOB that
preserves the observable behavior globally; that is, the set of all partner links and
interactions across these partner links remain invariant.

We take the existing APPOB and introduce a new profile, the Abstract Pro-
cess Profile for Globally Observable Behavior (APPGOB). The only difference
to the APPOB is that we do not permit adding new partner links as a part of
the executable completion. In a sense, we thereby restrict the set of executable
completions. Figure 8.2 illustrates how the APPGOB is related to the existing
profiles.

Furthermore, the Common Base is too restrictive in only allowing replacements
of opaque entities and insertions of additional executable entities. There exist
a number of cases where the reordering of activities as well as the deletion of
activities can be tolerated if these transformations do not affect the main intention
of the profile. The APPOB (as well as the more restrictive APPGOB) concentrate
on interactions across partner links. Other activities, such as simple assignments,
do not need to be handled in such a restrictive fashion. For example, several
assignment operations may be independent in the sense that reordering them has
no effect on the externally observable behavior of the process. So we want to
extend the set of executable completions to a set of executable processes exposing
the same observable behavior.

It turns out that behavioral equivalence coincides with X-conformance equiv-
alence, for X = {weak termination, strict termination}, a notion we introduced
in Definition 3.1.5. Two services are X-conformance equivalent if and only if
no X-strategy can distinguish between them. Hence, we have a formalization
of behavioral equivalence. Given an abstract process P , we are interested in all
executable processes P ′ such that P ′ is behaviorally equivalent to P . It is not
difficult to see that every executable process P ′ of the set EC GOB of executable
completions of P allowed by the APPGOB is behaviorally equivalent to P .

Figure 8.3 shows the relationships between the different executable comple-
tions. The outmost ellipse depicts all executable completions EC according to the
Common Base. A subset of this set are those executable completions that follow
the APPOB, and the APPOB embeds those executable completions that follow
the ABBGOB. This set is, however, only a subset of the behaviorally equivalent
processes we are interested in.

Unfortunately, we do not have a method to construct a finite representation
of all behaviorally equivalent processes P ′ of a process P . However, the X3-
conformance-equivalence preserving transformation rules in Chapter 7 provide
a method to calculate a subset of all X3-conformance equivalent processes of
P (recall that these transformation rules also preserve strict termination). After
reformulating them into BPEL, they can be applied in our setting. In other words,
we extend the set EC GOB of P by all those executable processes P ′′ that can be
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Figure 8.3.: Relationship between executable completions (EC), executable com-
pletions following the APPOB (ECOB), executable completions fol-
lowing the APPGOB (ECGOB), and executable processes in EC that
are behaviorally equivalent. ECGOB is the intersection of ECOB and
the set of behaviorally equivalent processes.

derived from any P ′ ∈ EC GOB by applying zero or more of the (reformulated) X3-
conformance-equivalence preserving transformation rules presented in Chapter 7.

Definition 8.3.1 (equivalence of observable behavior).
Let P be an abstract process, and let EC GOB be its executable completion allowed
by the APPGOB. An executable process P ′′ is behaviorally equivalent to P iff
P ′′ ∈ EC GOB or there is an P ′ ∈ EC GOB , and P ′′ can be derived from P ′ by
applying zero or more of the following seven transformation rules:

1. Looping existing activity

2. Activity removal from sequence

3. Activity removal from flow

4. Activity reordering

5. Invoke-flow serialization

6. Receive-flow serialization

7. Invoke and receive y

In the following, we introduce these rules. We distinguish between the first
four rules on the one hand, as they consider only non-communicating activities
and the remaining rules for communicating activities, on the other hand. For
each rule, we present a textual description and an illustrating example by help
of a code snippet. On the left-hand side of each example the part of the existing
BPEL process is shown, whereas on the right-hand side the respective part after
applying the transformation is illustrated. Note that every rule is a reformulation
of an X3-conformance-equivalence preserving transformation rule of Chapter 7
that justifies the application of this rule in this setting.
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Rules for non-communicating activities

Based on the projection-inheritance preserving transformation rules of Figure 7.3
in Section 7.2, we identify the following four rules for non-communicating activi-
ties.

Rule 1: looping existing activity. Given any sequence of activ-
ities, we can embed a present non-communicating activity into a finite
(while/repeatUntil/forEach) loop.
Example for Rule 1:

<sequence>
<activity1 />
<activity2 />
<activity3 />

</sequence>

<sequence>
<activity1 />
<while>
<condition … />
<activity2 />

</while>
<activity3 />

</sequence>

Although the Common Base already allows for inserting activities, it does
not consider that a present non-communicating activity can be embedded into a
loop. Justification of this rule is given by applying the following three projection-
inheritance preserving transformation rules: remove activity2, add the loop, and
insert activity2 into the loop.

Rule 2: activity removal from sequence. A non-communicating basic or
structured activity can be deleted from a sequence of activities.
Example for Rule 2:

<sequence>
<activity1 />
<activity2 />
<activity3 />

</sequence>

<sequence>
<activity1 />
<activity3 />

</sequence>

The Common Base allows for inserting an activity. That means, we can apply
the transformation illustrated in the preceding example in the other direction as
well. However, also removing an activity from a sequence does not change the
observable behavior.

Rule 3: activity removal from flow. A non-communicating basic or struc-
tured activity can be deleted from a flow.
Example for Rule 3:

<flow>
<activity1 />
<activity2 />
<activity3 />

</flow>

<flow>
<activity1 />
<activity3 />

</flow>

Like for the previous rule, the Common Base considers only activity insertion,
rather than the removal of an non-communicating activity from a flow.

207



8. Extending the Equivalence Notion for Abstract WS-BPEL Processes

Rule 4: activity reordering. A sequence of solely non-communicating basic
or structured activities can be arbitrarily reordered.
Example for Rule 4:

<sequence>
<activity1 />
<activity2 />

</sequence>

<sequence>
<activity2 />
<activity1 />

</sequence>

As we are allowed to remove and to insert non-communicating activities, we
can consequently also reorder non-communicating activities that are sequentially
ordered. Note that applying these four rules must not violate data-dependencies
between activities. However, there exist techniques [Loh08, MMG+07, HAM08]
to identify those data-dependencies.

Rules for communicating activities

Next, we introduce three additional rules that change the order of communicating
activities.

Rule 5: invoke-flow serialization. A flow of one-way invoke activities can
be transformed into a sequence.
Example for Rule 5:

<sequence>
<invoke operation="a" />
<invoke operation="b" />

</sequence>

<flow>
<invoke operation="a" />
<invoke operation="b" />

</flow>

<sequence>
<invoke operation="b" />
<invoke operation="a" />

</sequence>

<flow>
<invoke operation="a" />
<invoke operation="b" />

</flow>

<sequence>
<invoke operation="b" />
<invoke operation="a" />

</sequence>

If n one-way invoke activities are executed concurrently in a flow, then these
activities can be executed in any sequential order without changing the observable
behavior. Correctness of Rule 5 is justified by Rule 2 in Section 7.3.

Rule 6: receive-flow serialization. A flow of receive activities can be trans-
formed into a sequence.
Example for Rule 6:

<sequence>
<receive operation="a" />
<receive operation="b" />

</sequence>

<flow>
<receive operation="a" />
<receive operation="b" />

</flow>

<sequence>
<receive operation="b" />
<receive operation="a" />

</sequence>

<flow>
<receive operation="a" />
<receive operation="b" />

</flow>

<sequence>
<receive operation="b" />
<receive operation="a" />

</sequence>

Rule 6 is the analogous of Rule 5; that is, n receive activities being executed
concurrently in a flow can be executed in any sequential order without changing
the observable behavior. Correctness of Rule 6 is justified by Rule 1 in Section 7.3.
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Rule 7: invoke and receive. A sequence of first a one-way invoke activity
and then a receive activity can be transformed into a flow.
Example for Rule 7:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

Applying Rule 7 allows to increase the amount of concurrency in the BPEL pro-
cess without affecting the observable behavior. Correctness of Rule 7 is justified
by Rule 3 in Section 7.3.

8.3.2. A relaxed equivalence notion for asynchronous bindings

We mentioned already that the BPEL specification does not make any assump-
tion about protocols, bindings, and quality of service attributes of interactions.
So far, all presented transformation rules are valid for both synchronous and asyn-
chronous binding. However, if we would assume an asynchronous binding, we can
relax the behavioral equivalence relationship even further by introducing three ad-
ditional transformation rules. We therefore generalize the relation of behavioral
equivalence to relaxed behavioral equivalence.

Definition 8.3.2 (relaxed equivalence of observable behavior).
An executable process P ′′ is relaxed behaviorally equivalent to an abstract process
P iff P ′′ is behaviorally equivalent to P , or there is an executable process P ′ being
behaviorally equivalent to P , and P ′′ can be derived from P ′ by applying zero or
more of the following three transformation rules:

8. Invoke-sequence reordering

9. Receive-sequence reordering

10. Invoke and receive y

In the following, we introduce the three additional rules.

Rule 8: invoke-sequence reordering. A sequence of one-way invoke activi-
ties can be arbitrarily reordered, or it can be transformed into a flow.
Example for Rule 8:

<sequence>
<invoke operation="a" />
<invoke operation="b" />

</sequence>

<sequence>
<invoke operation="b" />
<invoke operation="a" />

</sequence>

In case of asynchronous bindings, it is possible that if a process sends first a
message a and then a message b, then its partner process may receive b before
a. The reason is that messages can overtake each other on a message channel.
As a sequence of n sending messages can reach the partner in any order, we can
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arbitrarily reorder a sequence of one-way invoke activities or even embed these
activities into a flow. Correctness of Rule 8 is justified by Rule 2 in Section 7.3.

Rule 9: receive-sequence reordering. A sequence of receive activities can
be arbitrarily reordered, or it can be transformed into a flow.
Example for Rule 9:

<sequence>
<receive operation="a" />
<receive operation="b" />

</sequence>

<sequence>
<receive operation="b" />
<receive operation="a" />

</sequence>

For the same arguments as presented for Rule 8, we can arbitrarily reorder a
sequence of receive activities or even embed these activities into a flow by applying
Rule 9. Correctness of Rule 9 is justified by Rule 1 in Section 7.3.

Rule 10: invoke and receive. A flow that contains a one-way invoke activity
and a receive activity can be transformed into a sequence of first the invoke and
then the receive activity.
Example for Rule 10:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

Rule 10 describes in fact the opposite direction of Rule 7. It is only applicable
in case of asynchronous bindings: Assume a process similar to the left hand side
of the example. Further assume a mirrored version of this process as a partner.
Applying Rule 10 to the process in case of a synchronous binding could lead to
a deadlocking situation in the case where the message on b sent by the partner
arrives before the process has sent the message on a to the partner. Correctness
of Rule 10 is justified by Rule 3 in Section 7.3.

8.3.3. Disallowed transformation rules

Based on the results presented in this section so far, the notion of equivalent
behavior can be significantly extended beyond BPEL’s APPOB. However, even
for our notion of extended behavioral equivalence, there exist limitations, as shown
by the following three transformation rules, which are explicitly disallowed.

Anti-rule 1. A sequence of first a one-way invoke and then a receive activity
must not be reordered, or vice versa.
Example for Anti-rule 1:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

<sequence>
<receive operation="a" />
<invoke operation="b" />

</sequence>

<pick>
<onAlarm>
<sequence>
<invoke operation="b" />
<receive operation="a" />

</sequence>
</onAlarm>
<onMessage operation="a" />
<invoke operation="c" />

</onMessage> 
</pick>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

<sequence>
<invoke operation="b" />
<receive operation="a"/>

</sequence>

Beside reordering, also a concurrent execution is disallowed:
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<process name="example" ...>
<partnerLinks>
<partnerLink name="a" ... />
<partnerLink name="b" ... />

</partnerLinks>
<sequence>
<receive partnerLink="a" operation="a1" ... />
<if>
<condition> ... </condition>
<sequence>

<empty />
<receive partnerLink="b" operation="b1" ... />

</sequence>
<else>

<sequence>
<empty />
<receive partnerLink="b" operation="b2" ... />

</sequence>
</else>

</if>
</sequence>

</process>

Figure 8.4.: Counterexample justifying the correctness of Anti-rule 3.

Anti-rule 2. A sequence of first a receive activity and then a one-way invoke
activity must not be transformed into a flow, or vice versa.
Example for Anti-rule 2:

<sequence>
<receive operation="a" />
<invoke operation="b" />

</sequence>

<flow>
<receive operation="a" />
<invoke operation="b" />

</flow>

Anti-rules 1 and 2 are justified by the anti-patterns which we presented in
Section 7.3.

Finally, the addition and usage of new partner links is not permitted. This anti-
rule differs from the original APPOB where this addition is explicitly allowed.

Anti-rule 3. New partner links or communicating activities must not be added.

Anti-rule 3 excludes the addition of new partner links and new communicating
activities. Although this is permitted in the original APPOB and does not affect
the observable behavior from one partner’s point of view, it would change the
global observable behavior by introducing “unintended” behavior. As an example,
consider the process in Figure 8.4.

The original APPOB would allow to add a partner link b and the two receive
activities (the bold lines in Figure 8.4). Although this addition would not affect
the partner communicating via partner link a, the addition would introduce un-
intended behavior: A partner communicating via partner link b would have to
guess how the condition of the if activity was evaluated to decide whether to send
a message using operation b1 or b2. Therefore, the process could either dead-
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lock (in case the wrong operation was used) or would complete with a redundant
pending message (in case both operations were used). Both cases are certainly
not desirable, but not excluded by the APPOB.

8.3.4. Discussion

This chapter presented an application of our theory on service substitutability. We
adapted our notion of X-conformance equivalence, for X = {weak termination,
strict termination} to BPEL processes and reformulated the X-conformance-equi-
valence preserving transformation rules in the setting of BPEL.

The attentive reader will have recognized that some of the X-conformance-
equivalence preserving transformation rules of Section 7.3 were not reformulated
in the previous subsection. As an example, the simultaneously sending of several
messages cannot be modeled in BPEL.

We presented a notion of behavioral equivalence on BPEL processes. This
notion can of course be relaxed to a preorder. In this case, we could reformulate
all X-conformance-preserving transformation rules of Section 7.4.

As an alternative to the presented transformation rules, we can check re-
laxed behavioral equivalence of two BPEL processes a posteriori with the tools
BPEL2oWFN/Fiona [ALM+09]. However, our theoretical results are limited to
X-conformance equivalence for acyclic services, because only in that case the
analysis question coincides with deciding X1-conformance equivalence (cf. Chap-
ter 5).

Checking behavioral equivalence (or conformance) between an abstract and
an executable process is not a particular strength of the BPM tools currently
available in the marketplace. However, in cases where such a functionality is
offered, our approach has beneficial practical implications. The proposed profile
makes it much easier to find an executable process that is equivalent to a given
abstract one, as the set of behaviorally equivalent processes is substantially larger
than the set of executable completions in BPEL (cf. Figure 8.3). Thus, this may
potentially save development time when creating BPM solutions.

Finally, it is worthwhile to mention the novel abstract profile for BPEL, which
we defined in the previous section, is not a WS-BPEL language extension. It
should be taken as a new profile—something that is already allowed by the stan-
dard today.
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9. Related Work

In this chapter, we review related work in the area of service substitution. We
start with an overview of substitutability criteria related to our notion of X-
conformance in Section 9.1. Subsequently, work related to our substitutability
criterion X-preservation is surveyed in Section 9.2, and finally Section 9.3 reviews
work on transformation rules.

9.1. Work on conformance

In this section, we review work related to our substitutability criterion X-con-
formance. To structure the different approaches, we distinguish among work
based on Petri nets, on process calculi, and on automata.

9.1.1. Work based on Petri nets

Work of Vogler Vogler presents in [Vog92] a few tens of equivalences to support
modular construction of Petri nets. The setting of his work is, however, more
general than ours. Besides asynchronously communicating Petri nets, Vogler also
studies synchronously communicating Petri nets; that is, Petri nets are composed
by transition fusion. In what follows, we relate our results to the results of Vogler
for asynchronous communication.

One of the behavioral properties that are considered in [Vog92] is deadlock
freedom. This notion is stricter than ours (see Definition 2.6.1), because a livelock
that consists only of internal transitions is treated as a deadlock in [Vog92]. In
addition, the notion of invariant reachability of places is introduced in [Vog92]. A
place p of N is invariantly reachable if and only if, for every reachable marking m
in N , there is some marking m′ with m ∗−→ m′, such that m′(p) > 0. For singleton
sets Ω = {mf} of final markings, invariant reachability of all p with mf (p) > 0 is
equivalent to our notion of weak termination.

Vogler defines the notion of IR-equivalence. Two open nets N and N ′ are IR-
equivalent if, for all open nets S, every place p ∈ PS is invariantly reachable in
N⊕S if and only if it is invariantly reachable in N ′⊕S. As a main difference to X3-
conformance equivalence, IR-equivalence is an asymmetric notion; that is, it only
focuses on the partner S of N . In contrast, X3-conformance equivalence requires
that both, N and its partner, always reach a final state. IR-equivalence coin-
cides with fair testing (called PF++-equivalence in [Vog92]). In Appendix A.1,
we proved that fair testing implies weak termination, but the opposite direction
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does not hold in general. The notion of deadlock freedom, which is considered
in [Vog92], is also equivalent to fair testing.

Work of Basten and Van der Aalst For workflow nets (WFNs) [Aal98], the no-
tion of projection inheritance [BA01, AB02] is used two relate two WFNs that can
be substituted. Projection inheritance is based on branching bisimulation. As a
difference to our work, the projection-inheritance approach assumes a synchronous
communication model (i. e., Petri nets are composed by transition fusion). In
Section 7.2, we reformulated projection inheritance for open nets and proved that
X3-conformance equivalence is more liberal than the notion of projection inher-
itance; that is, projection inheritance implies X3-conformance equivalence, and
hence it also implies X1-conformance equivalence.

Work of Martens Martens presents in [Mar05] a refinement notion for work-
flow modules. Workflow modules — like open nets — are a Petri-net formalism to
model (Web) services. However, workflow modules are subject to several syntactic
restrictions (similar to workflow nets) and therefore less general than open nets.
Martens’ refinement notion is equivalent to X3-conformance. To decide refine-
ment of acyclic workflow modules, Martens introduces a data structure, called
communication graph, and a simulation relation on these graphs. A communi-
cation graph in some sense represents the communication behavior of a service
and can be compared to a reduced version of our most permissive X3-strategy
(cf. Definition 4.3.1). Due to the limitations of workflow modules and the loss
of information by the reductions compared to our X1-operating guidelines, the
structural simulation relation on communication graphs is only sufficient to decide
X3-conformance of acyclic services. In contrast, for acyclic services, we were able
to prove a criterion that is necessary and sufficient (in this case X1-conformance
and X3-conformance coincide; see Lemma 2.6.3). Figure 9.1 shows that the deci-
sion procedure in [Mar05] is only sufficient but not necessary.

Work of Bonchi et al. Bonchi et al. present Open Consume-Produce Read nets
to model the control flow and the data flow of a service [BBCG08]. For Open
Consume-Produce Read nets, saturated bisimulation is proposed as equivalence
notion. Saturated bisimulation is characterized as weak bisimulation
in [BBCG08]. Consequently, saturated bisimulation implies X3-conformance
equivalence, but the opposite does not hold in general. As an example, the two
open nets in Figure 3.1 are not weak bisimilar; however, they are X3-conformance
equivalent.

Work of Van der Aalst et al. Van der Aalst et al. use open nets (where the set
of final markings is a singleton set) to model service trees [AHM+09]. A service
tree is a special open-net composition. If each open net is considered as a node of a
graph, and the set of shared interface places between two open nets is considered as
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Figure 9.1.: Martens’ refinement notion is only sufficient: According to [Mar05],
S is an X3-strategy of N ′ and not of N . Thus, N ′ X3-conforms
to N . However, N and N ′ are X3-conformance equivalent, for a
communication bound b=2.

an edge between the respective nodes of the graph, then the corresponding graph
has a tree structure. Van der Aalst et al. study when an open net N in a service
tree can be substituted by an open net N ′ such that weak termination of the
service tree is preserved. In other words, they study X3-conformance in a slightly
restricted setting. Let N1, N2, and N3 be pairwise interface compatible open nets
such that N1 and N3 have pairwise disjoint interface places. If inner(N1 ⊕ N2)
weakly terminates and a condition γ holds, then inner(N1 ⊕ N2 ⊕ N3) weakly
terminates [AHM+09]. The condition γ requires that the reachable markings of
N2⊕N3 simulate the restriction of the reachable markings of N2⊕N3 to the places
of N2. This condition is proved to be equivalent to the requirement that every
run of inner(N2) is the projection of a run of inner(N2 ⊕N3) to the transitions
of N2. Condition γ is proved to be sufficient [AHM+09]. Using the results of
this thesis, we can only decide substitutability in the setting of service trees for
acyclic open nets, as for acyclic open nets X1-conformance and X3-conformance
coincide. In this case, our decision procedure is necessary and sufficient.
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9.1.2. Work based on process calculi

Work of Fournet et al. Fournet et al. [FHRR04] consider CCS processes of
asynchronous message passing software components. They present stuck-free con-
formance of such processes. Stuck-freedom formalizes the absence of deadlocks in
the system. It can be checked using the model checker Zing [AQR+04]. Stuck-free
conformance requires that an implementation simulates its specification and that
the failures of the implementation are contained in the failures of the specification.
Furthermore, the accepted actions in the implementation are contained in the ac-
cepted actions of the specification. The authors show that the CSP stable-failures
preorder [Ros98] does not imply stuck-free conformance. Furthermore, stuck-free
conformance is strictly larger than the refusal preorder of Phillips [Phi87]. As
the stable failures preorder and X1-conformance coincide (cf. Theorem A.2.2),
we conclude that X1-conformance does not imply stuck-free conformance.

Work of Malik et al. Malik et al. [MSR06] introduce the conflict preorder, which
is equivalent to our notion of X3-conformance. They prove that fair testing implies
the conflict preorder. In contrast to us, they do not show explicitly the difference
between fair testing and the conflict preorder, but formalize the conflict preorder
by help of a new failures semantics.

Work of Padovani et al. Laneve and Padovani introduce in [LP07] the subcon-
tract preorder for CCS-like processes without τ -actions. The subcontract preorder
is equivalent to must testing [NH84]. Must testing is known to be incomparable
to fair testing, as it cannot distinguish between a loop and a livelock. As an-
other difference, the subcontract preorder is an asymmetric notion; that is, it is
focusing only on the test, rather than on the service being tested. In contrast,
our notion of X3-conformance is a symmetric notion; that is, both the test and
the service have to terminate. Must testing is equivalent to stable failures—at
least for finitely branching processes without divergences [Nic87]. Hence, it is
equivalent to X1-conformance. As an additional difference, our service models
may contain τ -actions.

In [CGP08], the weak subcontract preorder is introduced. It is a relaxed version
of the subcontract preorder. The idea is to extend the set of compatible partners
of a service by the help of dynamic filters. A filter specifies a set of actions of
the service that may occur. All other actions are blocked. In our setting of
asynchronously communicating open nets we would specify which messages an
open net may send. A concept like filters we did not consider in this thesis.

Work of Bravetti and Zavattaro Bravetti and Zavattaro [BZ07a, BZ08] model
services as CCS-like processes. Their proposed subcontract preorder coincides
with our notion of X3-conformance. As Malik et al. [MSR06], they also prove
that fair testing implies their subcontract preorder. In Section A.1, we showed
under which conditions fair testing and X3-conformance coincide.
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As an additional requirement, Bravetti and Zavattaro introduce the output
persistence property. A composition of processes is output persistent if no sending
event is enabled in a final state.

Bravetti and Zavattaro study the subcontract preorder for different communi-
cation paradigms. They consider synchronous handshake in [BZ07a, BZ08] and
asynchronous communication via unbounded message queues in [BZ09]. In addi-
tion, a stronger notion is introduced ensuring, whenever a message can be sent,
the other service is ready to receive this message. Systems that behave this way
are strongly compliant [BZ07b]. Bravetti and Zavattaro show that independent
of the chosen communication paradigm, the notion of fair testing implies the
corresponding subcontract preorder.

9.1.3. Work based on automata

The following approaches use automata models to decide substitutability. As
the main difference, all these approaches use only synchronous communication,
whereas open nets model asynchronous message passing.

Work of Benatallah et al. Benatallah et al. consider deterministic automata
[BCT06]. They present two notions of compatibility: partial compatibility and full
compatibility. Full compatibility coincides with weak termination. In contrast,
partial compatibility only ensures that that the composition contains some run
to a final state. A similar criterion is relaxed soundness [DA04]. The authors
introduce a notion of conformance and of conformance equivalence. Automaton
A′ conforms to automaton A if and only if A′ simulates A′. If A also simulates A′,
then both automata are conformance equivalent. The simulation relation thereby
respects final states.

Work of Sharygina et al. The ComFoRT framework [SCCS05] analyzes whether
a software component S, implemented in the programming language C, can be
substituted by another software component S′. S can be substituted by S′ if (i)
every behavior possible in S is a behavior of S′, and (ii) the new version of the
software system satisfies previously established correctness properties. Behavior
inclusion is verified by trace comparison of the software components, which does
not allow the reordering of messages, for instance. In contrast to [SCCS05], re-
finement for interface automata [AH01] defined by alternating simulation assumes
that the environment remains the same [CSS06].

Work of Cerna et al. In [CVZ07], Cerna et al. present an approach to check
component substitutability. As a formal model, component interaction (CI) au-
tomata are used. A CI automaton implements a hierarchy concept. Cerna et al.
introduce three substitutability notions: conformance equivalence, conformance,
and substitutability in case the environment is fixed. To decide conformance
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equivalence, the authors define an equivalence between two CI automata, which
is similar to weak bisimulation. In this thesis, we cover all three notions with
X-conformance, with X-conformance equivalence, and in case the environment is
known, we could check whether the new service is an X-strategy of the environ-
ment.

9.2. Work on preservation

In this section, we review work related to our substitutability criterion X-preser-
vation. In comparison to X-conformance, there are only few related approaches,
which are introduced in the following.

Work of Beyer et al. Beyer et al. [BCH05] introduce protocol automata for
modeling service behavior. These automata follow a synchronous communication
paradigm, whereas we consider asynchronous message passing. For protocol au-
tomata, a refinement notion is defined, which is proved to be a precongruence with
respect to composition. As behavioral properties, temporal logic properties are
considered which are preserved by the refinement. In comparison to our proposed
behavioral constraints on visible actions of open nets, this approach generalizes
our property-preserving substitution in Section 6.2.3.

Work of Benatallah et al. Benatallah et al. introduce beside X3-conformance
and X3-conformance equivalence (cf. Section 9.1.3) also two other substitutabil-
ity criteria [BCT06]. In the first criterion, a service S′ substitutes a service S
assuming the partner U is known. In this setting, we would check whether S is an
X-strategy of U . In the second criterion, S′ substitutes S with respect to an inter-
action role R; that is, the intersection of S and R has to behave as S′. In this case,
we would check if Match(OGX(R)⊗OGX(S)) ⊆ StratX(S′). This can only be de-
cided for X1 = {deadlock freedom} and X2(Y ) = {deadlock freedom, cover(Y )}.
However, as mentioned before, in [BCT06] deterministic and synchronously com-
municating automata are considered.

Work of Pathak et al. Pathak et al. focus on a substitutability criterion that
preserves some property of a service S to be substituted [PBH07]. The property
is expressed by a µ-calculus formula φ. Then, a µ-calculus formula ψ is calculated
such that all services S′ that satisfy ψ can substitute S. Due to the expres-
siveness of the µ-calculus in comparison to our proposed behavioral constraints
on visible actions of open nets, this approach generalizes our property-preserving
substitution in Section 6.2.3, but it assumes a synchronous communication model.

220



9.3. Work on conformance-preserving transformation rules

tb

R1

t1

p

t2

S1

R2

t3

q

t4

S2

a

b

Figure 9.2.: Block structure ensuring that place p is synchronized with place
q [AHM+09].

9.3. Work on conformance-preserving transformation
rules

Refinement of Petri nets has been addressed by many researchers—for example
[Val79, SM83, Ber87]. However, most of the results require restricted Petri-net
classes or Petri nets without interfaces. The Murata rules [Mur89] (known for
general Petri nets) maintain X3-conformance if we consider every input place as
a place with some additional incoming arcs, and every output place as a place
with some additional outgoing arcs.

Refinement in a more general setting is considered by Vogler [Vog92], for in-
stance. There it is shown how a place or a transition of a Petri net can be refined
by a subnet. The basic idea is that replacing a place by a subnet is a special
case of substitutability in the case of transition fusion, as the transitions that
surround a place p serve as an interface for p. In contrast, replacing a transition
is a special case of substitutability in the case of place fusion. For both cases,
Vogler presents several equivalence notions. However, this work goes beyond the
idea of our transformation rules.

Our work can be seen as a generalization of the projection inheritance-preser-
ving transformation rules of Basten and Van der Aalst [BA01, AB02]. In this
thesis, we have proved that these rules also preserve X3-conformance. Trans-
formation rules that reorder interface transitions, as the ones we introduced in
Section 7.3, have been to the best of our knowledge not considered so far.

Recently, another refinement technique has been proposed in [AHM+09]. Van
der Aalst et al. consider open nets and identify a pattern that allows place
refinement. This pattern consists of any two places p and q of an open net N such
that p is synchronized with q. Here, synchronization means that place q is only
marked if p is marked, and that p can only be unmarked, after q became unmarked.
Figure 9.2 illustrates a pattern that satisfies the synchronization property. If p
is synchronized with q, then these places can be refined by open nets Np and
Nq, respectively, if and only if Np and Nq are interface compatible, and the
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composition Np ⊕ Nq is a closed net that weakly terminates. This refinement
guarantees that the refined open net N ′ X3-conforms to N [AHM+09].
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In this final chapter, we conclude this thesis. Section 10.1 summarizes the main
contributions of our approach on behavioral service substitutability. Open prob-
lems of this approach are discussed in Section 10.2. Finally, Section 10.3 sketches
ideas how this research can be continued.

10.1. Contribution of this thesis

The Service-Oriented Computing (SOC) paradigm aims at building complex sys-
tems by composing them from less complex systems, called services. Such a
(complex) system is a distributed application often involving several cooperating
enterprises. As a system usually is subject to change, individual services will
be substituted by other services during the system’s life-cycle. Substituting one
service by another one should not affect the correctness of the overall system. Ver-
ification of correctness is challenging, as the overall system is usually not known
to any of the involved enterprises.

In this thesis, we restricted ourselves to the changes of the service behavior. This
restriction implies that we abstract from resources and consider only data/message
types and not their content. As a formal service model, we used open nets, a
subclass of Petri nets tailored towards the modeling of services. Suitability of our
model has been demonstrated by open-nets semantics for various languages, such
as BPMN, BPEL, and BPEL4Chor.

The contribution of this thesis is threefold. First, we defined substitutability
criteria for services that are in particular suitable in the context of multiparty
contracts and service improvement. Second, for each substitutability criterion, we
developed an algorithm to decide whether a service can substitute another service
according to the respective substitutability criterion. And third, we presented
refinement rules for constructing a substitutable service from a given service. In
what follows, we review each contribution in more detail.

10.1.1. Substitutability criteria

Suppose a system modeled as the composition N ⊕ S of two open nets N and S.
Clearly, substituting N by another open net N ′ should preserve some behavioral
properties of N ⊕ S in the new composition N ′ ⊕ S. In this thesis, we put the
main focus of attention on the five properties

• deadlock freedom; that is, the open net does not get stuck,
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• weak termination; that is, the open net can always reach a final state and
hence is free of deadlocks and livelocks,

• cover(Y ); that is, a given set Y of places and transitions of N can potentially
be marked/enabled in the composition,

• quasi-liveness; that is, every transition of the composition can potentially
be enabled, and

• strict termination; that is, being in a final state, no transition of an open
net can be enabled.

For any subset X of these properties, S is an X-strategy of N if the composition
N ⊕S is an open net that satisfies X. The set StratX(N) defines all X-strategies
of N . We argued that there are only 9 reasonable sets of open-net properties
listed in Table 2.1.

Based on these properties, we defined in Chapter 3 two substitutability criteria,
X-conformance and X-preservation. N ′ can substitute N under X-conformance
if every X-strategy of N is an X-strategy of N ′. Hence, X-conformance ensures
that substituting N by N ′ does not affect S. Therefore, X-conformance is well-
suited in the context of multiparty contracts, where every enterprise has to locally
implement the specification of its service while preserving correctness of the overall
system. X-preservation is less restrictive than X-conformance. N ′ substitutes N
under X-preservation if a certain subset S ⊆ StratX(N) is preserved. Hence, the
notion of X-preservation allows for removing functionality of a service and is thus
well-suited for service improvement.
X-conformance is a preorder and even a precongruence with respect to open-net

composition. We compared {weak termination}-conformance with fair testing.
Some researchers proved already that fair testing implies {weak termination}-
conformance. In Appendix A.1, we extended these works and showed under which
conditions {weak termination}-conformance implies fair testing. Finally, in Ap-
pendix A.2 we proved that {deadlock freedom}-conformance is equivalent to the
stable failures preorder.

10.1.2. Deciding substitutability

To decide whether an open net N ′ can substitute an open net N under X-
conformance or under X-preservation, we have to compare the two (in general)
infinite sets StratX(N ′) and StratX(N). However, these infinite sets can be rep-
resented in a finite manner. In case of deadlock freedom, a finite representation,
called operating guideline, already existed. In this thesis, we extended the notion
of an operating guideline to represent the set StratX(N) for any set X of open-net
properties. It turned out that such a finite representation depends on the chosen
termination criterion deadlock freedom or weak termination and whether quasi-
liveness or covering of open-net nodes is required or not. This yields the following
6 sets of open-net properties:
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• X1 = {deadlock freedom};
• X2 = X1 ∪ {quasi-liveness};
• X2(Y ) = X1 ∪ {cover(Y )};
• X3 = {weak termination};
• X4 = X3 ∪ {quasi-liveness};
• X4(Y ) = X3 ∪ {cover(Y )}.

Strict termination does not affect the finite representation, but is only reasonable
in combination with weak termination. Hence, it can be added to the sets X3,
X4, and X4(Y ).

As a consequence, we ended up with 6 finite X-strategy representations, called
X-operating guidelines, for X ∈ {X1, X2, X2(Y ), X3, X4, X4(Y )}. Table 10.1
summarizes these results. For each X-operating guideline, we developed a match-
ing procedure to efficiently check whether an open net S is an X-strategy of
N—that is, to check whether S is contained in the X-operating guideline of N ;
see the third column in Table 10.1.

Table 10.1.: Results overview: “X” denotes that a solution already existed; “+”
denotes that a solution has been provided in this thesis; “−” denotes
that there is no solution so far.

X-strategies finite representation matching conformance product
X1 X X + X
X2 + + − −

X2(Y ) + + + +
X3 + + − +
X4 + + − −

X4(Y ) + + − +

With the help of these finite representations of all X-strategies, we presented
algorithms to decide the two substitutability criteria. The decision algorithms
reduce the comparison of two infinite sets of X-strategies to a finite check. For
X-conformance, we developed in Chapter 5 a decision procedure for X1-operating
guidelines and for X2(Y )-operating guidelines; see the fourth column in Ta-
ble 10.1. Deciding X-preservation (cf. Chapter 6) depends on the set S of X-
strategies to be preserved. If S is a finite set, X-preservation reduces to match
each open net S ∈ S with the X-operating guideline of N ′. This can be decided
for every X. If S is an infinite set that is represented by an X-operating guide-
line, then deciding X-preservation reduces to an inclusion check of the sets S
and StratX(N ′) based on their X-operating guidelines. This can so far only be
decided for X1 and X2.
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In addition, we presented results to construct a finite representation of S from
the X-operating guideline of N . To this end, we defined the product for each two
X-operating guidelines (except for X2 and X4) and proved this product to be
equivalent to the intersection of the respective sets of X-strategies; see the fifth
column in Table 10.1. We also showed that X1-operating guidelines can be used
to describe those open nets that follow some behavioral constraint. That way, we
can restrict the set StratX(N) to those X-strategies that satisfy the behavioral
constraint by calculating the product of the X-operating guidelines of N and the
X1-operating guideline of the behavioral constraint.

Based on the theoretical results presented in this thesis, the construction of an
X2(Y )-operating guideline and an X3-operating guideline for an open net have
been prototypically implemented in the service analysis tool Fiona. Experimen-
tal results with a number of real-life service models in this thesis demonstrated
that these finite representations can be calculated efficiently in spite of the high
worst-case complexity of the construction algorithms. We also demonstrated that
the inclusion check and the product can be computed efficiently; however, these
operations are only for X1-operating guidelines implemented so far.

10.1.3. Constructing substitutable services

This thesis also contributed to the construction of open netsN ′ that can substitute
an open net N according to a substitutability criterion. For X3-conformance, we
presented a number of transformation rules to derive an open net N ′ from an
open net N by stepwise refinement (cf. Chapter 7). Thereby, each refinement step
preserves X3-conformance. Some of these rules preserve X3-conformance in both
directions (i. e., X3-conformance equivalence), and some preserve X3-conformance
only in one direction.

Beside these theoretical results, we also presented a practical contribution in
this thesis. In Chapter 8, we studied the equivalence relation between a service
specification and a service implementation for services described in the language
BPEL. This equivalence is defined only on the syntax of the services. We showed
that this equivalence coincides with X3∪{strict termination}-conformance equiv-
alence. Based on this result, we adapted our transformation rules to BPEL. Given
a service specification S, every service that can be derived from S, by applying
any number of transformation rules, is equivalent to S. That way, more services
are equivalent to S without the loss of general applicability. This result justifies
the importance of our work, on the one hand and its applicability in practice, on
the other hand.

10.2. Open problems

Within the context of this thesis not all problems related to the topic of service
substitution have been solved. In this section, we discuss unsolved problems that
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could make the presented solutions more complete.

Conformance The first open problem is an algorithm to decide X-conformance
of two open nets in case of X2 (i. e., deadlock freedom and quasi-liveness), X3 (i. e.,
weak termination), X4 (i. e., weak termination and quasi-liveness), and X4(Y )
(i. e., weak termination and cover(Y )). To decide whether N ′ X-conforms to
N , one has to check StratX(N) ⊆ StratX(N ′). In Chapter 5, we developed an
algorithm to decide inclusion of two sets of X-strategies on their respective X-
operating guidelines, for X ∈ {X1, X2(Y )}. It would be important to have such
algorithms also for the other four finite representations, because X-conformance
is of high practical relevance.

Responsiveness The second open problem is the discrepancy between our notion
of deadlock freedom and the notion of responsiveness implemented in the tool
Fiona. Deadlock freedom is a too less restrictive correctness criterion, as it allows
X1-strategies that may run into an internal livelock. In particular, an open net
S that puts the maximal number of messages (according to the message bound)
into each input channel of an open net N and then executes a τ -loop is an X1-
strategy of N . Clearly, S contradicts the intention of an X1-strategy of N . The
main drawback of such open nets S is that the X1-operating guideline becomes
great in size. To exclude such services S, the notion of responsiveness [Wol09] has
been implemented in Fiona. It would be important to study whether the results
of this thesis with respect to deadlock freedom (and quasi-liveness) can be lifted
to responsiveness (and quasi-liveness). In particular, the notion of responsiveness
must be a precongruence with respect to open-net composition; otherwise, it
cannot be used in the setting of multiparty contracts.

Tooling and validation The third open problem is related to the implementation
of the algorithms developed in this thesis. As mentioned in the previous section,
not all results of this thesis have been implemented in Fiona. For example, the
notion of an X4(Y )-operating guideline and the algorithm for X2(Y )-conformance
has to be implemented, and the product operator has to be lifted to X2(Y )-, X3-,
and X4(Y )-operating guidelines.

Another important issue is the validation of our algorithms on industrial service
models. Experiences from the validation provide useful insights for improving the
developed methods. As our proposed algorithms have a high worst-case complex-
ity, it is particularly important to investigate effective data structures to make
the implementation more efficient.

10.3. Further research

This section sketches some ways how the results presented in this thesis could be
extended. These ideas go beyond this dissertation, but are still part of the grand
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goal to make behavioral service substitution in SOC become reality.

Additional transformation rules In Chapter 7, we presented several X3-confor-
mance-preserving transformation rules. These rules are not complete. Although
we doubt that it is possible to come up with a complete set of transformation
rules, it seems to be possible to find and document additional transformation
rules. One obvious approach is to restrict the context of a pattern.

Strong termination In this thesis, we focused on deadlock freedom and weak ter-
mination as termination criteria for services. It would be interesting to strengthen
the notion of weak termination (i. e., AGEF final) to strong termination (i. e.,
AGAF final). Weak termination requires a fairness principle, and it does not
exclude infinite runs of an open net. In contrast, strong termination excludes
infinite runs. To this end, we have to add explicit fairness constraints to open-net
transitions. Strong termination has not been studied so far.

Substitutability in the decentralized setting In this thesis, we focused on single-
port services [Wol09]; that is, anX-strategy of an open netN is always treated like
a single service. In case N is connected to more than one open net, this assumes
that all these open nets may interact arbitrarily with each other. However, such
an assumption is sometimes too relaxed. Consider an open net N that interacts
with two open nets N1 and N2. Assume that N sends a request to either N1 or
N2 and concurrently expects an acknowledgement from the respective open net.
There is an X-strategy S of N such that S receives the request, which N has
sent to N1, and acknowledges on behalf of N2. This is, in fact, a valid X-strategy
of N , but practically impossible if N1 and N2 do not interact with each other.
In [Wol09], more restrictive settings of X-controllability are studied, where X-
strategies of N do not interact with each other. To widen the scope of this thesis,
one could study the substitutability criteria of this thesis also in these settings.

Extending constraint-preserving substitutability In Section 6.2.3, we introdu-
ced the notion of a constraint automaton to describe all open nets that follow
some behavioral constraint. To make this approach more applicable, one could
try to specify more complex behavioral constraints with constraint automata. We
already mentioned in Section 6.2.3 the idea of defining an algebra on sets of X-
strategies as proposed in [KW09]. In addition, one could generalize behavioral
constraints to arbitrary temporal logic properties. A temporal logic property φ
can be expressed by an automaton. For instance, an LTL formula can be ex-
pressed by a Büchi automaton and a CTL∗ formula by an alternating parity
automaton [KVW00]. The product of such an automaton and a finite represen-
tation of StratX(N) for an open net N represents all S ∈ StratX(N) such that
N ⊕ S satisfies φ (for a suitable notion of product). This approach is strongly
related to robust model checking [KV06]. The robust model checking problem can
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be defined in our terminology as follows: Given an open net N and a temporal
logic property φ, then N robustly satisfies φ if and only if, for all X1-strategies S
of N , the composition N ⊕ S satisfies φ. This problem has been solved for CTL∗

formulae and synchronously communicating Moore automata in [KV06].

Representing all conformant services Usually there is more than one open net
N ′ that X-conforms to an open net N . Hence, it seems to be interesting to
investigate how a finite representation of all open nets N ′ that are X-conformant
and X-conformance equivalent to an open net N , respectively, can be calculated.
Each open net N ′ can be seen as a template for a substitutable service that can be
refined using our proposed X-conformance-preserving transformation rules. This
representation is not only of theoretical interest. It would also widen our results
with respect to an equivalence notion for services specified in BPEL in Chapter 8.

One could also think of generalizing this approach by investigating a finite
representation of all open nets N ′′ that can be made X-conformant and X-
conformance equivalent, respectively—for example, by using the concept of a
message filter [CGP08] or by the help of an adapter [GMW08, AMSW09].

Instance migration In this thesis, we studied static service substitution (i. e.,
static business protocol evolution); that is, we assumed that there are no running
instances of a service S to be substituted. In practice, however, also long-running
services have to be substituted. Hence, in this setting, running instances have to
be taken into account. Usually, each running instance of the old service S has
to be migrated to an instance of the new service S′. This procedure is known
as instance migration (or dynamic business protocol evolution). For workflows,
the problem of instance migration has been solved [AB02, RRD04, RRMD09].
Clearly, instance migration builds on static service substitutability; that is, S′

must be substitutable for S. Thus, the results of this thesis can be seen as a
basis for studying instance migration. However, it is necessary to adapt our
substitutability criteria to the setting of instance migration.
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A. Placing Conformance in the
Linear Time – Branching Time
Spectrum

In this appendix, we study how the refinement relation X-conformance, intro-
duced in Section 3.1, is placed in the linear time – branching time spectrum [Gla93,
Gla01]. We consider X3-conformance and X1-conformance.

In Section A.1, we relate the fair testing preorder [RV07] and X3-conformance.
We show that fair testing implies X3-conformance and prove under which con-
ditions X3-conformance implies fair testing. In Section A.2, we prove that X1-
conformance and the stable failures preorder [Hoa85] coincide.

A.1. Relationship between conformance and fair
testing

In this section, we study the relation between X3-conformance (recall that X3 =
{weak termination}) and the known preorders from the linear time – branching
time spectrum [Gla93, Gla01]. In Figure A.1, some of these preorders and the
relations between them are depicted, featuring B (bisimulation), RS (ready simu-
lation), PF (possible futures), FT (fair testing [BRV95, NC95, RV07]), MT (must
testing [NH84]), CT (completed trace), and T (trace) preorders. An arrow be-
tween two preorders denotes the inclusion relation; for example, B implies (is finer
than) PF; if an arrow is absent (in the transitive closure), then the inclusion does
not hold.

As noticed by [MSR06, BZ07a], fair testing implies X3-conformance (called
conflict preorder in [MSR06], and subcontract preorder in [BZ07a]), but X3-
conformance does not imply fair testing. In [BZ07a], a counterexample is given,

FT

MT

B

TRS

PF

CT

Figure A.1.: Some known preorders from the linear time – branching time
spectrum.
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whereas in [MSR06] it is also shown that X3-conformance implies a new variant
of failures preorder. This last result, however, gives no conditions under which
X3-conformance coincides with a single known preorder.

In this section, we show that fair testing is the coarsest preorder known to
us that implies X3-conformance. Moreover, we take the extra step to analyze
under which conditions X3-conformance would imply fair testing. In this way, we
identify the real differences between X3-conformance and fair testing.

In this section, we define a novel variant of fair testing that turns out to be
equivalent to X3-conformance. Moreover, we show how restrictions on the tests
in this variant can be transformed into restrictions on the services being tested.
Finally, we discuss the practicality of these restrictions, in particular within the
realm of services that communicate asynchronously. Nevertheless, the main the-
ory is developed in terms of synchronous communication using LTSs.

A.1.1. Preliminaries

We study the relationship of the two preorders on the level of LTSs. In this
section, we define the concepts that we will use. We choose LTSs as a service
model rather than open nets or service automata, because in the proof we will use
that a service is represented as a tree. As another reason, we consider synchronous
communication in the following. To ease the formalization, we use an action-based
description of an LTS, called process.

Processes

Let Act be a set of actions containing the special actions: the internal action τ ,
the termination action X, and the success action ~. A process is represented as a
nonempty (but possibly infinite) tree-shaped LTS; for every reachable state, there
is exactly one path from the initial state. A branch of a tree is an action in the
tree followed by the remainder of the tree.

We build example processes in ACP-style [BW90] with the action prefix op-
erators “a ·”, for each action a ∈ Act , and infix choice operator “+” (which is
commutative and associative). The “deadlock” process δ represents a state with-
out outgoing edges, and for each action a ∈ Act , we abbreviate the process a ·δ by
a. The merge operator ‖H on two processes denotes composition by synchronizing
the actions from the set H and interleaving the other actions; the set H should
contain X and should not contain ~ and τ . We also use the renaming operator
ρf , where f is a function on Act such that f(τ) = τ . The operational rules are
as follows:

p
b−→ p′, b ∈ Act\H

p ‖H q
b−→ p′ ‖H q

,
q

b−→ q′, b ∈ Act\H
p ‖H q

b−→ p ‖H q′
,
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p
a−→ p′, q

a−→ q′, a ∈ H
p ‖H q

a−→ p′ ‖H q′
,

p
a−→ p′

ρf (p)
f(a)−−−→ ρf (p′)

.

For conciseness, in the merge operator ‖H we often leave the set H implicit. Given
the operational rules and the relation =⇒ as defined in Section 2.1, we can use
p‖q w==⇒ p′‖q′ to denote that there exist u and v such that p u==⇒ p′, q v=⇒ q′,
and w can be obtained from u and v by synchronizing the actions from H and
interleaving the other actions.

Definition A.1.1 (visited state).
Let x and y be processes. Process x can visit a state r of process y iff there exists
a state q of process x such that x‖y =⇒ q‖r. y

We introduce the abbreviation p  a, for any process p and any action a, to
specify a class of properties related to the testable properties from [GV06].

Definition A.1.2 (leadsto).
Let p be a process, and let a be an action. We use p  a (i. e., p leadsto a) to
denote that in every execution of process p, as long as action a has not occurred,
action a can occur in the future, i. e.,

(∀w, q : w ∈ (Act\{a})∗ : p
w==⇒ q ⇒ (∃v : v ∈ Act∗ : q

v a===⇒)) . y

X3-conformance and fair testing

The X3-conformance preorder has been introduced in Section 3.1. As already
mentioned, we consider the weak-termination property in the composition of a
process with its X3-strategy; that is, always a final state is reachable. We use
action X to mark the final states; it is a synchronized action to deal with the final
states in a composed process. Thus, an X3-strategy is formalized as follows.

Definition A.1.3 (X3-strategy).
Any process z is an X3-strategy of any process x iff the composition of x and z
can always reach a final state, i. e., x‖z  X. y

Having lifted the notion of an X3-strategy to processes, the semantics of X3-
controllability and X3-conformance is well-defined by Definitions 2.6.8 and 3.1.1,
respectively.

In the theory of testing [Gla01, Bru04], behavioral equivalence of two processes
x and y is determined by observing the behavior of x and of y when being com-
posed with another process t, called test. Of particular interest are those tests
that terminate successfully when being composed with x and y. Thereby, suc-
cessful termination is defined by the corresponding testing preorder and testing
equivalence, respectively.

To formalize the fair testing preorder [BRV95, NC95, RV07], we first define the
notion of a successful test. We use the action ~ to model success of a test; it is
an unsynchronized action, as it should not occur in the process being tested.
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Definition A.1.4 (successful test).
Let x be a process that does not contain the action ~. A process t is a successful
test on x iff the composition of x and t can always reach a state where ~ can be
performed, i. e., x‖t  ~. y

Definition A.1.5 (fair testing).
Let x and y be two processes that do not contain the action ~. Processes x and
y are related in the fair testing preorder , denoted by x vft y, iff each successful
test on y is a successful test on x. y

Fair testing is known to imply the (completed) trace preorder. The other way
around, processes x = a ·X and y = a + a ·X are trace equivalent, but in terms
of fair testing we only have x vft y. For example, t = a ·X ·~ is a successful on
x but not on y. This is also depicted in Figure A.1.

Being an X3-strategy is a symmetric notion, but being a successful test is not:
Given the restrictions on ~, if t is a successful test on x, then x is not a successful
test on t. Although for some processes there exist no X3-strategies, for every
process there exists a successful test. Moreover, some tests are successful on
every process. The simplest example of such a trivial test is just ~.

Definition A.1.6 (trivial test).
A trivial test is a successful test on every process that does not contain the action
~. y

A.1.2. X3-conformance versus fair testing

In this section, we prove that fair testing implies X3-conformance, and we show
that, in general, X3-conformance does not imply fair testing.

Fair testing implies X3-conformance

To position X3-conformance in the spectrum from Figure A.1, consider the pro-
cesses x = a∗a · X and y = a∗a · X + a∗δ (the binary Kleene star a∗p, for any
action a and process p, is the least fix-point Y of the equation Y = a · Y + p).
X3-conformance distinguishes between x and y, as x has an X3-strategy—for
example, a∗X—whereas y is X3-uncontrollable. On the other hand, ready sim-
ulation does not distinguish between x and y; see [GV06]. Thus, we conclude
that X3-conformance is not implied by any of the preorders depicted at the top
of Figure A.1.

In [MSR06, BZ07a], it is shown that fair testing implies X3-conformance. For
completeness reasons, and for later use, we also provide a proof for it.

Theorem A.1.7 (fair testing implies X3-conformance).
For any two processes x and y that do not contain the action ~ holds:

x vft y ⇒ x vconf,X3 y . y
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Proof.
Let x and y be processes that do not contain the action ~. Let x vft y; that is,
each successful test on y is a successful test on x. To prove x vconf,X3 y, let z be
an X3-strategy of y. What remains to be proved is that z is an X3-strategy of x.

As ~ is an unsynchronized action, we can reduce the case that X3-strategy z
contains ~ to an X3-strategy that does not contain ~ (by renaming ~ to τ). In
what follows, we consider the case that z does not contain the action ~.

We can complete the proof if there exists a test t such that for every process p
(like x and y) that does not contain~: p‖z  X ⇔ p‖t  ~ . Such a process t
can be constructed from the given X3-strategy z (see also [MSR06, BZ07a], which
contain the same observation) by replacing every occurrence of the action X by
the term X ·~. The proof of ⇒ uses that ~ is an unsynchronized action, and the
proof of ⇐ uses that p and z do not contain the action ~. �

As an example, the processes x = a ·X+b ·X and y = τ ·a ·X+b ·X are related
by x vft y and by x vconf,X3 y. In the proof, the example X3-strategy z = a ·X
is replaced by the test t = a ·X ·~.

Restricted testing

In the proof of Theorem A.1.7, we have used only a limited number of successful
vft-tests; that is, tests where each X is immediately followed by a trivial test. To
make this explicit, we first define a restricted kind of fair testing.

Definition A.1.8 (restricted test).
A restricted test is a test in which each occurrence of action X is immediately
followed by a trivial test. y

Definition A.1.9 (restricted testing).
Let x and y be two processes that do not contain the action ~. Processes x and y
are related in the restricted testing preorder , denoted by x vrt y, iff each restricted
test that is a successful test on y is a successful test on x. y

From the definition of restricted testing, we can immediately conclude its rela-
tion to fair testing.

Corollary A.1.10 (fair testing implies restricted testing).
For any two processes x and y that do not contain the action ~ holds:

x vft y ⇒ x vrt y . y

Using these definitions, we can strengthen Theorem A.1.7 based on its previ-
ously given proof.

Theorem A.1.11 (restricted testing implies X3-conformance).
For any two processes x and y that do not contain the action ~ holds:

x vrt y ⇒ x vconf,X3 y . y
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Figure A.2.: Preorders related to X3-conformance.

Counterexamples

X3-conformance does not imply restricted testing, as the processes x = a and
y = δ indicate. As x and y are X3-uncontrollable, x vconf,X3 y holds. However,
t = a + ~ is a restricted test that is a successful test on y, but it is not a
successful test on x. A similar observation in terms of fair testing has been
made in [MSR06, BZ07a]. This example shows that X3-conformance gives no
information on X3-uncontrollable processes, whereas fair testing does.

Restricted testing is unrelated to the (completed) trace preorder. The processes
x = a ·X and y = a ·X · b are restricted testing equivalent, but not (completed)
trace equivalent. Similarly, the processes x = a and y = a + a ·X are restricted
testing equivalent (in both cases, after an a, every successful test is always able
to reach ~ as long as no synchronization occurs; moreover, after any synchro-
nization on X the test must be trivial), but not (completed) trace equivalent.
This shows that restricted testing (and hence X3-conformance) does not imply
the (completed) trace preorder, nor any finer preorder like fair testing. Using our
earlier observation that ready simulation does not imply X3-conformance, we can
conclude that the (completed) trace preorder does not imply restricted testing.

These results indicate that fair testing is the coarsest preorder known to us that
implies X3-conformance. In Figure A.2, our preorders RT (restricted testing) and
Conf (X3-conformance) are shown in relation to those in Figure A.1. In what
follows, we study the differences between restricted testing and X3-conformance.

A.1.3. A covering kind of fair testing

In this section, we combine the observations from the previous section and define
a kind of fair testing that is equivalent to X3-conformance. As X3-conformance
gives no information on states that cannot be visited by any X3-strategy, the idea
is to restrict the tests such that they can only visit states that can be visited by
X3-strategies.

Covering tests

For every process, the set of states can be partitioned into the states that can be
visited using any X3-strategy and the states that cannot. The states that can be
visited using an X3-strategy are called coverable. In Definition 2.6.4, we defined
when a place or a transition of an open net is covered.
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Definition A.1.12 (coverable state).
A state q of a process x is coverable iff there exists an X3-strategy z of x that can
visit state q. y

Definition A.1.13 (covering process).
A process y is a covering process for a process x iff process y can only visit
coverable states of process x. y

As an example, the process x = a · (b + b · X + c · X) has three uncoverable
states: after the first b, after the second b, and after the first X. In particular the
state after the second b is uncoverable, as no X3-strategy can use this b due to
the first b. As illustrated by the state after the first X, whenever a process is in
an uncoverable state, it cannot enter a coverable state anymore.

Every X3-strategy of a process x is a covering process for x. For every X3-
uncontrollable process, there exist no covering processes, because uncoverable
processes have no coverable states, and every process has at least one state. In the
X3-conformance preorder, the process and its X3-strategy should always be able
to reach a final state before reaching an uncoverable state. A similar phenomenon
occurs in the safe-must preorder [BNP99], where a process and its observer must
reach a success state before reaching a catastrophic (i. e., diverging) state.

Using these definitions, we can define a notion of covering restricted testing
such that the tests may only visit coverable states of the process being tested.

Definition A.1.14 (covering restricted testing).
Let x and y be two processes that do not contain the action ~. Processes x and
y are related in the covering restricted testing preorder , denoted by x vcrt y, iff
each restricted test that is a successful covering test on y is a successful covering
test on x. y

This preorder is a variant of fair testing, whereas in [MSR06] a variant of failures
preorder is used. Although we restrict the considered set of tests, in [MSR06] simi-
lar sets are extended. Moreover, in [MSR06] it is not proved that X3-conformance
coincides with their variant of failures preorder, whereas in Corollary A.1.20 we
will prove that X3-conformance coincides with covering restricted testing.

Covering restricted testing implies X3-conformance

As mentioned before, the successful vft-tests that we have used in the proof
of Theorem A.1.7 are restricted tests. Moreover, the used tests turn out to be
covering tests, as every X3-strategy is a covering process. To make this explicit,
we again strengthen Theorem A.1.7 based on its previously given proof.

Theorem A.1.15 (covering restricted testing implies X3-conformance).
For any two processes x and y that do not contain the action ~ holds:

x vcrt y ⇒ x vconf,X3 y . y
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Expansion

Before proving that X3-conformance implies covering restricted testing, we first
develop some theory to relate X3-strategies and covering tests. We introduce the
notion of an expansion of a test, which corresponds to adding certain branches
after occurrences of action ~.

Definition A.1.16 (expansion).
An expansion of a test t is a process that can be obtained from t by adding
branches to states that occur after any action ~. y

A covering test on process x cannot visit any uncoverable state of x. So, a
successful covering test on x must be expandable into an X3-strategy of x. We
prove the following two useful lemmata relating X3-strategies and covering tests.

Lemma A.1.17 (successful covering test expands into X3-strategy).
Let x be a process that does not contain the action ~. Every successful covering
test on x is expandable into an X3-strategy of x. y

Proof.
Let x be a process that does not contain the action ~. Let t be a successful
covering test on x. What remains to be proved is that there exists an X3-strategy
z of x that is an expansion of t.

As t is a successful covering test on x, in the composition x‖t always some state
q‖r is reachable, in which q is a covering state of x and r is a state of t, such that
~ has already occurred at least once. As q is a covering state of x, there exists an
X3-strategy z′ of x such that in the composition x‖z′ a state q‖r′ is reachable, in
which r′ denotes a state of z′. If, before reaching any such state q, the action X
has not occurred (recall that we consider processes as trees), then we can ensure
that X is reachable with z by adding to any such a state r of t a τ -labeled edge
to such a state r′. �

For the example process x = a · (b+ b ·X+ c ·X), the successful covering test
t = a ·~ can be expanded using the X3-strategy z′ = a · c ·X into the X3-strategy
z = a ·~ · τ · c ·X.

Lemma A.1.18 (expansion implies successful covering test).
Let x be a process that does not contain the action ~. Every restricted test that
can be expanded into an X3-strategy of process x is a successful covering test on
x. y

Proof.
Let x be a process that does not contain the action ~. Let t be a restricted test,
and let z be an expansion of t that is an X3-strategy of process x. What remains
to be proved is that t is a successful covering test on x.
X3-strategy z is a covering process for x, even if some branches of z are removed.

So every test that can be expanded into z is a covering test on x.
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To show that t is a successful test on x, we distinguish between two kinds of
occurrences of X in z. Each action X that is also present in the restricted test t
is directly followed by a trivial test. Each other action X in z is in a branch that
occurs after an action ~ in t. In both cases it holds that, as z is an X3-strategy
of x, test t is a successful test on x. �

X3-conformance implies covering restricted testing

Using this theory on covering restricted testing, we can prove thatX3-conformance
implies covering restricted testing.

Theorem A.1.19 (X3-conformance implies covering restricted testing).
For any two processes x and y that do not contain the action ~ holds:

x vconf,X3 y ⇒ x vcrt y . y

Proof.
Let x and y be processes that do not contain the action ~. Let x vconf,X3 y; that
is, each X3-strategy of y is an X3-strategy of x. To prove x vcrt y, let t be a
restricted test that is a successful covering test on y. What remains to be proved
is that t is a successful covering test on x.

Using Lemma A.1.17, there exists an X3-strategy z of y such that z is an expan-
sion of t. Using x vconf,X3 y, z is also an X3-strategy of x. Using Lemma A.1.18,
restricted test t is a successful covering test on x. �

The example processes x = a ·X+ b ·X and y = τ · a ·X+ b ·X are related by
x vconf,X3 y and x vcrt y. In the proof, the example test t = a ·~ is replaced by
the X3-strategy z = a ·~ · τ ·X.

From the two implications presented in Theorems A.1.15 and A.1.19, we imme-
diately conclude that X3-conformance is equivalent to covering restricted testing.

Corollary A.1.20 (X3-conformance coincides with cov. restr. testing).
For any two processes x and y that do not contain the action ~ holds:

x vconf,X3 y ⇔ x vcrt y . y

Based on Corollary A.1.20, the differences between X3-conformance and fair
testing can be summarized as follows:

• success and termination: In case of X3-conformance, the composed pro-
cesses must terminate together (using a synchronized action X). In case of
fair testing, only the test needs to perform an (unsynchronized) “success”
action ~.

• testing for termination: In case of X3-conformance, there is no information
about the states of the process after any occurrence of action X. In case of
fair testing, there is information about each state of the process.
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• uncoverable states: In case of X3-conformance, there is no information about
uncoverable states of the process. In case of fair testing, there is information
about each state of the process.

The first item has been addressed by the different actions X and ~. Item two
and three have been addressed by introducing the restricted testing preorder and
the covering restricted testing preorder, respectively.

A.1.4. Covering restricted testing versus restricted testing

In this section, we study in which cases restricted testing and X3-conformance
coincide, or rather (based on Corollary A.1.20), in which cases restricted testing
and covering restricted testing coincide. Instead of restricting the considered
tests, as we did in the previous section, we introduce two restrictions on the
tested processes.

Restricted testing implies covering restricted testing

In Theorem A.1.11, we proved that restricted testing implies X3-conformance, and
in Theorem A.1.19, we proved that X3-conformance implies covering restricted
testing. Thus, we conclude that restricted testing implies covering restricted
testing.

Corollary A.1.21 (restricted testing implies cov. restricted testing).
For any two processes x and y that do not contain the action ~ holds:

x vrt y ⇒ x vcrt y . y

In the remainder of this section, we focus on conditions under which we can
prove, for any processes x and y, that x vcrt y ⇒ x vrt y. In contrast to
the preorder vrt, the preorder vcrt gives no information on X3-uncontrollable
processes. Therefore, we have to focus on X3-controllable processes.

Pruned processes

In Section A.1.3, covering tests were introduced to avoid distinguishing between
different uncoverable states. To avoid this restriction on the tests, we introduce
a normal form for the uncoverable states of the process being tested.
X3-uncontrollable processes have no X3-strategies or covering tests, whereas the

smallest set of successful tests (in terms of fair testing) is the set of trivial tests.
The idea is to introduce a normal form such that uncoverable states correspond
to states for which only the trivial tests are successful.

The simplest X3-uncontrollable process, viz., δ, is not a candidate for this
normal form, as nontrivial tests like a + ~ are successful on process δ, but not
on the X3-uncontrollable process a, for instance. The next lemma gives a normal
form U for the uncoverable states, and proves that U is an X3-uncontrollable
process and that every successful test on U is trivial.
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Lemma A.1.22 (normalized uncontrollable process).
Let U be the process such that only U

a−→ U , for every action a, and U
τ−→ δ.

Process U is X3-uncontrollable, and all successful tests on U are trivial tests. y

Proof.
Process U is X3-uncontrollable because of U τ−→ δ. To show that all successful
tests are trivial tests, consider any process x that does not contain the action ~,
and any test t that is a successful test on U . Process U is such that it can mimic
every execution of x and afterwards perform the τ -action and block. Test t is a
successful test on U , and hence t is a successful test on every process x. �

Instead of process U , as defined in Lemma A.1.22, we could also use the catas-
trophic divergent process CHAOS from CSP [BHR84], but process CHAOS is
more complicated than needed.

Definition A.1.23 (pruned process).
A process is pruned iff every first uncoverable state is equal to U . y

Note that the first uncoverable states are well-defined, as we consider processes
as trees with one initial state. Any process can be transformed into an X3-
conformance-equivalent pruned process; pruning is the operation of replacing each
first uncoverable state (including all outgoing edges) by U . Pruning the example
process x = a · (b+ b ·X+ c ·X) yields the process a · (b ·U + b ·U + c ·X), which is
bisimilar to a · (b · U + c ·X). Moreover, every pruned X3-uncontrollable process
is equal to U .

Vulnerable set of processes

To prove that vcrt implies vrt, it turns out to be insufficient to restrict the
processes to pruned processes. For example, consider the two processes x = a ·X
and y = a ·X+ b · U , which are X3-controllable and pruned processes containing
the synchronized actions a and b. The term b ·U in y can be interpreted as that no
X3-strategy may synchronize on action b in this state; in contrast, an X3-strategy
of x may offer synchronization on b. In this case, x vconf,X3 y holds, and hence
x vcrt y holds by Theorem A.1.19, but the restricted test t = b · ~ is successful
on y, but not on x.

The problem is the action on the edge from a coverable to an uncoverable state.
Although the proposed kind of pruning does not change the semantics in terms
of vconf,X3 and of vcrt, removing this action would change the semantics, and
hence we do not consider this to be feasible.

To find a sufficient condition on the processes, let us consider a typical proof
attempt for x vcrt y implies x vrt y, for any two processes x and y. Such a proof
starts with a successful vrt-test t on y. To use the vcrt-relation, test t should be
transformed into a vcrt-test. The following lemma describes a way to do so.
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Lemma A.1.24 (successful test implies successful covering test).
Let x be an X3-controllable and pruned process that does not contain the action
~. Any successful test on x can be transformed into a successful covering test on
x in two steps. First, replace each trivial test by action ~. Second, replace some
branches a · ~, where action a can move x from a coverable to an uncoverable
state, by action ~. y

Proof.
Let x be an X3-controllable and pruned process that does not contain the action
~. Let t be a successful test on x.

As ~ is a trivial test, replacing in t every trivial test by action ~ yields a
successful test t′ on x. Consider in the composition x‖t′ each first reachable state
q′‖r′, such that q′ is an uncoverable state of x and r′ is a state of t′. As x is
X3-controllable, there is also a reachable state q‖r, in which q is a coverable state
of x and r is a state of t, such that there is an edge q‖r a−→ q′‖r′ for a synchronized
action a different from X. As x is pruned, q′ is equal to U . As every trivial test
in t′ is equal to ~, we have r′ = ~. By replacing in t′ each such branch a ·~ by
the action ~, we obtain a successful covering test on x. �

For the example process x = a·(b+b·X+c·X), the successful test a·b·(~+a·~)
is first transformed into the successful test a · b · ~, and then into the successful
covering test a ·~.

Using Lemma A.1.24, a successful vrt-test t on y can be transformed into a
successful vcrt-test t′ on y. Using the given vcrt-relation, test t′ is a successful
vcrt-test on x. To conclude that t is a successful vrt-test on x, we have to
replace in t′ some actions ~ by a branch a · ~, for some synchronized action a.
However, it is not guaranteed that a can be accepted, and hence a deadlock may
be introduced.

For the counterexample in the beginning of this section (before Lemma A.1.24),
test t = b · ~ is transformed into the successful covering test t′ = ~ on x. To
conclude that t is successful on x, action b should be accepted by x, but this is
not the case.

To avoid that only one process can synchronize on such an action, we assume
not only that the processes have been pruned, but also that the considered set of
processes is vulnerable.

Definition A.1.25 (vulnerable set of processes).
A set of processes is vulnerable iff every action that can move some of the processes
from a coverable state (where X has not yet occurred) to an uncoverable state, is
an action that can be accepted in every coverable state of each of the processes.
A process x is vulnerable iff {x} is a vulnerable set of processes. y

This may sound like a severe restriction, but in Section A.1.5 we will see that
vulnerable sets of processes are quite common in practice. Furthermore, pruning
behaves nicely in terms of a vulnerable set of processes, as it only normalizes
uncoverable states.

242



A.1. Relationship between conformance and fair testing

Lemma A.1.26 (pruning does not affect vulnerability).
Pruning each process in a vulnerable set of processes yields a vulnerable set of
pruned processes. y

Covering restricted testing implies restricted testing

Using this theory on pruning and vulnerable processes, we can prove that covering
restricted testing implies restricted testing.

Theorem A.1.27 (cov. restricted testing implies restricted testing).
Let x and y be two X3-controllable and pruned processes that do not contain the
action ~. If x and y are in a vulnerable set of processes, then the following holds:

x vcrt y ⇒ x vrt y . y

Proof.
Let x and y be X3-controllable and pruned processes that do not contain the
action ~, and that are in a vulnerable set of processes. Let x vcrt y; that is, for
each restricted test t′′, it holds that if t′′ is a successful covering test on y, then
t′′ is a successful covering test on x. To prove x vrt y, let t be a restricted test
that is successful on y. What remains to be proved is that t is successful on x.

Based on Lemma A.1.24, we replace in t each trivial test by action ~, yielding
a successful test t′ on y. Afterwards we replace some branches a ·~ (where a can
move y from a coverable state to an uncoverable state) by action ~, yielding a
successful covering test t′′ on y. As all trivial tests in t′ had been replaced by ~,
no ~ occurs before such an a in t′. As test t is restricted, tests t′ and t′′ are also
restricted, and hence no X occurs before such an a in t′.

Using x vcrt y, test t′′ is a successful covering test on x. To obtain t again, we
first replace some actions ~ by a branch a · ~. For the actions ~ that are not
reachable in the composition x‖t′′, this cannot harm success on x. Every action
~ that is reachable in the composition x‖t′′ starts in a coverable state of x, as
t′′ is a covering test on x. Action a can be accepted in this state, as x and y
are in a vulnerable set of processes and action a could move y from a coverable
state (where X had not yet occurred) to an uncoverable state. Finally, we replace
some actions ~ in successful test t′ on x by a trivial test, yielding test t, which is
guaranteed to be successful on x. �

From Corollary A.1.21 and Theorem A.1.27 we immediately conclude that, for
certain processes, covering restricted testing is equivalent to restricted testing.

Corollary A.1.28 (cov. restr. testing coincides with restr. testing).
Let x and y be two X3-controllable and pruned processes that do not contain the
action ~. If x and y are in a vulnerable set of processes, then

x vcrt y ⇔ x vrt y . y
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As the notions of X3-conformance and covering restricted testing are equivalent
(see Corollary A.1.20), we can relate X3-conformance and restricted testing.

Corollary A.1.29 (X3-conformance coincides with restricted testing).
Let x and y be two X3-controllable and pruned processes that do not contain the
action ~. If x and y are in a vulnerable set of processes, then

x vconf,X3 y ⇔ x vrt y . y

These restrictions are not yet enough to prove x vconf,X3 y ⇒ x vft y.
Consider the counterexample x = a · X + X and y = a · X, where x and y are
in a vulnerable set of pruned processes. In relation to process y, process x only
makes it easier to terminate properly, so x vconf,X3 y holds. However, the (non-
restricted) test t = ~ +X is a successful test on y, but not on x. In particular,
this shows that fair testing and X3-conformance do not coincide for processes in
which all states are coverable, although this was claimed by [MSR06].

A.1.5. Application to asynchronous processes

In this section, we study the computability of the introduced concepts, and show
that all processes that only communicate asynchronously are in a vulnerable set.

Computability

We first sketch some decision procedures for the introduced concepts. For these
procedures, we restrict ourselves to processes with a finite number of states.

To compute the coverable states, we use the notion of the most-permissive X3-
strategy (cf. Definition 4.3.1), because it can visit all the states that can be visited
using any X3-strategy. So, the coverable states of a process are the states that
can be visited by the most-permissive X3-strategy.

The coverable and uncoverable states can be used to decide whether (sets
of) processes are pruned or vulnerable. For any process, an X3-conformance-
equivalent pruned process can be obtained by replacing all first uncoverable states
by process U . However, in general there exists no X3-conformance-equivalent pro-
cess that is vulnerable.

For example, consider the process x = a + b ·a ·X. In what follows, we collect
necessary conditions on a vulnerable process y that is X3-conformance-equivalent
to x, and show a contradiction. Process x and y have b · a ·X as an X3-strategy;
hence, all the states in y that can be visited with this X3-strategy are coverable.
However, b · a ·X + a · z′, for any process z′, is not an X3-strategy of x and y;
hence, a is an action that can move y from a coverable state to an uncoverable
state. Finally, b · a · (X + a) is an X3-strategy of x and y; hence, y cannot
accept a in a certain coverable state. So there exists no vulnerable process y that
is X3-conformance-equivalent to x.
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x C D z

x B z

(a) One buffer (B)

x C D z

x B z

(b) Two buffers (C and D)

Figure A.3.: Buffering schemes for a process x and an X3-strategy z.

Modeling asynchronous communication

Processes that communicate asynchronously can be modeled as processes that
communicate synchronously by explicitly introducing the communication buffers
between them as additional processes (see also a brief remark in [FHRR04]). In
line with [BZ09], we consider unbounded uni-directional buffers that are empty
in the initial state and that must be empty on termination.

The concept of a communication buffer has already been introduced in Sec-
tion 2.7.2 for service automata. To model asynchronous communication, the
pending messages in the composition of two service automata are stored in a
message bag. That means, the message bag implements the functionality of a
buffer process.

Let MT be a set of message types. Let the asynchronous processes use syn-
chronized actions (apart from X) of the shape ?m and !m, for m ∈ MT , to denote
respectively receiving and sending a message of type m. For each message type
m, a buffer can be modeled as Bm(0), where Bm is defined as:

Bm(0) = X + !m ·Bm(1) , Bm(n+ 1) = ?m ·Bm(n) + !m ·Bm(n+ 2)

In Bm(n), the natural number n denotes the number of messages in the buffer.
Synchronization on action !m puts a message in the buffer, whereas synchroniza-
tion on ?m gets a message from the buffer. The buffer can only terminate properly
when it is empty.

Thus, asynchronous communication using a set of message types MT can be
modeled as follows. Let x be a given asynchronous process and z be an asyn-
chronous X3-strategy that use disjoint sets of synchronized actions for the mes-
sage types MT . Let B denote the merge ‖{X} of Bm, for every m ∈ MT . The
buffered composition of x and z can be modeled as x ‖ B ‖ z; in addition to syn-
chronization over X, the first merge synchronizes over the synchronized actions of
the buffer for x, and the second merge synchronizes over the synchronized actions
of the buffer for z.

To keep the binary setting of a given process x and an X3-strategy z, and to
avoid imposing restrictions on the set of all X3-strategies, we integrate the buffers
with each given process. The resulting process is x ‖ B; see Figure A.3(a). Thus,
the X3-strategy z can send a message of type m to the process x using a synchro-
nized action !m of the buffer; receiving a message from z is an internal action of

245



A. Placing Conformance in the Linear Time – Branching Time Spectrum

the composition of the process x and the buffer B. Similarly, the X3-strategy z
can receive a message of type m from the process x using a synchronized action
?m of the buffer; sending a message to z is an internal action of the composition
of the process x and the buffer B. We call such an integrated process x ‖ B an
(I,O)-buffered process.

Definition A.1.30 ((I, O)-buffered process).
Let I and O be two disjoint sets of message types. An (I,O)-buffered process is
a process where each action is either

1. an internal (unsynchronized) action;

2. the synchronized action X;

3. a synchronized action that gets a message from an output buffer for type
m ∈ O; or

4. a synchronized action that puts a message in an input buffer for typem ∈ I.y

Properties of asynchronous processes

It is well-known that two (unbounded) buffers in series behave as one (unbounded)
buffer; that is, they are branching bisimilar after hiding the synchronized actions
in between them. So, Bm can be replaced by Cm ‖{X,m} Dm, where Cm and Dm

are buffers that are obtained from Bm by renaming some of the actions:

Cm(0) = X + !m · Cm(1) , Cm(n+ 1) = m · Cm(n) + !m · Cm(n+ 2)

Dm(0) = X + m ·Dm(1) , Dm(n+ 1) = ?m ·Dm(n) + m ·Dm(n+ 2)

Thus, using the associativity of the merge, any X3-strategy z of an (I,O)-buffered
process x‖B can be transformed into a buffered X3-strategy D‖z for x‖C (or vice
versa), without affecting weak termination; see Figure A.3(b). As x‖B and x‖C
are identical up to renaming some synchronized actions (like m), D‖z can be
transformed into an (O, I)-buffered X3-strategy of x‖B by some renaming.

Let us investigate which actions can move a buffered process from a coverable
to an uncoverable state.

Lemma A.1.31 (characterization of actions).
Let x be an (I,O)-buffered process, let q be a coverable state of x, and let a be
an action such that q a−→ q′, for some state q′ of x. State q′ is guaranteed to be
coverable if action a is

1. an internal (unsynchronized) action;

2. the synchronized action X; or

3. a synchronized action ?m of type m ∈ O that gets a message from an output
buffer. y
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Proof.
Let x be an (I,O)-buffered process, let q be a coverable state of x, and let a be
an action such that q a−→ q′, for some state q′ of x.

As q is coverable, there is an X3-strategy z that can visit q while being in a
state r. To show that q′ is coverable, we show how to construct an X3-strategy
that can visit state q′ in case X3-strategy z does not:

1. As internal action a is unsynchronized, X3-strategy z can also visit q′.

2. Adding in r a X-labeled outgoing edge gives an X3-strategy that can visit
q′.

3. Replacing X3-strategy z by an (O, I)-buffered X3-strategy, as described
before, gives an X3-strategy that can synchronize on ?m in every state, and
hence it can visit q′. �

So, the only actions that can move an (I,O)-buffered process from a coverable
state to an uncoverable state are actions that put a message into an input buffer.
As the buffers are unbounded, these actions can be accepted in every state before
any occurrence of action X. Combining these ingredients, we can conclude that
certain sets of (I,O)-buffered processes are vulnerable.

Lemma A.1.32 ((I, O)-buffered processes are vulnerable).
Let I and O be two disjoint sets of message types. Any set of (I,O)-buffered
processes is a vulnerable set of processes. y

Combining our previous results, we obtain the following result for asynchronous
processes.

Corollary A.1.33 (asynchronous processes are vulnerable).
Let I andO be two disjoint sets of message types. Let x and y be two asynchronous
processes that only contain the synchronized actions X, ?m for m ∈ I, and !m for
m ∈ O, but that do not contain the action ~. Let B be the buffer that corresponds
to I and O. Let x′ be the result of pruning the (I,O)-buffered process x‖B, and
let y′ be the result of pruning the (I,O)-buffered process y‖B. If x‖B and y‖B
are X3-controllable, then

x′ vconf,X3 y
′ ⇔ x′ vrt y

′ . y

A.2. Relationship between conformance and failures

In this section, we study the relationship between the X1-conformance preorder
(recall that X1 = {deadlock freedom}) and known process equivalences and pre-
orders. The notion of a deadlock has been investigated in the stable failures
model [BHR84, Hoa85, Ros98] in process algebra. We show that the stable fail-
ures preorder and the X1-conformance preorder are equivalent.
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We use the notion of processes as introduced in Section A.1.1. In particular,
we use the synchronized action X to model termination and ignore all states after
the first X has occurred.

In the stable failures model, a process x is represented by the set Failures(x)
of its failures. A failure of x is a pair (σ, Y ). With σ we denote a finite sequence
of actions of x—that is, x σ==⇒ x′. The set Y ⊆ Act denotes the refusal set of x′.
A refusal set contains actions that are refused by process x after having executed
σ. That is, for all actions a ∈ Y ∪{τ} holds: x′ 6 a−→ . Note that the stable failures
model only considers states x′ of x that do not enable any τ -transition. Such
states x′ are called stable. Process x failure refines process y if and only if the
failures of x are contained in the failures of y.

Definition A.2.1 (stable failures preorder).
Let x and y be processes. The set Failures(x) of failures of x is the least set
satisfying (σ, Y ) ∈ Failures(x) if there is a process x′ with x

σ==⇒ x′ such that for
all a ∈ Y ∪ {τ} holds: x′ 6 a−→ . Processes x and y are related in the stable failures
preorder , denoted by x vf y, iff Failures(x) ⊆ Failures(y). y

As an example, consider a process x = a+b with H = {a, b}. The set of failures
of x is defined by Failures(x) = {(ε, ∅), (a, {a, b}), (b, {a, b})}.

The stable failures preorder vf is a precongruence with respect to composi-
tion by synchronization. Given a process x‖r, by the operational rules, we have
Failures(x‖r) = {(σ, Y ∪ Z) | (σ, Y ) ∈ Failures(x) ∧ (σ, Z) ∈ Failures(r)}.

We want to compare the stable failures preorder vf with the X1-conformance
preorder vconf,X1 . The following theorem justifies that both preorders are equiv-
alent.

Theorem A.2.2 (X1-conformance coincides with stable failures).
For any two processes x and y holds:

x vconf,X1 y ⇔ x vf y . y

Proof.
Let x 6vf y; that is, we have Failures(x) * Failures(y). We will show that
x 6vconf,X1 y.

Choose a refusal set Z and a finite sequence σ = a1 · . . . ·an of actions such that
(σ, Z) ∈ Failures(x)\Failures(y). Let r be the process τ∗ ·a1 ·τ∗ · . . . ·an ·(Σz∈Zz) ·
τ∗ · δ. Clearly, x‖r contains a deadlock and, by assumption, y‖r does not. As r
diverges (or in case of a synchronization on action X, a final state is reached), it is
an X1-strategy of y, but it is not an X1-strategy of x. Consequently, x 6vconf,X1 y.

Let x vf y; that is, we have Failures(x) ⊆ Failures(y). We will show that
x vconf,X1 y.

Choose an arbitrary process r. As vf is a precongruence, we have x‖r vf y‖r.
Suppose r is an X1-strategy of y; that is, for all σ ∈ Act∗ holds, (σ,Act) /∈
Failures(y‖r). From vf being a precongruence we conclude that, for all σ ∈
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Act∗ holds, (σ,Act) /∈ Failures(x‖r); that is, r is an X1-strategy of x as well.
Consequently, x vconf,X1 y. �

Theorem A.2.2 shows that the X1-conformance preorder is, in fact, not a novel
preorder. The equivalence with the stable failures preorder, which is well-studied,
simplifies the comparison of X1-conformance with related preorders in the litera-
ture. As must testing is equivalent to stable failures—at least for finitely branching
processes without divergences [Nic87]—we conclude that X1-conformance takes
the same position than musting (MT) in Figure A.1.
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selbständig und ohne unerlaubte Hilfe angefertigt sowie nur die angegebene
Literatur verwendet habe,
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