261,726 research outputs found

    An Efficient Online Benefit-aware Multiprocessor Scheduling Technique for Soft Real-Time Tasks Using Online Choice of Approximation Algorithms

    Get PDF
    Maximizing the benefit gained by soft real-time tasks in many applications and embedded systems is highly needed to provide an acceptable QoS (Quality of Service). Examples of such applications and embedded systems include real-time medical monitoring systems, video- streaming servers, multiplayer video games, and mobile multimedia devices. In these systems, tasks are not equally critical (or beneficial). Each task comes with its own benefit-density function which can be different from the others’. The sooner a task completes, the more benefit it gains. In this work, a novel online benefit-aware preemptive approach is presented in order to enhance scheduling of soft real-time aperiodic and periodic tasks in multiprocessor systems. The objective of this work is enhancing the QoS by increasing the total benefit, while reducing flow times and deadline misses. This method prioritizes the tasks using their benefit-density functions, which imply their importance to the system, and schedules them in a real-time basis. The first model I propose is for scheduling soft real-time aperiodic tasks. An online choice of two approximation algorithms, greedy and load-balancing, is used in order to distribute the low- priority tasks among identical processors at the time of their arrival without using any statistics. The results of theoretical analysis and simulation experiments show that this method is able to maximize the gained benefit and decrease the computational complexity (compared to existing algorithms) while minimizing makespan with fewer missed deadlines and more balanced usage of processors. I also propose two more versions of this algorithm for scheduling SRT periodic tasks, with implicit and non-implicit deadlines, in addition to another version with a modified loadbalancing factor. The extensive simulation experiments and empirical comparison of these algorithms with the state of the art, using different utilization levels and various benefit density functions show that these new techniques outperform the existing ones. A general framework for benefit-aware multiprocessor scheduling in applications with periodic, aperiodic or mixed real-time tasks is also provided in this work.Computer Science, Department o

    Composable Deep Reinforcement Learning for Robotic Manipulation

    Full text link
    Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained using soft Q-learning can be applied to real-world robotic manipulation. The application of this method to real-world manipulation is facilitated by two important features of soft Q-learning. First, soft Q-learning can learn multimodal exploration strategies by learning policies represented by expressive energy-based models. Second, we show that policies learned with soft Q-learning can be composed to create new policies, and that the optimality of the resulting policy can be bounded in terms of the divergence between the composed policies. This compositionality provides an especially valuable tool for real-world manipulation, where constructing new policies by composing existing skills can provide a large gain in efficiency over training from scratch. Our experimental evaluation demonstrates that soft Q-learning is substantially more sample efficient than prior model-free deep reinforcement learning methods, and that compositionality can be performed for both simulated and real-world tasks.Comment: Videos: https://sites.google.com/view/composing-real-world-policies

    The Epistemology of scheduling problems

    Get PDF
    Scheduling is a knowledge-intensive task spanning over many activities in day-to-day life. It deals with the temporally-bound assignment of jobs to resources. Although scheduling has been extensively researched in the AI community for the past 30 years, efforts have primarily focused on specific applications, algorithms, or 'scheduling shells' and no comprehensive analysis exists on the nature of scheduling problems, which provides a formal account of what scheduling is, independently of the way scheduling problems can be approached. Research on KBS development by reuse makes use of ontologies, to provide knowledge-level specifications of reusable KBS components. In this paper we describe a task ontology, which formally characterises the nature of scheduling problems, independently of particular application domains and in-dependently of how the problems can be solved. Our results provide a comprehensive, domain-independent and formally specified refer-ence model for scheduling applications. This can be used as the ba-sis for further analyses of the class of scheduling problems and also as a concrete reusable resource to support knowledge acquisition and system development in scheduling applications

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas
    • …
    corecore