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Abstract. In this paper we propose a generic task ontology, which formalizes the 
space of planning problems. Although planning is one of the oldest researched areas 
in Artificial Intelligence and attempts have been made in the past at developing task 
ontologies for planning, these formalizations suffer from serious limitations: they do 
not exhibit the required level of formalization and precision and they usually fail to 
include some of the key concepts required for specifying planning problems. In con-
trast with earlier proposals, our task ontology formalizes the nature of the planning 
task independently of any planning paradigm, specific domains, or applications and 
provides a fine-grained, precise and comprehensive characterization of the space of 
planning problems. Finally, in addition to producing a formal specification we have 
also operationalized the ontology into a set of executable definitions, which provide 
a concrete reusable resource for knowledge acquisition and system development in 
planning applications. 
 
Keywords: Planning, Ontologies, Task Ontologies, Reusable Knowledge Compo-
nents, Knowledge Engineering, Knowledge Modelling. 

 
 

1 Introduction 
 
In this paper we propose a generic task ontology, which formalizes the space of planning 
problems. Planning is one of the oldest researched areas in Artificial Intelligence (AI). In-
deed one of the earliest systems in AI, the General Problem Solver [16] was concerned with 
simulating human thinking processes as a planning activity. Over the years, various plan-
ning paradigms have emerged, such as Classical Planning [9], Decision Theoretic Planning 
(DTP) [3], Hierarchical Task Networks (HTN) [5]. In classical planning, the main aim of 
the planning task is to attain a goal-state, which is usually specified in terms of a number of 
desired properties of the world. Planning applications in the classical paradigm are charac-
terized by a set of initial conditions, and a number of planning operators are then applied to 
transform an initial-state into a goal-state through a sequence of steps. These planning op-
erators are typically referred to as STRIPS-operators [9]. A STRIPS-operator is a param-
eterized template for a set of actions and contains a set of preconditions that must be satis-
fied before an action is executed and a set of effects that an action can have on the world. 
However the classical planning approach fails to handle the dynamic nature of real-world 
applications and provides limited expressiveness to create efficient domain representations 
[21]. The DTP approach can be seen as a specialized extension of classical planning, which 
models the planning problem by allowing actions having uncertain effects. In this approach 
the planning agent may also have incomplete information about the world. This type of rep-
resentation is particularly suitable to tackle problems in which the goal state is only ap-



 

proximately defined. At the execution level, the primary aim of the DTP paradigm is to 
construct a plan that has a high expected utility factor1 rather than simply generating a plan 
that can achieve a goal. The planning paradigm in general and DTP in particular can be 
seen as a technique for solving sequential decision problems, such as decision analysis, 
economics, and operations research. DTP approaches use Markov Decision Processes 
(MDP) [7] to reason in face of uncertainty. However, there are two general limitations for 
using MDP in AI planning – i) absence of explanations in the MDP model and ii) inability 
to scale to large-size applications.  

Finally, the HTN approach goes beyond classical planning by introducing task decom-
position in the planning process. For example, if we wish to devise a plan to carry a pas-
senger from London to New York, then a high-level task would be something like Travel-
from-London-to-New-York, which could then be decomposed into lower-level tasks, such 
as Book-A-Ticket, Go-To-Heathrow, Board-A-Plane-Going-To-New-York, and Depart-At-
JFK-Airport. The expansion procedure is described by transformation rules called methods. 
A plan is completed when the resulting network contains only primitive-tasks and a solu-
tion is consistent with the set of given constraints [5].  

Although different planning paradigms provide specialized mechanisms to represent 
plans their main focus is on specific domains or ‘planning shells’ and no comprehensive 
formal analysis exists that provides an account of what the planning task is independent of 
the way the planning task may be tackled. An ontology [15] is a specification of the differ-
ent entities and abstractions that exists in a universe of discourse for the purpose of reuse. 
Work on reusable components for knowledge-based systems [2, 4, 8, 18] defines task on-
tologies [18, 20] as a way of formalizing classes of generic knowledge-intensive tasks, such 
as parametric design, scheduling, diagnosis, independently of the way these tasks can be 
tackled by reasoning methods. A second class of components commonly referred to as 
problem-solving methods (PSMs), specify the way tasks can be solved. In this paper our 
main focus is to describe the planning task ontology, which formally characterizes the na-
ture of the planning problems.  

Some attempts have been made in the past [12, 14, 23, 25] at formalizing the planning 
task, however these formalizations suffer from limitations. In particular, none of these pro-
posals [14, 23, 25] provide a concrete, formal ontological resource which can be used to 
precisely characterize planning problems. In some cases [25] the proposed models simply 
provide a coarse-grained analysis of the planning task. While this can be used to organize 
domain knowledge for a planning application, it does not provide the required degree of 
modeling support, which is needed to characterize a specific planning application formally 
and precisely. In other cases [14, 23], some degree of formalization is provided, however 
important concepts are missing and even when these concepts are present, they are typi-
cally under-specified. For instance, the notion of plan-task in the aforementioned ap-
proaches fails to take into consideration key aspects of a plan-task, such as time and agent. 
Moreover at a more general level of analysis, important aspects such as optimality concerns 
are not covered by these proposals. 

Theoretically, our main aim is to formalize the planning task at a generic level by 
amalgamating different planning paradigms. Therefore, our definition of planning sub-
sumes the characteristics of all the three planning paradigms discussed earlier. Thus we de-
fine planning as:  

“A detailed formulation of a sequence of plan-tasks and actions associated with the 
plan-tasks. These plan-tasks and actions can be executed by agents in order to transform 

                                                 
1 Given the probability distribution over the possible candidate solutions of an action in any state and a 

preference function over the solutions, a utility function can be defined on these candidate solutions such that 
whenever an agent prefers one candidate solution over another, then the preferred plan has said to exhibit a 
higher expected utility [3]. 



 

an initial-world-state into a goal-world-state. The output of the planning task is a plan 
specified in accordance with application-specific solution criteria.” 

Our ultimate aim is to develop a generic planning task ontology to overcome the short-
comings that can be observed in the existing proposals. We say that our task ontology is 
generic to emphasize that it is independent of specific planning domains or applications, or 
reasoning methods. Our ontology formalizes the planning task without subscribing to any 
planning specific paradigm, but tries to tease out and integrate the important conceptual and 
theoretical distinctions that exist in the main planning paradigms. We also aim to achieve 
maximum reusability by reusing the appropriate notions defined in earlier task ontologies 
we developed, such as parametric design [18] and scheduling [19]. 

Our approach is based on research in knowledge system development by reuse [8, 18], 
which proposes a generic epistemology for knowledge-based systems in terms of tasks, 
problem-solving methods and domain models, and also uses ontological engineering  as the 
key technique for building libraries of reusable components for knowledge systems. 

Our task ontology is formalized by using the Operational Conceptual Modelling Lan-
guage (OCML) [18], which provides both support for producing sophisticated specifica-
tions, as well as mechanisms for operationalising definitions to provide a concrete reusable 
resource to support knowledge acquisition and system development. Import/export mecha-
nisms from OCML to standards, such as OWL [17] and Ontolingua [6] ensure symbol-level 
interoperability. 

The rest of the paper is organized as follows: the following section provides a coarse-
grained specification of the planning task. In section 3, we provide a more detailed specifi-
cation of the ontology. In section 4, we compare our work with existing proposals in the 
field and finally, in section 5, we draw some conclusions from our work and outline future 
research. 
 
 
2 A Generic Specification of the Planning Task 
 
In accordance with the informal definition given in the previous section, the planning task 
in our framework is represented as a mapping from an eleven dimensional space {SO, G, 
PT, A, AG, PA, TH, C, PR, Cf, SOL} to a plan P. These parameters are described below: 
• Initial-world-state, SO. It describes the state of the world at the beginning of the plan-

ning process.  
• Goal, G. It describes the desired state of the world we want to achieve through a plan-

ning process. 
• Plan-tasks, PT = {pt1, …., ptn}. A set of plan-tasks, which specify intermediate goals 

which need to be accomplished to achieve the overall goal of the planning task. 
• Actions. For each plan-task, pti, there is a finite set of actions, Ai = {ai1, …., aik}, 

which must be executed to accomplish pti. 
• Agents, AG = {ag1, …., agm}. A set of agents, which are responsible for achieving 

plan-tasks through the execution of actions.  
• Parameters, PA = {pa1, …., pal}. Parameters can be seen as meta-level pointers to the 

domain entities, which are relevant to the planning process.  
• Time-horizon, TH. A time window within which the plan is required to take place. 
• Constraints, C = {c1, ...., cj}. A set of constraints, which must not be violated by a 

plan. Typical constraints observed in planning are variable binding, ordering relation, 
and interval preservation [26].  

• Preferences, PR = {pr1, …., pro}. A set of criteria for partially ranking competing 
plans. These are important to support the acquisition and modeling of local optimiza-
tion criteria during the knowledge acquisition process and indeed they can in practice 
be mutually unsatisfiable. Preferences are typically called soft constraints in many ap-



 

proaches to design and planning, however they are ontologically very different from 
constraints and therefore we prefer not to use the term “soft constraint”. We will dis-
cuss this point in more detail in section 3.6. 

• Cost-function, Cf. A function, which provides a global mechanism for comparing the 
costs of alternative plans. 

• Solution criterion, SOL. A mapping from a plan P to {True False}, which determines 
whether a candidate plan is a solution. A solution criterion usually requires P to be 
complete and valid - see the following section for the description of these properties. 

• Plan-model, P = {p1, …., pq}. A candidate plan is a sequence of pairs, <pti, agj>, 
where pti is a plan-task and agj is an agent able to execute the relevant actions associ-
ated with pti. 
Solution criteria tend to be application dependent. For instance one application may 

require optimal solutions, while another one may require simply valid solutions, which sat-
isfy all applicable constraints. Thus the ontology provides modular definitions to allow ap-
plication builders to assemble specific solution criteria from reusable components as well 
as some default generic applicable criteria. In particular, two key notions are completeness 
and validity, which are specified as follows: 
• A plan model P is complete, if every plan-task in PT is included in P. 
• A plan model P is valid, if it does not violate any of the plan-constraints in C. It is im-

portant to emphasize that in contrast with classical planning, constraints may not only 
impose conditions on what must be true in the goal state, but they might have to be sat-
isfied by all the intermediate states, traversed during the planning process. 

 
 
3 A Formal Specification of the Task Ontology 
 
Our task ontology consists of 87 definitions and it relies on two other ontologies: Simple 
Time ontology and Base Ontology. The Simple Time ontology was imported from the On-
tolingua library and is based on Allen’s [1] theory of time. The Base Ontology provides 
support to define standard modeling definitions, such as tasks, relations, functions, etc. The 
complete specification of the ontology can be found at URL 
http://kmi.open.ac.uk/people/dnyanesh/ontologies/planning. 
 
 
3.1 Planning-Task and Plan-Solution 
 
The starting point for understanding the ontology is the class planning-task, which 
characterizes the planning problem in terms of input and output roles, precondition, and 
goal-expression, consistently with our modeling framework based on tasks and PSMs [8, 
18]. Because we have already discussed the input and output roles to a planning task in 
Section 2, here we only need to discuss the precondition and goal-expression of the task. 
The precondition states that the planning task must include a description of the initial and 
goal states, and there has to be at least one plan-task for the meaningful generation of a 
plan. The goal-expression states that the goal of the planning task is to devise a plan ac-
cording to the given solution criterion. If none is provided then the default one is applied 
(cf. Section 2), which is modeled by the relation plan-solution. 
 
 
3.2 Initial State and Goal Description 
 
Both the initial state and the goal state descriptions are simply sets of statements which ex-
press the current state of the world and the desired state we wish to achieve. These state-



 

ments express properties of parameters. Formally a goal description is a logical expression 
with no free variables.  
 
 
3.3 Plan Task 
 
Plan tasks are represented in terms of a number of attributes: 

Has-parameters: this slot represents the parameters associated with a plan-task. 
Strictly speaking this slot is not necessary – the relevant parameters can be identified sim-
ply by analyzing the precondition, actions and postcondition of a plan, however it is useful 
to be able to associate parameters to plan tasks directly, to simplify the reasoning process.  

Has-precondition: this slot contains a logical statement, which states what must be true 
before a plan-task is executed. For instance, if a plan-task is to perform a welding operation 
by a robot, then the robot’s arm must be holding a welding gun before performing the weld-
ing operation. 

Has-postcondition: this slot contains a logical statement, which states what must be 
true after the execution of a plan-task. 

Achieved-by-actions: this slot indicates the actions which need to be executed to 
achieve the plan task. For instance, if a plan-task is to Book-An-Air-Ticket then actions, 
such as Find-A-Travel-Agent, Check-The-Ticket-Availability, Check-The-Mode-Of-
Payment, etc. are needed to achieve the booking.  

Requires-agents: this slot associates a plan-task to one or more agents able to achieve 
the plan task. 

Has-time-range: this slot represents a time-window within which a plan-task must take 
place. It is represented by the earliest and the latest start and end times.  

The box below shows the OCML definition of the class.  

(def-class PLAN-TASK () ?pt 
 ((has-parameters :type parameter :min-cardinality 1) 
  (has-precondition :type relation-expression 
                    :default-value (true)) 
  (has-postcondition :type relation-expression) 
  (achieved-by-actions :type action 
                       :min-cardinality 1) 
  (requires-agents :type agent :min-cardinality 1) 
  (has-time-range :type job-time-range :max-cardinality 1))) 

In our task ontology various relations and functions can be used to check whether a 
plan-task is achieved successfully while constructing a plan. The relation agent-
executes-plan-task (agent plan-task plan-model) is a ternary relation between 
an agent, a plan-task, and a plan-model, states that an agent executes the plan-tasks in a 
planning world. The relation plan-task-is-achieved (plan-task plan-model) is 
a binary relation between a plan-task and a plan-model, checks whether a plan-task is 
achieved by the agents through the execution of the actions associated with it. The relation 
plan-task-is-unachieved is the inverse of relation plan-task-is-achieved. The 
relations in our framework are important to capture the control and mechanism input [10] 
for accomplishing plan-tasks to construct a solution plan. The functions actions-
associated-with-plan-task and agents-associated-with-plan-task are re-
spectively used to retrieve all the actions and agents associated with a plan-task while con-
structing a plan. Finally the function called duration-of-a-plan-task is defined to 
calculate the duration of a plan-task. This function takes as an input the time range of a 
plan-task and calculates the plan-task duration by subtracting the end time of a plan-task 
time range from the start time of a plan-task time range.  

 
 



 

3.4 Action 
 
Each action is associated with a plan-task, say pti, and is also defined in terms of a precon-
dition and a postcondition. The main difference between actions and plan tasks is that the 
latter decompose into a number of actions while an action is not further decomposed in a 
planning model. For instance, in transportation planning, if a plan-task is to Load-Package-
Into-Vehicle then some of the actions associated with this plan-task are Open-Door, Per-
form-Package-Loading, Close-Door, etc. The box below shows the OCML definition of the 
class. 

(def-class ACTION () ?a 
 ((has-precondition :type relation-expression :default-value (true)) 
  (has-postcondition :type relation-expression))) 

Similarly to the Process Interchage Format [10], in our task ontology we define a num-
ber of ordering relations that can be used to impose temporal ordering constraints among 
any two plan-tasks and actions: BEFORE, FOLLOWS, MEETS, OVERLAPS, DURING, START-
SIMULTANEOUSLY, FINISH-SIMULTANEOUSLY, and START-AND-FINISH-
SIMULATENOSLY. 
 
 
3.5 Agent 
 
The class agent represents a person, group, or an entity which holds a purpose and is re-
sponsible for achieving different plan-tasks through the execution of actions. It has the fol-
lowing attributes: 

Can-Executes-plan-task: this slot associates each agent to all the possible plan-tasks it 
can execute to construct a plan. 

Holds-a-purpose: this slot expresses the cognitive attitude of an agent. According to 
the Suggested Upper Merged Ontology [22], the purpose of an agent can be represented by 
a physical entity, another agent (cognitive or sentient), or a formula.  

Has-time-window: this slot represents a limited time-window within which an agent is 
available to accomplish plan-tasks. It is represented in terms of a start and an end time. 

The box below shows the OCML definition of class agent. 

(def-class AGENT () ?ag 
 ((can-executes-plan-task :type plan-task) 
  (holds-a-purpose :min-cardinality 1) 
  (has-time-window :type time-range :max-cardinality 1))) 

The class agent is specialized into sentient-agent and cognitive-agent [22]. 
The former represents an agent that has rights, but may or may not have the ability to rea-
son, while the latter is a sentient agent that has ability to reason, deliberate, or make plans, 
e.g. human-beings. 
 
 
3.6 Constraint and Preference 
 
Although, some of the existing proposals [23, 25] fail to distinguish between the notions of 
constraints and preferences, our task ontology provides a clean distinction between them, 
and provides a set of possible validation criteria to validate a candidate plan. The class 
constraint represents a property that must not be violated by a valid solution. One of the 
earlier planning frameworks like I-N-OVA [24] determines plan validity based on specific 
constraint types, such as ordering, variable, and auxiliary constraints. In contrast with this 
approach, our framework does not limit plan validation only to specific types of con-
straints, but rather allow users to specify constraints according to their own applications. 



 

Because our task ontology does not subscribe to any specific classification of constraints it 
allow users to specify different types of constraints, such as theoretical, technical, engineer-
ing, social or cognitive control actions, which can be used to determine the space of a valid 
plan. Usually the social and cognitive constraints can be seen as the properties that emerge 
from the environment, which is external to the core planning world. For instance, if we 
wish to construct a plan for an automotive industry that manufactures cars, then one essen-
tial social constraint that must be taken into account is to ensure that no human-resources 
work more than the legal shift hours. In comparison with other types of constraints, the 
cognitive constraints are different in nature because they can be used during planning to 
reason about the cognitive abilities of the agent performing certain tasks. For example, if a 
planner has to come up with a plan to design a car then he/she must take into account the 
cognitive ability of the average human-being in dealing with car mechanism.  

As described earlier (cf. Section 2), the notion of a soft constraint is typically used to 
determine the criteria associated with an optimal solution, and accordingly a solution that 
satisfies a maximum number of soft constraints is treated as a better solution than other 
competing solutions. In contrast with this, in our model constraints define prescriptive 
properties because they must not be violated by the plan-tasks and associated actions. If 
soft constraints are allowed to be violated while constructing a solution [27], then it is not 
clear how they can be used as a prescriptive measure to determine the space of valid solu-
tions. For this reason we prefer to use the notion of preference, which we believe more 
clearly expresses the ontological role necessary to model the plan optimization criterion in 
different planning applications. The preferences are essentially used to describe the choice 
points available to a planner while constructing a plan. Logically a constraint maps a plan 
model to {True, False}. In contrast with constraints, preferences express a partial ranking 
of plans. 
 
 
3.7 Plan Optimization Criterion 
 
A planning task may be concerned not only with finding a complete solution that satisfy 
constraints, but also with trying to optimize over some criterion. Our task ontology captures 
a plan optimization criterion, which chooses an optimal plan which has the least cost ac-
cording to some evaluation function, e.g., minimization of idle time. 

Optimization is handled by means of two constructs, which capture the knowledge 
needed to rank candidate solutions: preference and cost-function. The cost-function pro-
vides a global optimization criterion and must be consistent with the various partial rank-
ings provided by preferences. To this purpose the ontology includes two axioms, cost-
subsumes-preferences and cost-preference-consistency. The first axiom 
states that the cost-function should enforce the partial order expressed by all the relevant 
preferences. The second axiom states that the cost-function should not violate any prefer-
ences. Because preferences tend to be heterogeneous in nature, the cost-function may not 
only be a numeric value but some non-Archimedean criterion [18] may be needed. The box 
below shows the OCML definitions of the plan optimization criterion. 

(def-relation OPTIMAL-PLAN (?pl-1 ?task) 
 :constraint (and (planning-task ?task)  
                  (plan-model ?pl-1)) 
 :iff-def (and (plan-solution ?pl-1 ?task) 
               (not (exists ?pl-2  
                            (and (plan-solution ?pl-2 ?task) 
                                 (has-cost-order-relation ?task ?rel) 
                                 (cheaper-plan ?rel ?pl-1 ?pl-2))))) 



 

(def-relation CHEAPER-PLAN (?rel ?pl-1 ?pl-2) 
 :constraint (and (order-relation ?rel)  
                  (plan-model ?pl-1) (plan-model ?pl-2)) 
 :iff-def (holds ?rel ?pl-1 ?pl-2)) 

 
 
3.8 Axioms in the Task Ontology 
 
A number of axioms are included in the task ontology, which precisely circumscribe the set 
of models consistent with the ontology and can be used to ensure consistency during the 
planning process: 
• Plan-Task-Ordering-Maintains-Pre-And-Post-Conditions. This axiom states that if 

two plan-tasks are constrained by an ordering relation, such as (FOLLOWS PT
2
 PT

1
), 

then the precondition of PT2 must hold after the execution of PT1. This axiom is par-
ticularly important to deal with the conflict exclusion condition [26]. 

• Plan-Maintains-Complete-Exclusion. This axiom maintains a complete exclusion 
among any two plan-tasks throughout the plan construction. It states that no two plan-
tasks can occur at the same time if they are consuming the same agent [26]. 

• Condition-Consistency-Among-Plan-Task-And-Action. This axiom states that, if 
there exists a plan-task, say pti, which has a sequence of actions associated with it, say 
{Ai1, …, Ain}, then the precondition of pti must hold for the first action, Ai1, to be exe-
cuted and the postcondition of pti must hold after the execution of the last action, Ain. 
The box below shows the OCML definition of this axiom. 

(def-axiom CONDITION-CONSISTENCY-AMONG-PLAN-TASK-AND-ACTION 
 (forall (?pt) 
         (=> (plan-task ?pt achieved-by-actions ?actions) 
             (and (= (first ?actions) ?a1) 
                  (element-of (?pt . ?ag) ?pl) 
                  (plan-model ?pl) 
                  (agent ?ag) 
                  (= (the ?x1 (has-precondition ?a1 ?x1)) ?a1-pre) 
                  (= (last ?actions) ?a-n) 
                  (element-of (?pt . ?ag) ?pl) 
                  (= (the ?x2 (has-postcondition ?a-n ?x2)) ?an-post) 
                  (holds (the ?pt-pre (has-precondition  
                                       ?pt ?pt-pre)) ?a1-pre) 
                  (holds (the ?pt-post (has-postcondition ?pt ?pt-post))  
                         ?an-post))))) 

 
 
4 Related Work 
 
The notion of a plan in the PLANET ontology [14] is represented by the following key con-
cepts: initial-planning-context, goals, actions, tasks, and choice-points. The initial-
planning-context represents the initial, given assumptions about the planning problem. It 
describes a background scenario in which plans are constructed and must operate on. The 
initial-planning-context consists of an initial state, goal description, and external constraints 
and a resulting plan is represented as a set of commitments to actions taken by an agent to 
achieve the specified goals. A world state in the PLANET ontology represents a model of 
the environment for which a plan is designed. A certain world state can be chosen as an ini-
tial state for a given planning problem. All the solution plans must take into account this 
initial state. The goals describes what needs to be achieved in the process of constructing a 
plan, however the initial planning context may not directly specify the goals to be achieved 
but can be deduced from the initial information about the situation and the constraints that 
are imposed on a planning problem. A solution plan is validated against completion, con-



 

sistency, feasibility, and justified criteria. The notion of a choice point represents various 
choices typically needed while devising a plan, such as task commitment, ordering com-
mitment (Action1-BEFORE-Action2), etc. Some crucial differences exist between the 
PLANET ontology and our task ontology. The current version of the PLANET ontology 
does not include some key notions, such as agents, resources, time, and location. Moreover 
the goal of a planning task may not just be to find a valid solution, but may also require 
some optimization criterion. Because the notion of a cost function is absent in the PLANET 
ontology, these issues cannot be modeled in this approach. 

The plan ontology [23] takes a top-down approach to ontology construction. One of the 
main aims of the plan ontology is to provide a conceptual framework which can form the 
basis for more in-depth analyses and as a result the level of detail of the definitions in the 
plan ontology is very coarse-grained. For instance, the concept activity (which is analogous 
to the concept of a plan-task in our framework) is defined in terms of i) the agent required 
to execute the activity, ii) the time range of the activity, and iii) the temporal constraints 
among activities. Our ontology provided a much more fine-grained characterization of plan 
tasks, supporting the specification of actions, preconditions and postconditions. Consis-
tently with the classical planning approach [9], the definition of activity in the plan ontol-
ogy does not take into account the duration of an activity. As pointed out in [11], if the aim 
of the planning task is simply to sequence all the activities, then the absence of duration 
does not create much problem. However, duration is needed in order to handle the overlap-
ping of activities. Moreover, as described in Section 3.5 in our framework the notion of an 
agent is specialized into sentient-agent and cognitive-agent on the basis of its 
cognitive behavior, but no such kind of specialization is considered in the plan ontology. 
Another difference between the plan ontology and our task ontology is that while the for-
mer takes into account the notion of a preference as the agent’s desire, the plan ontology 
does not provide any indication about how these desires affect the cost of a plan, to the ex-
tent that this information can be used to optimize a solution. In contrast with their frame-
work, our task ontology handles plan optimization (cf. Section 3.7) by including support for 
modeling the notions of cost and preference. Finally, our task ontology provides a number 
of different axioms (cf. Section 3.8), which allow us to formalize the general (i.e., applica-
tion-independent) conditions, which must be maintained during plan construction. 

Valente [25] provides a knowledge-level analysis of the classical planning task. The 
fundamental difference between our task ontology and Valente’s framework is that while 
the main aim of his framework is to analyze the classical planning task, no such kind of 
commitment is assumed while formalizing the planning task in our task ontology. The main 
aim of our task ontology is to combine the important conceptual and theoretical distinctions 
that exist in different planning paradigms. More importantly, Valente’s framework uses the 
notion of a soft constraint to rank competing solution plans, but, as discussed in section 3.6, 
we find the notion of a soft constraint problematic, and instead we prefer to use the notion 
of preference, which we believe provides a more systematic way to rank competing plans to 
determine the optimal solution. In contrast with our task ontology (cf. Section 3.7) no op-
timization criterion is considered in Valente’s framework. Moreover, in contrast with the 
informal analysis of the planning task proposed by Valente, our task ontology is formalized 
in detail. 

The DDPO framework [12] takes as an input concepts and relations specified in 
DOLCE along with some of its extensions, notably the Ontology of Descriptions and Situa-
tions (D&S) [13]. Similarly to our task ontology, all the concepts, relations, and axioms in 
the DDPO framework are specified formally, and therefore, this ontology provides a high 
level of formalization. The primary aim of DDPO is to formalize the plans at an abstract 
level and independently from its existing resources. In line with D&S, DDPO also includes 
physical and non-physical objects, events, states, regions, qualities, and constructivist situa-



 

tions. Central to DDPO is the notion of tasks, the types of actions, the sequencing among 
tasks and actions, and the controls performed on them. The domain specific tasks are 
clearly distinguished from the actions and states, and the control operators of classical plan-
ning are considered as types of planning actions of different nature from executable actions. 
Although the DDPO framework specializes the notion of a task into complex task, sequen-
tial task, hybrid task, bag task, and action task, it is not clear how the duration of each task 
is represented to handle the task overlapping [11]. Similarly to our task ontology, other pro-
cedural actions from classical planning, such as precondition, postcondition, and prefer-
ences are also taken into account. A plan is a description that uses at least one task and one 
agentive role to achieve a goal. A goal is a desire that is part of a plan and is satisfied by a 
goal situation. Similarly with our task ontology, DDPO validates a solution plan against 
satisfaction of accompanying conditions (which is referred to as a constraint (cf. Section 
3.6) in our framework), which are specified as a relation between a situation and a task. In 
contrast with our task ontology, the DDPO framework does not talk about different axioms 
that are necessary to deal with different conditions in planning such as conflict exclusion 
[26] and complete exclusion among plan-tasks [26]. Finally, in line with our task ontology 
(cf. Section 3.7) DDPO handles plan optimization in terms of preferences and cost function 
although the cost functions are not definable within DDPO ontologies. 
 
 
5 Conclusion and Future Work 
 
In this paper we have described our initial version of a generic planning task ontology. We 
say that our task ontology is generic to emphasize that it is independent of specific planning 
domains, applications, or reasoning methods. Because our task ontology does not subscribe 
to any particular problem-solving approach, it provides a generic foundation that can be 
adopted by the different reasoning services. Moreover, it provides us with a strong engi-
neering tool for knowledge acquisition and to represent different planning applications. 

The next step will be to evaluate the ontology on a number of planning applications to 
confirm its generic nature and verify its modeling value. We are also planning to use this 
task ontology as the ontological basis for constructing problem-solvers for planning, both 
to provide a concrete library of reusable reasoning methods for planning and also to de-
velop novel insights into the planning process. 
 
 
Acknowledgements 
 
The authors would like to thank the anonymous referees of the FOIS’04 conference for 
their valuable comments, which helped us to improve the quality of the paper.  
 
 
References 
 
[1] James Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26 (11): 

832-843, 1983. 
[2] V. Richard Benjamins. Problem Solving Methods for Diagnosis. PhD Thesis, University of Amsterdam, 

Amsterdam, The Netherlands, 1993. 
[3] Jim Blythe. Decision-Theoretic Planning. AI Magazine, 20 (2), 1999. 
[4] Balakrishnan Chandrasekaran. Generic Tasks in Knowledge-Based Reasoning: High-Level Building 

Blocks for Expert Systems Design. IEEE Expert, 1 (3): 23-30, 1986. 
[5] Kutluhan Erol, James Hendler, and Dana S. Nau. Semantics for Hierarchical Task-Network Planning. 

Technical report CS-TR-3239, University of Maryland at College Park, 1994.  



 

[6] Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: a Tool for Collaborative On-
tology Construction. International Journal of Human-Computer Studies, 46 (6): 707-728, 1997. 

[7] Eugene A. Feinberg and Adam Shwartz (editors). Handbook of Markov Decision Processes: Methods 
and Applications. International Series in Operations Research and Management Science. Kluwer Aca-
demic Publishing, 2001. 

[8] Dieter Fensel and Enrico Motta. Structured Development of Problem-Solving Methods. IEEE Transac-
tion Knowledge and Data Engineering, 13 (6): 913-932, 2001. 

[9] Richard Fikes and Niles J. Nilson. STRIPS: A New Approach to the Application of Theorem Proving 
and Problem Solving. Artificial Intelligence, 2: 189-208, 1971. 

[10] Jintae Lee, Michael Gruninger, Yan Jin, Thomas Malone, Austin Tate, Gregg Yost, and other members 
of the PIF Working Group. The PIF Process Interchange Format and Framework. Working Paper Series/ 
MIT Center for Coordination Science, 1996. 

[11] Maria Fox and Derek Long. PDDL+: An Extension to PDDL to Handle Time. Technical Report, Dur-
ham University, 2001a. 

[12] Aldo Gangemi, Stafano Borgo, Carola Catenacci, and Jos Lahmann. Task Taxonomies for Knowledge 
Content. METOKIS Deliverable, D07, 2004. 

[13] Aldo Gangemi and Peter Mika. Understanding the Semantic Web Through the Descriptions and Situa-
tions. In Proceedings of the DOA/CoopIS/ODBASE Confederated International Conferences DOA, 
CoopIS, and ODBASE, LNCS, Springer, 2003. 

[14] Yolanda Gil and Jim Blythe. PLANET: A Sharable and Reusable Ontology for Representing Plans. In 
Y. Gil and K. L. Myers, editors, Proceedings of the AAAI - Workshop on Representational Issues for 
Real-World Planning Systems, pages 28-33, 2000. 

[15] Thomas R. Gruber. A Translation Approach to Portable Ontology Specification. Knowledge Acquisi-
tion, 5 (2): 199-221, 1993. 

[16] Allan Newell and Herbert A. Simon. GPS: A Program that Simulate Human Thought. In E. A. Fei-
genbaum and J. Feldman, editors, Computers and Thought: 279-293, 1963. 

[17] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language Overview. W3C 
Recommendation, 10 February, 2004, http://www.w3c.org/TR/2004/REC-owl-guide-20040210/, 2004.  

[18] Enrico Motta. Reusable Components for Knowledge Modelling - Principles and Case Studies in Para-
metric Design Problem Solving. IOS Press, The Netherlands, 1999. 

[19] Enrico Motta, Dnyanesh Rajpathak, Zdenek Zdrahal, and Rajkumar Roy. The Epistemology of Schedul-
ing Problems. F. V. Harmelen, editor, Proceedings of the 15th European Conference on Artificial Intelli-
gence, Lyon, France, pages 215-219, 2002. 

[20] Riichiro Mizoguchi, Johan Vanwelkenhuysen, and Mitsuru Ikeda. Task Ontology for Reuse of Problem 
Solving Knowledge. Towards Very Large Knowledge Bases, pages 46-57, IOS Press. 1995. 

[21] Dana S. Nau, Yue Cao, Amnon Lotem, Hector Munoz-Avila. SHOP: Simple Hierarchical Ordered Plan-
ner. T. Dean, editor, Proceedings of the 6th International Joint Conference on Artificial Intelligence, 
Stockholm, Seden, pages 968-975, 1999. 

[22] Ian Niles and Adam Pease. Towards a Standard Upper Ontology. Proceedings of the International Con-
ference on Formal Ontology in Information Systems, Ogunquit, Maine, USA, pages 2-9, 2001. 

[23] Austin Tate. Plan Ontology - a Working Document. In Proceedings of the Workshop on Ontology De-
velopment and Use, Le Jolle, CA. 1994. 

[24] Austin Tate. Representing Plans as a Set of Constraints - the <I-N-OVA> Model. B. Drabble, editor, In 
Proceedings of the 3rd International Conference on Artificial Intelligence Planning Systems, Edinburgh, 
Scotland, pages, 221-228, 1996. 

[25] Andre Valente. Knowledge-Level Analysis of Planning Systems. SIGART Bulletin, 6 (1): 33-41, 1995. 
[26] Daniel S. Weld. Recent Advances in Planning. AI Magazine, 20 (2): 93-123, 1999. 
[27] Mark Zweben and Mark S. Fox. Intelligent Scheduling. Morgan Kaufmann, San Francisco, California, 

USA. 1994. 


