
i

 An Efficient Online Benefit-aware Multiprocessor Scheduling

Technique for Soft Real-Time Tasks Using Online Choice of

Approximation Algorithms

A Dissertation Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Behnaz Sanati

December 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Houston Institutional Repository (UHIR)

https://core.ac.uk/display/270200818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

An Efficient Online Benefit-aware
Multiprocessor Scheduling Technique
for Soft Real-Time Tasks Using Online
Choice of Approximation Algorithms

 Behnaz Snati

 APPROVED:

 Dr. Albert M. K. Cheng, Chairman

 Dr. Lennart Johnsson

 Dr. Ioannis Pavlidis

 Dr. Ernst L. Leiss

 Dr. Jaspal Subhlok

 Dr. B. Montgomery Pettitt
 The University of Texas Medical Branch 77555

 Dr. Dan Wells, Dean, College of Natural

 Sciences and Mathematics

iii

Acknowledgements

During my PhD studies, I have met many people whose presence was essential for my

achievements and success; therefore, I dedicate the following humble words to express my

gratitude and to acknowledge their help each in their own way.

I would like to start by thanking my advisor, Dr. Albert Cheng, for his advice and constant

encouragements during the entire period of my research work. I would like to thank my Doctoral

committee members, Dr. Lennart Johnsson, Dr. Ioannis Pavlidis, Dr. Motgomery Pettitt, Dr. Ernst

Leiss and Dr. Jaspal Subhlok for their helpful comments and suggestions. Among these professors,

I would especially like to thank Dr. Ernst Leiss for always being available to answer my questions

and also for reviewing and proof-reading my dissertation.

Many thanks to the members of our RTS Lab, Youngme Lee and Nicholas Troutman for their

assistance in implementing the algorithms, and also Xingliang Zou and Carlos Rincon for

reviewing our research paper and sharing helpful comments. I would like to thank Yvette Elder,

Liz Faig and the administration staff for their constant help.

I am fortunate to have a loving family who supports me all the time and has faith in me. I am

thankful for my parents, who are by far the strongest persons I have ever seen and who taught me

how to face challenges with patience and persistence, and my brothers for being always there for

me. I learned a lot from this experience and I believe that I could not have succeeded in my work

without their support and encouragement. I am very grateful to my husband and our precious

daughter, Mona. I will never forget their supportive and understanding attitude when I am

overloaded with work. Their presence in my life is a great blessing.

Finally, I am thankful for Allah the almighty, my success can only come from Him.

iv

gÉ Åç ytÅ|Äç? tÇw àÉ Åç {âáutÇw tÇw wtâz{àxÜ

yÉÜ à{x|Ü

ÄÉäx? xÇwÄxáá áâÑÑÉÜà tÇw xÇvÉâÜtzxÅxÇà AAA

v

An Efficient Online Benefit-aware Multiprocessor Scheduling

Technique for Soft Real-Time Tasks Using Online Choice of

Approximation Algorithms

--

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Behnaz Sanati

December 2016

vi

Abstract

Maximizing the benefit gained by soft real-time tasks in many applications and embedded

systems is highly needed to provide an acceptable QoS (Quality of Service). Examples of such

applications and embedded systems include real-time medical monitoring systems, video-

streaming servers, multiplayer video games, and mobile multimedia devices. In these systems,

tasks are not equally critical (or beneficial). Each task comes with its own benefit-density function

which can be different from the others’. The sooner a task completes, the more benefit it gains.

In this work, a novel online benefit-aware preemptive approach is presented in order to enhance

scheduling of soft real-time aperiodic and periodic tasks in multiprocessor systems. The

objective of this work is enhancing the QoS by increasing the total benefit, while reducing flow

times and deadline misses. This method prioritizes the tasks using their benefit-density

functions, which imply their importance to the system, and schedules them in a real-time basis.

The first model I propose is for scheduling soft real-time aperiodic tasks. An online choice of two

approximation algorithms, greedy and load-balancing, is used in order to distribute the low-

priority tasks among identical processors at the time of their arrival without using any statistics.

The results of theoretical analysis and simulation experiments show that this method is able to

maximize the gained benefit and decrease the computational complexity (compared to existing

algorithms) while minimizing makespan with fewer missed deadlines and more balanced usage

of processors. I also propose two more versions of this algorithm for scheduling SRT periodic

tasks, with implicit and non-implicit deadlines, in addition to another version with a modified load-

balancing factor. The extensive simulation experiments and empirical comparison of these

algorithms with the state of the art, using different utilization levels and various benefit density

functions show that these new techniques outperform the existing ones. A general framework

for benefit-aware multiprocessor scheduling in applications with periodic, aperiodic or mixed

real-time tasks is also provided in this work.

vii

Table of Contents

1. Online Benefit-aware Multiprocessor Scheduling of Aperiodic Real-Time
Tasks .. 1

1.1. Introduction and Motivation ... 1

1.1.1. Related Work on Approximation Algorithms .. 2

1.1.2. Related Work on Benefit-aware Real-Time Computing 3

1.2. Online Choice of Approximation Algorithms .. 4

1.2.1. System and Job Model ... 8

1.2.2. Notation.. 9

1.2.3. LBBA Algorithm ... 10

1.2.4. An Example ... 18

1.3. Analysis... 21

1.3.1. Job Benefit Maximization .. 21

1.3.2. Computational Complexity .. 22

1.4. Performance Evaluation .. 23

1.4.1. Experimental Settings and Results... 24

1.5. Summary ... 34

2. Online Benefit-Aware Semi-Partitioned Scheduling of SRT Periodic Tasks 38

2.1. Introduction and Motivation ... 39

2.1.1. Background .. 39

2.1.2. Related Works .. 40

2.1.3. The Objective ... 42

2.1.4. The Contribution .. 43

2.2. LBBA-bid for Implicit Deadlines ... 45

2.2.1. System and Task Model ... 45

2.2.2. Methodology .. 45

viii

2.2.3. Definitions.. 47

2.2.4. LBBA-bid Algorithm ... 51

2.3. Analysis ... 56

2.3.1. LBBA-bid Analysis ... 56

2.4. LBBA-bnc for Non-Implicit Deadlines .. 59

2.5. UBBA – Utilization Balancing ... 60

2.6. A Motivating Example .. 62

2.6.1. Benefit-aware schedulers ... 63

2.6.2. EDF-based Schedulers: Global EDF and EDF-os 66

2.7. Experimental Evaluation ... 71

2.7.1. Performance Metrics .. 71

2.7.1. Experimental Setting .. 72

2.7.3. Results and Discussion ... 73

2.8. Summary ... 80

3. Conclusion and Perspectives ... 82

3.1. List of Contributions ... 82

 3.2. Future Work and Perspectives .. 83

 References .. 87

ix

List of Figures

Fig. 1.1: LBBA Methodology .. 5

Fig. 1.2: Job storage locations with a shared pool in BBA (left) and a separate pool for each

processor in LBBA (right) .. 9

Fig. 1.3: Job scheduling on a 3 processor system by BBA, GBBA and LBBA 19

Fig. 1.4: Total idle time versus number of jobs for 2 and 3 processors 28

Fig. 1.5: Total idle time versus number of jobs for 4 and 8 processors 29

Fig. 1.6: Benefit versus number of jobs for 2 and 3 processors ... 30

Fig. 1.7: Benefit versus number of jobs for 4 and 8 processors ... 31

Fig. 1.8: Benefit-to-Cost ratio versus number of jobs for 2 and 3 processors 32

Fig. 1.9: Average schedulers’ run time vs. number of jobs for 4 and 8 processors 33

Fig. 2.1: Our Method ... 46

Fig. 2.2: Scheduling diagram for LBBA-bid, LBBA-bnc and UBBA 65

Fig. 2.3: Scheduling diagram for Global EDF and EDF-os ... 68

Fig. 2.4: Average preemptions per job versus number of processors in the systems 75

Fig. 2.5: Average flow time stretch ratio per job vs. number of processors in the systems 76

Fig. 2.6: Average schedulability percentage versus number of processors in the system 78

Fig. 2.7: Average benefit per job versus number of processors in the system 78

Fig. 2.8: Missed deadline ratio versus number of processors (~ 95% Utilization) 79

Fig. 2.9: Missed deadline ratio versus number of processors (~ 75% Utilization) 79

Fig. 3.1: General framework for SRT benefit-aware multiprocessor scheduling 85

Fig. 3.2: An example of a DAG task set ………………………………………….…………..856

x

List of Tables

Table 1.1: An example of a job set and job benefits gained by BBA, GBBA and LBBA 18

Table 1.2: Comparing the performance of BBA, GBBA and LBBA 19

Table 1.3: Total idle time and the improvement achieved by LBBA on systems with 4 and 8

processors .. 28

Table 1.4: Total idle time and the improvement achieved by LBBA on systems with 4 and 8

processors .. 29

Table 1.5: Benefit gained by BBA and LBBA, and the improvement achieved by LBBA on

systems with 2 and 3 processors .. 30

Table 1.6: Benefit gained by BBA and LBBA, and the improvement achieved by LBBA on

systems with 4 and 8 processors .. 31

Table 1.7: Benefit-to-cost ratio and the improvement achieved by LBBA on systems with 2 and

3 processors ... 32

Table 1.8: Average schedulers’ run time (in seconds) .. 33

Table 1.9: Missed deadline ratio (%) .. 34

Table 2.1: An example of 3 periodic tasks ... 62

1

1. Online Benefit-aware Multiprocessor Scheduling of
Aperiodic Real-Time Tasks

1.1. Introduction and Motivation

Multiprocessor platforms are widely adopted for many different applications in

embedded systems and server farms. They are becoming even more popular since many

chip makers including Intel and AMD are releasing multi-core chips. Adopting

multiprocessor platforms can enhance the system performance, but scheduling jobs

optimally on a multiprocessor system is an NP-hard problem [1], [2].

There are two major models for this scheduling problem. The first is the cost model; its

goal is to minimize the cost, which is the overall flow time, also referred to as response

time or makespan. The second model is the benefit model which aims to maximize the

benefit of jobs that meet their deadlines. The latter model is used for soft real-time

applications in which deadline misses are sometimes tolerable. Examples of such

applications using multi-core platforms are multi-purpose home appliances such as HDTV

streaming and interactive video games. More motivating examples from the domains of

multimedia, air defense and enterprise-level, asynchronous, cooperating real-time

computer systems are given by Welch and Brandt [3]. Other examples of such applications

and embedded systems multimedia applications as explained in [4], image and speech

processing [5], [6], [7], [8], time-dependent planning [9], robot control/navigation systems

[10], [11], medical decision making [12], information gathering [13], real-time heuristic

search [14], database query processing [15], and the Internet of Things (IoT) [16].

2

In this research, the main focus is on the benefit model to maximize the benefit of

online preemptive scheduling of soft real-time jobs on multiprocessor systems having

identical processors. I propose an online choice of two approximation algorithms, greedy

and Load-Balancing, to reduce the cost or makespan. More balanced distribution of the

jobs between processors in this novel approach results in a lower overall flow time, less

total idle time, fewer missed deadlines, and more efficient usage of CPU cycles. Also, this

model eliminates the runtime overhead of migrating jobs by prohibiting migration and

adapting a partitioning approach, instead.

In the following subsections, I provide an overview of previous works on

approximation algorithms and maximizing benefit on-line for multiprocessors. Section 1.2

presents the details of the proposed approach and an example to illustrate its differences

from the previous methods. The analysis of the new method is provided in Section 1.3.

Section 1.4 contains the performance metrics and the experimental settings and results.

Finally our conclusions are presented in Section 1.5.

1.1.1. Related Work on Approximation Algorithms

Approximation algorithms are often used to attack difficult optimization problems,

such as job scheduling on multiprocessor systems which is an NP-hard problem [1], [17],

[18]. An approximation algorithm settles for non-optimal solutions found in polynomial

time, when it is very unlikely to find an efficient exact algorithm to solve NP-hard

problems, or the sizes of the data sets are so large that they make the polynomial exact

algorithms too expensive.

3

A greedy 2-approximation algorithm is used in [19] for fault tolerance and in [20] for

benefit maximization in identical multiprocessor systems. Even though greedy

approximation can be a good solution in many cases, a load balancing approximation can

result in a shorter flow time for a set of jobs when we have to distribute several jobs among

multiple processors at the same time [21], [22]. Piel et al. [23] have proposed a load

balancing technique based on statistics for real-time scheduling on asymmetric

multiprocessors. They apply partitioning for high priority jobs and migration for jobs with

low priority.

1.1.2. Related Work on Benefit-aware Real-Time Computing

The gained benefit can vary when using different benefit functions. Researchers have

investigated applying benefit functions for allocating resources in limited, soft real-time

systems [24], [25], [26]. Andrews et al. [27] provided a framework to formalize the use of

benefit functions in complex real time systems.

Buttazzo et al. [28] provided the results of studying jobs that are characterized by an

importance value. The performance of the scheduling algorithm was then evaluated by

computing the cumulative value (or benefit) gained on a job set. However, the target of

their research was uniprocessor scheduling. Welch et al. [3] discussed how benefit is used

in a variety of real-time paradigms and in example applications. Awerbuch et al. [29]

presented a constant competitive ratio algorithm for a benefit model of on-line preemptive

scheduling. This method can be used on both uniprocessor and multiprocessor systems.

Aydin et al. [30] proposed a reward-based scheduling method for periodic real-time tasks

4

and [31] presented online scheduling policies for a class of IRIS (Increasing Reward with

Increasing Service) real-time tasks.

1.2. Online Choice of Approximation Algorithms

The algorithm proposed in [29] only focuses on maximizing the total benefit gained

without being concerned with minimizing the overall flow time of a job set (response time

or makespan). In that method, the benefit gained by each job that completes its execution

is calculated using the benefit density function of its flow time. This function is a non-

increasing, non-negative function of time, by definition [29]. It means the more the flow

time, the less the benefit gained.

Therefore, we proposed, simulated and analyzed an efficient online benefit-aware

technique with choices of approximation algorithms including greedy and Load-balancing

to distribute jobs among multiple processors at the time of release [21]. This method

prioritizes the jobs using their benefit density functions and schedules them on a real-time

basis in order to reduce the makespan (overall flow time) of the jobs and total idle time of

the processors while maximizing the total gained benefit.

I also used the online choice of two approximation algorithms (greedy and load-

balancing) as a solution for special cases that were not considered in the existing benefit-

aware multiprocessor scheduling algorithms such as the Benefit-Based Algorithm proposed

in [29] which we refer to as BBA in the rest of this dissertation. Examples of those cases

are when there are several high priority jobs which can preempt a running job or when a

high priority job can preempt more than one running job.

5

In order to be able to balance the workload among the processors by partitioning the

jobs as soon as they are released, a separate pool of the waiting jobs is considered for each

processor. This method is referred to as Load-Balancing/Greedy Benefit-Aware algorithm

(or LBBA) throughout the dissertation. This load-balancing technique is different from

what Piel et al. [23] have used, since we do not use statistics for distributing the jobs.

Instead, decisions are made online by using the actual (worst case) execution times of ready

jobs and the remaining workload of the processors for partitioning on a real-time system

with identical processors. Migration is not allowed in our proposed real-time system model.

Fig. 1.1: LBBA Methodology

6

 LBBA is superior to BBA in principle, since:

 LBBA is a novel hybrid model of soft real-time multiprocessor scheduling. In

contrast to BBA, which only follows a benefit model, LBBA is a combination of benefit

and cost models. That is, it aims to minimize makespan in order to achieve the maximum

benefit at the lowest cost.

 No synchronization is needed for fetching the jobs from a shared pool. That is

because a separate pool is assigned to each processor in contrast to the other method (BBA)

where all processors use a shared pool.

 LBBA facilitates load-balanced partitioning of waiting jobs, while this case is

not considered in BBA. For example, in case the waiting (or ready) jobs arrive

asynchronously, LBBA adapts the “greedy approximation” to assign a job to the pool of

the processor with the least remaining workload. If jobs are synchronous, i.e., arrive at the

same time, those that cannot start running and have to wait in a pool, will be partitioned

among the processors, using our “Load-Balancing” technique.

 LBBA optimizes the CPU usage and minimizes the total idle time of the

processors by balancing the workload among them.

 LBBA improves Quality-of-Service (QoS) by reducing missed deadline ratio:

As shown by an example in 1.2.4, LBBA reduces the possibility of starvation for low

priority jobs, comparing to BBA. It also has a Minimal Response time, including both

scheduling and execution time, for a job set (up to 300 times faster response time than BBA

in our experiments shown in 1.4.1.2.).

7

 LBBA is computationally less expensive than BBA, as we prove in sub-section

3.2.

The reasons for which we are applying both greedy and load-balancing approximation

algorithms, depending on the situation, instead of only one of them all the time, are as

follows:

a) Why we do not use greedy approximation all the time:

The Greedy-Benefit-Based model, called GBBA, that we proposed in [20] in the early

stage of this research handles the special cases we mentioned earlier, that were overlooked

by BBA, by applying a 2-approximation greedy method. However, it has a shortcoming in

minimizing makespan when several ready jobs are going to be partitioned among the pools

of the processors at the same time. Also, this is the case when several synchronous high

priority jobs can preempt more than one running job. To overcome this problem, we add

our Load-Balancing approximation method to GBBA. Our hypothesis is that the online

combination of these two approximation methods can minimize the makespan while

maximizing the total benefit.

b) Why we do not use Load-Balancing all the time:

In Load-Balancing, we sort the jobs in descending order of their workload and the

processors in ascending order of their total remaining workload (both on the stack and the

pool of each processor). Then the first job in the TempList (list of the ready jobs), which

has the heaviest workload, will be assigned to the first processor in the list, having the least

8

remaining workload. The second job in the list will be assigned to the second processor,

and so on.

This method, by itself and without the help of greedy approximation, can be used to

partition the jobs among the processors so that the distributed workload is as balanced as

possible. Greedy approximation does not facilitate Load-Balancing, when many-to-many

assignments are needed. However, in order to optimize computation time, we use the

greedy method in cases where a one-to-many or many-to-one assignment is needed.

In this research, both BBA and our solution, LBBA, are simulated extensively in order

to compare their performances. Figure 1.1 demonstrates the LBBA hybrid methodology

which is a combination of benefit model and cost model. In the following sub-sections, we

define our system and task model, and the notations used in our algorithm, along with the

detailed explanation of LBBA algorithm. At the end of this section, we illustrate the

advantages of LBBA over BBA and GBBA through an example.

1.2.1. System and Job Model

A multiprocessor system with m identical processors is considered for our partitioning

approach. In the partitioning approach no migration of jobs is allowed. Therefore, each

job has to stay with only one processor during its whole execution time. This method is

possible if each processor has its own pool instead of sharing a pool with other processors.

9

Fig. 1.2: Job storage locations with a shared pool in BBA (left) and a separate pool for
each processor in LBBA (right)

Also, as Figure 1.2 shows, each processor has its own stack and garbage collection. This

chapter explores the scheduling of aperiodic soft real-time job sets which are independent

in execution and there are no precedence constraints among them. Pre-emption is allowed.

Each aperiodic job may be released at any time. An example of such aperiodic jobs is a

partial air defense subsystem as mentioned by Welch et al. [3].

1.2.2. Notation

The definitions of our notation are as follows:

rj – release time of job

wj – worst case execution time (WCET) of job , simply considered as execution time

or workload of job in this paper

Waiting
Jobs

Pool 1 Pool N

A new job arrives

Processor N

Stack N

Garbage
Collection N

Running job on
top of stack

Stack 1

Garbage
Collection 1

Processor 1

Preempted
jobs

Discarded jobs
(with missed
deadlines)

To keep the
waiting jobs until
they are
partitioned

Shared Pool

 Processor N

Stack N

Garbage
Collection N

Running job on
top of stack

Stack 1

Garbage
Collection 1

Processor 1

Preempted
jobs

Discarded
jobs (with
missed

deadlines)

To keep the jobs
arriving at the same
time until they are
partitioned

TempList

A new job arrives

10

sj – start time of job

cj – completion time of job

Brj – break point or deadline of job ,

 Brj = sj +2wj (1)

βj(t) – benefit density function of job at time t, for (t ≥ wj), which is a non-increasing,

non-negative function, with the following restriction to be satisfied for each βj(t):

	β

β 	
	 (2)

Note: for t < wj, there would be no benefit gained by job , since it has certainly not

completed its execution at time t.

fj – flow time of job :

 fj = cj - rj (3)

bj – benefit, gained by a completed job :

 bj = wj. βj(fj) (4)

dj(t) – variable priority of job at time t, before scheduling (t < sj):

 dj(t) = βj(t + wj - rj) (5)

dj – fixed priority of job , when it is scheduled and starts its execution:

 dj = βj(sj + wj - rj) (6)

1.2.3. LBBA Algorithm

LBBA is adopting the same definition of breakpoint, benefit density function, priority

of the jobs in pools or on the stacks as used in BBA, and also the same preemption condition

to be able to determine if it could improve that algorithm by applying approximation

11

algorithms and necessary modifications to the system. However, to show that this solution

does not sacrifice benefit maximization in order to obtain the minimum response time, we

prove that the competitiveness of BBA is also preserved in LBBA algorithm.

A desired property of the system in this method is the possibility to delay jobs without

drastically reducing overall system performance. Also, this algorithm does not use

migration on the multiprocessor system. The LBBA algorithm is an event-driven

algorithm. The events are new job arrival, job completion, and reaching the break point of

a job. The algorithm takes action when a new job arrives, a running job completes, or when

a running job reaches its break point. When new jobs arrive they will be partitioned among

the processors.

Each job Jj arrives with its own execution time (wj) and benefit density function Bj(t)

for (t ≥ wj). The flow time of a job, denoted by fj , is the time that passes from its release

time (rj) to its completion time (cj); it is at least equal to wj (execution time). The benefit

gained by each job that completes its execution is a function of its flow time (Equation 4).

The job on top of each stack is the job that is running and all other jobs in the stacks are

preempted. If a job reaches its breakpoint and its execution is not completed yet, it will not

be able to gain any benefit; therefore, it will be popped from the stack and sent to the

garbage collection. This means the break point of a job is its deadline, which is twice its

execution time after it starts running.

 The priority of each unscheduled job (located in each pool) at time t which is denoted

by dj(t) (for t sj) is variable with time. However, for t> sk (when the job k has started its

execution) the priority is calculated as d’k =Bk (sk + wk – rk) (lines 19 and 68 of the

12

following pseudo-code, Algorithm 1). The notation d’k is used for the priority of the

running job Jk on top of the stack. This priority is given to the job Jk when it starts its

execution. Its start time, sk, is used in the function instead of variable t; therefore, its priority

is no longer dependent on time. Since sk, wk, and rk are all fixed values, the priority of a job

will not change after its start time.

Once a new job Jj is released, if there is a processor such that dj(t) > 4d’k (lines 58

through 66), or its stack is empty (lines 11 through 22), then the newly released job is

pushed onto the stack and starts running, otherwise it will be partitioned among the pools

of the processors using an online choice of load balancing or greedy approximation (lines

39 through 75). Awerbuch et al. [29] used the preemption condition (dj(t) > 4d’k) and their

analysis shows that the factor 4 in this condition plays the role in the BBA constant ratio

competitiveness being equal to 10C2. Therefore, in order to preserve this competitiveness,

we use the same criterion. Later in the analysis of our algorithm, we prove how this

competitiveness is preserved by LBBA.

When a currently running job on a processor completes, it is popped from the stack.

Then, the processor runs the next job on its stack if dj(t) ≤ 4d’k for all Jj in its pool,

otherwise, it gets the job with max dj(t) from its pool, pushes it onto the stack and runs it.

The completed jobs or those that reach their break points are going to be sent to garbage

collection. If a job completes before reaching its break point, its gained benefit is calculated

and added to the total benefit. If more than one high-priority job is able to preempt some

running job(s), to decide which job should be sent to which stack, we send the largest job

to the processor with the minimum remaining work load, the second largest job to the

processor with the second smallest remaining work load, so on so forth. This way we are

13

able to balance the work load among the processors. However, in case there is only one

high priority job at a time instance which can preempt more than one running job, we assign

it to the stack of the processor with minimum remaining execution time (greedy

approximation).

To be able to assess the performance of LBBA, we need to consider various situations

of the released jobs, regarding their release times and workloads. Here, I discuss different

scenarios and how they are handled. In addition, I provide an example in which BBA can

result in a very long waiting time for some jobs before they get scheduled or even their

starvation. Analysis shows that LBBA overcomes this problem and that is one of the key

aspects of LBBA which reduces the missed deadline ratio and improves the Quality of

Service.

Case 1: is a newly released job at time t

Lemma 1: For a newly released job, , at time t, its priority is independent of its

release time, rj, but relies on its workload, wj.

Proof: Since is released at time t,

 t = rj (7)

From the equations (5) and (7):

 dj(rj) = Bj(wj) (8)

So, Lemma 1 is proved. Equation (8) shows that the priority of job at its release time

is a function of wj, regardless of its release time, rj. ■

14

Case 2: is a waiting job in a pool

Lemma 2: If cannot start its execution at its release time, it has to wait in pool, then

its variable priority dj(t) will not increase at any time t, (rj < t < sj) while it is waiting.

Proof: At any time instance t, while 	is waiting t > rj. By definition, dj(t) = Bj(t + wj -

rj) and also Bj is a non-increasing, non-negative function. Hence, Lemma 2 is proved:

For all t, t > rj, dj(t) ≤ dj(rj) (9)

 ■

Theorem 1: If is released and cannot be scheduled at release time by BBA, if the

next jobs have the same workload as 	or less, 	may starve or wait until all of them are

scheduled.

Proof: Based on Lemma 1 and Lemma 2, if 	is waiting in the shared pool (in BBA

method) when is released, then at t ≥ rj, its priority will be less than the priority of . So,

if any processor is available or the priority of 	is high enough to preempt another job, then

 is scheduled before . If the next released jobs all have the same or a smaller workload

than does, then it has to wait in the shared pool until all of them are scheduled. ■

15

ALGORITHM 1: LBBA (for aperiodic tasks)

1 Required: One or more jobs arrive at time t ≥ 0
2 {

 Job Arrival

 3 /* TempList: list of ready jobs waiting for
 4 distribution among processors */
 5
 6 Append the arrived job(s) to the TempList

 Benefit-Based Scheduling

 7 Calculate the priority of each job j in the
 8 TempList:
 9 dj(t) = Bj(t + wj – rj)
 10 Sort TempList based on the priority
 11 If (at least one stack is empty)
 12 {
 13 Push the highest priority job(s) j onto
 14 empty stack(s) of idle processor(s) i;
 15 Add its execution time wj to total workload
 16 of the stack of the processor i (∑ Wsi),
 17 Recalculate total workload of processor i:
 18 Wi = ∑ Wpi + ∑ Wsi
 19 Calculate the fixed priority of j using its
 20 start time sj:

 21 d’j(t) = Bj(sj + wj – rj)

 22 Start executing j,
 23 }
 24 Else
 25 {
 26 /* no stack is empty */
 27 /* preempt if possible otherwise
 28 distribute among the pools */
 29 Compare the priority of the ready jobs in
 30 TempList with the priority of the running
 31 running jobs (indicated by index k)
 32 onto the stacks:
 33 If (dj(t) ≤ 4d’k for (each job j in TempList
 34 and each running job k))
 35 {
 36 /* no preemption allowed */
 37 /* partition the ready jobs among
 38 pools of the processors */

 Load-Balancing Approximation (for Partitioning)

 39 For (each job j in TempList)
 40 {
 41 Sort the processors in ascending order
 42 of their total remaining workload
 43 on their pools and stacks :
 44 Wi = ∑ Wpi + ∑ Wsi
 45 Append the job j with largest
 46 execution time wj to the pool of the

47 processor i with minimum remaining
48 workload; /* load balancing */
49 Remove j from TempList;
50 Add its execution time wj to total
51 workload of the pool of processor i
52 (∑ Wpi);
53 Recalculate total workload of
54 processor i:
55 Wi = ∑ Wpi + ∑ Wsi

56 }
57 }
58 Else
59 /* if (dj(t) > 4d’k) then (j preempts k)*/

Greedy Approximation (multiple-choice Preemption)

60 /* If j has more than one choice of
61 processors, it will be pushed onto
62 the stack whose processor has the
63 least work load (greedy) */
64 {
65 Stop the execution of job k (preempt k),
66 Push the job j onto the stack on top of k,
67 Start executing j,
68 Calculate the fixed priority of j using its
69 Start time sj,: d’j(t) = Bj(sj + wj – rj)

70 Add the execution time of j to the total
71 workload of that stack (∑ Wsi),
72 Recalculate total workload of the
73 Processor i:
74 Wi = ∑ Wpi + ∑ Wsi

75 }

Check for missed Deadlines

76 /* at each time instance t, if any of the
77 running jobs on top of the stacks has
78 reached its break point (t > Brj),
79 remove the job from the stack and send
80 it to the processor Garbage Collection
81 otherwise, if not preempted, continue its
82 execution */

Benefit Gained by Completed Jobs

83 /* for every completed job j calculate bj */
84 bj = wj. βj(fj)
85 }

Total Benefit Calculation

86 /* calculate the sum of all benefits gained,
87 q being the number of completed jobs */
89 B = ∑

90 }

16

In LBBA, 	instead of being kept in the shared pool, will be assigned to the pool of a

processor based on greedy or load-balancing method, depending on the situation. Also, the

next released jobs will not all get assigned to the same pool and will be distributed among

all processors. This means the waiting time of	 will be significantly less in LBBA than

BBA method.

Theorem 2: If cannot preempt any currently running jobs at its arrival (i.e, release

time), then it will not be able to preempt any jobs that start running after release of while

	is waiting.

Proof: There will be two different scenarios for this situation. Hence, Theorem 2 can be

deduced from the two following Lemmas. ■

Lemma 3: Let be a job that is waiting in a pool. If is released after (rs>rj), and

is scheduled before 	, then it cannot be preempted by at any time during its execution.

Proof: is released at rs, after release of (i.e., rs > rj); is scheduled and starts its

execution, while is waiting at ss (start time of); therefore,

at t1 = ss, d’s > dj (t1) (10)

 d’s > dj (ss) (11)

Based on the priority assignment rule of the algorithm, d’s , the priority of at time ss

is a fixed priority and will not change with time, for t ≥ ss . However, the priority of

which is still waiting, will not increase:

For t2 ≥ t1, dj (t2) ≤ dj (t1) (12)

dj (t2) < dj (ss) (13)

17

From 8 and 10: dj (t2) < d’s (14)

Hence, will not be able to preempt at any time after starts running, due to its

priority not being high enough to preempt 	. ■

Lemma 4: If is a waiting job, it cannot preempt any running job (rp ≤ rj) which

was scheduled either before was released (rp< sp < rj) or when was released (rp ≤ rj ≤

sp).

Proof: From Lemma 1, if cannot preempt at t = rj , assuming was running at rj ,

it will not preempt at any time t > rj, since d’p > dj for all time instances t ≥ rj.

Also, if was released at the same time or before was released at t = rj, and is

scheduled before (rp ≤ rj ≤ sp), it shows that:

At t = sp , dp(t) > dj (t) (15)

 d’p = dp (sp) (16)

Therefore, d’p > dj (sp) (17)

Hence, for t > sp:

From (12): dj(t) ≤ dj (sp) (18)

From (17) and (18): dj(t) ≤ d’p (19)

So, will not be able to preempt in this case and Lemma 4 is proved. ■

18

1.2.4. An Example

The following example, provided in Table 1.1, is a set of independent, real-time jobs

which contains both synchronous and asynchronous jobs. The WCET (Worst-Case

Execution Time) of each job will be known when it arrives. Figure 1.3 shows how this job

set will be scheduled by BBA, GBBA and LBBA on a 3-processor system. The benefit

gained by each completed job is calculated using βj(t) = 1/(2wj) as the benefit density

function, and shown in Table 1.1:

Table 1.1: An example of a job set and job benefits gained by BBA, GBBA and LBBA

Job
ID

Arrival Time
(rj)

Execution
Time (wj)

Benefit Gained by

BBA GBBA LBBA

a 0 8 0.00 0.00 0.33

b 1 4 0.40 0.40 0.40

c 1 6 0.50 0.43 0.43

d 2 3 0.21 0.25 0.25

e 3 2 0.50 0.50 0.50

f 3 4 0.25 0.22 0.15

g 3 6 0.21 0.27 0.27

h 6 2 0.50 0.50 0.50

i 6 1 0.50 0.50 0.50

j 8 2 0.50 0.50 0.50

k 9 3 0.50 0.25 0.25

l 10 2 0.50 0.50 0.50

19

Fig. 1.3: Job scheduling on a 3 processor system by BBA, GBBA and LBBA

Table 1.2: Comparing the performance of BBA, GBBA and LBBA

Algorithm
Missed
Jobs

Preemptions MakeSpan
Total
Idle

Time

Total
Benefit

Benefit-
to-Cost
Ratio

BBA 1 5 17 8 4.57 0.269

GBBA 1 5 16 5 4.32 0.270

LBBA 0 3 16 5 4.58 0.286

We can summarize the performance of the three scheduling methods considering the

following metrics:

 Preemptions: When job a is scheduled by BBA and GBBA schedulers, it gets

preempted twice by higher priority jobs e and h, also kept in preemption by jobs j and

l. It completes its execution right at its break point which is at time t = 16. Therefore,

20

job a does not gain any benefit, even though the system has fully executed it, and it is

considered as a missed job in both BBA and GBBA. However, it is only preempted by

jobs e and h under LBBA scheduling. Job i preempts job d, in BBA, while it preempts

job c in both GBBA and LBBA.

 Makespan: LBBA and GBBA have shorter makespan than BBA.

 Total Benefit: LBBA not only preserves the benefit maximization aspect of BBA, but

exceeds it. Also, it improves GBBA in this regard.

 Total Idle Time: In LBBA, total idle time was 38 % less than BBA and GBBA.

 Benefit-to-Cost Ratio: As shown in Table 1.2, the benefit-to-cost ratio of LBBA is

higher than BBA and GBBA and it is improved about 6.3 % in this example.

 Missed Ratio: The ratio of missed jobs in BBA is 8.33 % while in GBBA and LBBA

was 0.00 %.

This example demonstrates how LBBA can improve the QoS, comparing two other

state of the art benefit-aware methods, BBA and GBBA, by:

 Maximizing total benefit

 Maximizing benefit-to-cost ratio

 Minimizing total idle time

 Minimizing makespan

 Minimizing missed ratio

21

1.3. Analysis

In order to evaluate our proposed algorithm, we analyze it from two points of view:

computational complexity and benefit maximization.

1.3.1. Job Benefit Maximization

BBA is proved in [29] to be a constant competitive ratio algorithm (10C2) for both

uniprocessor and multiprocessor scheduling. This is with considering the restriction shown

in equation (2), β 	/	β (t +wj) ≤ C, to be satisfied for each β 	 t) and some fixed constant

C. That is, in case of delaying a job by its length, we only lose a constant factor in its

benefit.

 In order to preserve the competitiveness of that algorithm, we are adopting the same

definition of breakpoint, benefit density function and its restriction, priority setting for the

jobs in the pools or on the stacks, and also the same preemption condition. Therefore, the

same proof of that competitiveness (10C2) is true for each processor the same way as for

BBA uniprocessor scheduling. That is because after partitioning, no migration is allowed

and we have uniprocessor scheduling for the set of jobs on the pool of each processor based

on the priority of the jobs; also the running job on each processor can be preempted by a

newly arrived high priority job (in TempList) if the preemption condition is satisfied.

 If m denotes the number of processors, i, the index of a processor, , total benefit

of each processor by optimal scheduler and , total benefit of each processor by

LBBA:

 	 	 	 					 (20)

22

Then, adding up the benefits gained by all the processors in the system will result in:

 ∑ 	 		
	
∑ (21)

Now, let VOPT denote the total benefit gained by the optimum scheduling of a set of

jobs and VLBBA the total benefit gained by LBBA for the same job set. Then equation (22)

shows that algorithm LBBA is also 10C2 competitive:

 VLBBA 	
	
	VOPT (22)

1.3.2. Computational Complexity

In the BBA method, at each time step, the priority of all jobs in the shared pool must be

compared with the priority of the running jobs on the top of all processor stacks. If there

are m processors in the system and n waiting jobs in the pool, then n times m comparisons

are needed at each time step to determine if any of the waiting jobs can be pushed onto any

stack and start running.

On the other hand, our method performs (m - 1) comparisons at each job arrival to find

the least utilized processor and adds the execution time of new job j to its utilization for

future comparisons, resulting in m operations at each job arrival. However, if r jobs arrive

at the same time (r 	1), a load-balanced/greedy partitioning is performed: The jobs will

be sorted based on a non-increasing order of their execution times, which roughly needs r

log2 r comparisons. Then, the first job in the list is assigned to the pool of the processor

with the least remaining workload, and so on.

At each time step, if x1 is the number of waiting jobs in first pool, x2 in the second pool,

and so on, then X denotes the total number of waiting jobs (X = x1 + x2 + … + xm). Since

23

our new method only compares the priorities of waiting jobs in each pool with the priority

of the running job on the corresponding stack, only X comparisons are done at each time

step. It is now clear that our method is computationally less expensive than the original

one.

In the next section, the results of our extensive experiments are provided which show a

significant improvement in the scheduling speed by our method especially for systems with

very large work load.

 1.4. Performance Evaluation

Schedulability is one of the main performance metrics to evaluate a scheduler for hard

real-time systems. However, benefit-aware schedulers are mainly used for soft real-time

systems, in which missing a deadline would not drastically affect the performance. For soft

real-time scheduling, the total value or benefit gained and also the miss ratio are the

performance metrics. In this research [32], we considered the following measurements to

evaluate and compare the performance of both BBA and LBBA algorithms:

 The benefit gained by completed jobs

 Missed deadline ratio

 The benefit-to-cost ratio

 Total processor idle time

The cost is the overall flow time of a job set. It is the time that has passed since the first

job has arrived till the last job is completed. The benefit-to-cost ratio is calculated by

dividing the total benefit by the overall flow time.

24

Reducing flow time and using processors more efficiently are other goals addressed by

our solution. Therefore, to measure how efficiently CPU cycles have been used by either

algorithm, we have considered total processor idle time. Total processor idle time is

obtained by accumulating all the time periods in which any of the processors has been idle.

The more the total idle time decreases while preserving or even improving the amount of

gained benefit, the more efficiently processors are used and the shorter the response time

or overall flow time (or cost) gets.

1.4.1. Experimental Settings and Results

In order to evaluate the performance of our method (LBBA) and compare it with the

performance of the previous one (BBA), we implemented both algorithms in C++ to

simulate the scheduling of synthetic job sets using different numbers of identical

processors.

For the benefit density functions of the jobs, we tried different non-negative, non-

increasing functions such as B(x) = , B(x) = and so on; where x and n were both

positive integer numbers.

We generated hundreds of job sets with randomly generated numbers as their arrival

times and execution times, using the Poisson distribution which is applied by operations

research to model random arrival times, especially for systems using queues, such as web

servers and print servers [17].

25

1.4.1.1. Synthetic Job Sets

This experiment was done using aperiodic job sets. Each aperiodic job arrives with its

own benefit density function and execution time. The arrival time and execution time of

the jobs were randomly generated. Both algorithms were tested by scheduling hundreds of

job sets with 20, 40, 60, 80, and 100 jobs which were randomly generated using a Poisson

distribution. It is a discrete probability distribution that expresses the probability of a given

number of events occurring in a fixed interval of time and/or space if these events occur

with a known average rate and independently of the time since the last event. This is the

same attribute we have considered for the job sets, being independent and aperiodic. We

used the range of [0, 10] for their arrival times and [1, 15] for their execution times. We

simulated the scheduling of the job sets for the systems having 2 and 3 identical processors.

Also, we tested both algorithms by scheduling sets of 50, 100, 150, 200, and 250 jobs

for the systems having 4 and 8 identical processors. Their arrival times range was [0, 10]

and their execution times range was [1, 20]. We considered a shorter range for the arrival

times comparing to the range of their execution times to simulate systems with heavier

workloads comparing to the job sets generated for 2 and 3 processor systems.

1.4.1.2 Experimental Results and Discussion

The comparison of the results for BBA and LBBA are shown in separate graphs for

each performance measurement and different number of processors. The improvement (or

increase) in the total benefit gained by LBBA, ranged from 6.19 % to 9.0 % for a 2

processor system and from 5.04 % to 7.10 % for a 3 processor system (Figure 1.6).

26

The improvement (or increase) in the total benefit gained by LBBA ranged from 4 %

to 16.73 % for a four-processor system and from 4.6 % to 16.35 % for a eight-processor

system. As Figures 1.6 and 1.7 illustrate, the more jobs we had in the system, the greater

was the improvement in maximizing benefits by LBBA compared to BBA.

The improvement (or decrease) of total processor idle time obtained by LBBA ranged

from 44.21 % to 69.18 % for a 2 processor system, from 36.82 % to 70.68 % for a three-

processor system (Figure1.4), from 39.18 % to 72.2 % for a four-processor system, and

from 27.92 % to 57.83 % for eight-processors (Figure 1.5). These results prove that LBBA

consumes CPU cycles more conservatively.

The tables contain the actual data gathered through our extensive experiments, which

is not normalized. The arrival times and computation times are randomly generated and

job sets can consist of both synchronous and asynchronous jobs. These factors affect the

workload of the system, which itself has a direct impact on the total benefit gained, number

of completed jobs and total processor idle time. We intentionally consider a variety of

possible scenarios to study how both algorithms perform in each situation.

Despite of a little fluctuation, both BBA and LBBA have an increasing trend in total

benefit as the number of jobs in the system increases. Having fewer jobs in a period of

time and heavier workload during another period would result in more processor idle time

(while fewer jobs are in the system) and less benefit gained by the completed jobs that had

to wait longer in the system during the heavier period. This can be the reason of the

fluctuation of the graph for 100 and 150 jobs. BBA has an increasing trend of total idle

time with increasing number of jobs in the system, even with more processors. However,

total processor idle time in LBBA stays almost the same and considerably less than BBA.

27

It also decreases in an 8 processor system and the difference of the trends is substantial in

this case. Overall, LBBA reduced the total processor idle time by 24% (minimum) to 71%

(maximum) compared to BBA.

The improvements in both total gained benefit and benefit-to-cost ratio (Tables 1.5

through 1.7) by the LBBA algorithm show that our new method can gain more benefit at

lower cost, i.e., shorter makespan. Also, substantial decrease in total processor idle time by

LBBA is a proof of its better resource management and CPU cycles usage.

However, one may argue that even though LBBA has much lower total idle time, it

might have been using the processors to work on some jobs that are sent to garbage

collection and their processing time is wasted not gaining any benefit while BBA was idle

not starting those jobs. Our results (provided in Tables 1.8 and 1.9) prove that it is not the

case.

We observed a significant improvement in the scheduling speed by our proposed

method (Table 1.8). For example, the simulation of the previous method took 16 minutes

(960 seconds) on average to schedule sets of 250 jobs on four-processors, while the average

simulation time of our scheduling method was about 5 seconds for the same setting. The

difference in the speed of the methods gets more significant for larger job sets. This is while

the same design and implementation methods were used for both algorithms.

In addition, Table 1.9 provides the average ratio of missed deadlines for both

algorithms. It shows that in all experimental settings, LBBA either had completed all the

jobs, or if not, its miss ratio was lower than BBA for the same experiment. Therefore, we

were able to gain more benefit in a shorter makespan, with less miss ratio and more

balanced usage of processors resulting in lower total idle time.

28

Fig. 1.4: Total idle time versus number of jobs for 2 and 3 processors

(Total idle time can be in milliseconds or microseconds. Time
unit is not included in the chart, since the results are extracted
from simulation experiments.)

Table 1.3: Total idle time and the improvement (decrease) achieved by LBBA on systems
with 4 and 8 processors

No. of
Jobs

BBA
(2p)

LBBA
(2p) Improvement BBA

(3p)
LBBA
(3p) Improvement

20 4.13 2.30 44.21% 9.57 6.04 36.82%

40 7.65 3.65 52.29% 15.50 9.20 40.65%

60 5.71 2.19 61.67% 14.62 5.76 60.59%

80 7.30 2.25 69.18% 15.35 4.50 70.68%

100 8.60 2.75 68.02% 16.15 5.00 69.04%

0.00

2.00

4.00

6.00

8.00

10.00

20 40 60 80 100

T
ot

al
 I

d
le

 T
im

e

Number of Jobs

Total Idle Time vs. Numbers of Jobs
(2 Processors)

BBA(2p)

LBBA(2p)

0.00

5.00

10.00

15.00

20.00

20 40 60 80 100

T
ot

al
 I

d
le

 T
im

e

Number of Jobs

Total Idle Time versus Numbers of Jobs
(3 Processors)

BBA(3p)

LBBA(3p)

29

Fig. 1.5: Total idle time versus number of jobs for 4 and 8 processors
(Total idle time can be in milliseconds or microseconds. Time
unit is not included in the chart, since the results are extracted
from simulation experiments.)

Table 1.4: Total idle time and the improvement (decrease) achieved by LBBA on systems

with 4 and 8 processors
No. of
Jobs

BBA
(4p)

LBBA
(4p) Improvement BBA

(8p)
LBBA
(8p) Improvement

50 22.85 11.70 24.59% 55.30 41.70 24.59%

100 23.00 7.80 66.09% 58.95 26.70 54.71%

150 30.40 14.10 53.62% 75.30 36.90 51.00%

200 31.15 9.00 71.11% 76.05 34.80 54.24%

250 32.40 9.60 70.37% 71.05 31.40 55.81%

0.00

10.00

20.00

30.00

40.00

50 100 150 200 250

T
ot

al
 I

d
le

 T
im

e

Number of Jobs

Total Idle Time vs. Numbers of Jobs
(4 Processors)

BBA(4p)

LBBA(4p)

0.00

20.00

40.00

60.00

80.00

50 100 150 200 250

T
ot

al
 I

d
le

 T
im

e

Number of Jobs

Total Idle Time versus Numbers of Jobs
(8 Processors)

BBA(8p)

LBBA(8p)

30

Fig. 1.6: Benefit versus number of jobs for 2 and 3 processors

Table 1.5: Benefit gained by BBA and LBBA, and the improvement (increase) achieved by
LBBA on systems with 2 and 3 processors

No. of
Jobs

BBA
(2p)

LBBA
(2p) Improvement BBA

(3p)
LBBA
(3p) Improvement

20 3.92 4.28 9.18 % 5.02 5.27 4.98 %

40 5.92 6.36 7.43 % 7.57 8.08 6.74 %

60 7.18 7.64 6.40 % 9.23 9.82 6.39 %

80 7.86 8.40 6.87 % 10.23 10.95 7.04 %

100 8.29 8.80 6.15 % 10.98 11.71 6.65 %

0.00

2.00

4.00

6.00

8.00

10.00

20 40 60 80 100

B
en

ef
it

Number of Jobs

Benefit versus Numbers of Jobs (2 Processors)

BBA(2p)

LBBA(2p)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

20 40 60 80 100

B
en

ef
it

Number of Jobs

Benefit versus Number of Job (3 Processors)

BBA(3p)

LBBA(3p)

31

Fig. 1.7: Benefit versus number of jobs for 4 and 8 processors

Table 1.6: Benefit gained by BBA and LBBA, and the improvement (increase) achieved by
LBBA on systems with 4 and 8 processors

No. of
Jobs

BBA
(4p)

LBBA
(4p) Improvement BBA

(8p)
LBBA
(8p) Improvement

50 10.88 11.65 7.08% 18.27 19.13 4.65%

100 13.27 14.14 6.56% 19.98 21.38 7.01%

150 11.06 12.89 16.55% 18.11 20.59 13.69%

200 12.22 14.07 15.14% 19.97 22.48 12.57%

250 12.62 14.81 17.35% 21.11 24.10 14.16%

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

50 100 150 200 250

B
en

ef
it

Number of Jobs

Benefit versus Numbers of Jobs (4 Processors)

BBA(4p)

LBBA(4p)

0.00

5.00

10.00

15.00

20.00

25.00

50 100 150 200 250

B
en

ef
it

Number of Jobs

Benefit versus Number of Job (8 Processors)

BBA(8p)

LBBA(8p)

32

Fig. 1.8: Benefit-to-Cost ratio versus number of jobs for 2 and 3 processors

Table 1.7: Benefit-to-cost ratio and the improvement achieved by LBBA on systems with 2
and 3 processors

No. of
Jobs

BBA
(2p)

LBBA
(2p) Improvement BBA

(3p)
LBBA
(3p) Improvement

20 7.29 8.06 10.62% 13.40 14.40 7.45%

40 3.68 3.99 8.53% 6.87 7.47 8.77%

60 2.96 3.18 7.32% 5.60 6.08 8.40%

80 2.50 2.69 7.67% 4.81 5.25 9.13%

100 2.05 2.19 6.86% 4.03 4.35 7.91%

0.00

2.00

4.00

6.00

8.00

10.00

20 40 60 80 100

B
en

ef
it

-t
o-

co
st

 R
at

io

Number of Jobs

Benefit-to-Cost Ratio versus Numbers of Jobs
(2 Processors)

BBA(2p)

LBBA(2p)

0.00

4.00

8.00

12.00

16.00

20 40 60 80 100

B
en

ef
it

-t
o-

co
st

 R
at

io

Number of Jobs

Benefit-to-Cost Ratio versus Numbers of Jobs
(3 Processors)

BBA(3p)

LBBA(3p)

33

Fig. 1.9: Average schedulers’ run time vs. number of jobs for 4 and 8 processors

Table 1.8: Average schedulers’ run time (in seconds)

0

200

400

600

800

1000

50 100 150 200 250

A
ve

ra
ge

 r
u

n
 t

im
e

(S
ec

.)

Number of Jobs

Average schedulers’ run time vs. Number of Jobs
(4 Processors)

BBA(4p)

LBBA(4p)

0

200

400

600

800

1000

50 100 150 200 250

A
ve

ra
ge

 r
u

n
 t

im
e

(S
ec

.)

Number of Jobs

Average schedulers’ run time vs. Number of Jobs
(8 Processors)

BBA(8p)

LBBA(8p)

Number of
Jobs

BBA (4p) LBBA (4p) BBA (8p) LBBA (8p)

50 2.50 1.00 2.00 0.50

100 12.50 1.00 9.60 1.00

150 120.00 2.00 60.00 1.00

200 210.00 3.00 180.00 2.00

250 960.00 5.00 870.00 3.00

34

Table 1.9: Missed deadline ratio (%)

No. of Jobs BBA (4p) LBBA (4p) BBA (8p) LBBA (8p)
50 0.084 0.00 0.00 0.00

100 0.100 0.05 0.00 0.00

150 0.067 0.00 0.00 0.00

200 0.075 0.00 0.05 0.00

250 0.100 0.00 0.02 0.00

1.5. Summary

In this chapter, I proposed and analyzed an efficient preemptive benefit-aware

technique that prioritizes the jobs using their benefit density functions and schedules them

in a real-time basis in order to maximize the total benefit gained by the completed jobs. It

reduces the cost (makespan or overall flow time) of the jobs and total idle time of the

processors by online choice of greedy or load balancing approximations to partition jobs

among multiple processors at the time of release.

I proposed an online choice of two approximation algorithms (greedy and load-

balancing), as a solution for special cases that were not considered in the existing benefit-

aware multiprocessor scheduling algorithms. Examples of those cases are when there are

several jobs with the same priority or when a high priority job can be executed by more

than one non-idle processor because it can preempt the running jobs on the top of their

stacks.

The results of the theoretical analysis and simulation experiments show that LBBA has

improved the performance of the previous benefit-based method (BBA) explained in [29]

while preserving its constant competitive ratio (10C2). Our extensive experiments showed

up to 72% improvement in total processor idle time, and improving the benefit accrual by

35

up to 17% compared to BBA. LBBA showed more improvement with heavier workload.

This improvement is provided by more balanced distribution of jobs among processors and

shorter flow times which will increase the total benefit. Also, a better resource management

(CPU cycles in this case) is possible using the proposed method. This advantage is

beneficial to many real-time applications especially those that are running on battery-

operated computing devices.

In addition, the results of the theoretical analysis and simulation showed that this

solution is computationally less expensive so that the LBBA scheduling algorithm worked

up to about 290 times faster than BBA (3 seconds for scheduling 250 jobs on an eight-

processor system compared to 870 seconds taken by BBA). This advantage along with a

lower ratio of missed deadlines makes LBBA a considerably faster scheduling algorithm

for multiprocessor systems comparing to the previous algorithm (BBA) which can improve

the QoS (Quality of Service) for many real-time applications such as bursty hosting servers,

video games and other multimedia systems. Another advantage of this new method is that

no synchronization is needed for fetching the jobs from a shared pool. That is because a

separate pool is assigned to each processor in contrast to the other method (BBA) where

all processors use a shared pool.

We can summarize the advantages of LBBA as follows:

 LBBA is a novel hybrid model of soft real-time multiprocessor scheduling. In contrast

to BBA, which only follows a benefit model, LBBA is a combination of benefit and

cost models. That is, it aims to minimize makespan in order to achieve the maximum

benefit at the lowest cost.

36

 No synchronization is needed for fetching the jobs from a shared pool. That is because

a separate pool is assigned to each processor in contrast to the other method (BBA)

where all processors use a shared pool.

 LBBA facilitates load-balanced partitioning of waiting jobs, while this case is not

considered in BBA. For example, in case the waiting (or ready) jobs arrive

asynchronously, LBBA adapts the “greedy approximation” to assign a job to the pool

of the processor with the least remaining workload. If jobs are synchronous, i.e., arrive

at the same time, those that cannot start running and have to wait in a pool, will be

partitioned among the processors, using our “Load-Balancing” technique.

 LBBA optimizes the CPU usage and minimizes the total idle time of the processors

by balancing the workload among them.

 Improved QoS by reducing missed deadline ratio: As shown by an example in the

manuscript, LBBA reduces the possibility of starvation for low priority jobs, compared

to BBA.

 LBBA is computationally less expensive than BBA, as proved in this chapter.

 Minimal Response time: The overall response time, including both scheduling and

execution time, for a job set in LBBA is much shorter than in BBA for the same set.

The heavier the workload of the system, the greater the reduction of response time (up

to about 300 times faster for a set of 250 jobs).

37

In the next phase of my research, I extended this work to the problem of scheduling periodic

task sets, proposed other versions of LBBA to enhance the QoS in applications with

periodic tasks, and explored their impacts on the benefit, cost, and schedulability in those

cases.

38

2. Online Benefit-Aware Semi-Partitioned Scheduling of SRT
Periodic Tasks

This chapter presents a novel benefit-aware semi-partitioning approach to enhance

scheduling of soft real-time periodic tasks in multiprocessor systems. Tasks in these

systems are not equally critical (or beneficial). Each task comes with its own benefit

density function which can be different from the others’. Examples of such applications

and embedded systems can be body sensor networks and real-time medical monitoring

systems which periodically check and record patients’ vital signs, video-streaming servers,

multi-player video games, and mobile multimedia devices. The tasks are prioritized based

on their potential benefits for the system. The sooner a task completes the more benefit it

gains. The objective is enhancing the QoS by increasing the total benefit, while reducing

flow times and deadline misses. Theoretical performance analysis of this model is

provided, followed by two more versions of the algorithm, one for tasks with non-implicit

deadlines, and the other with a modified load-balancing factor. A general framework for

benefit-aware multiprocessor scheduling in applications with periodic, aperiodic or mixed

real-time tasks is also proposed in this work. The extensive simulation experiments

compare these algorithms with the state-of-the-art, using different utilization levels and

various benefit density functions. The results of these comparisons show that the new

techniques outperform the existing ones.

39

2.1. Introduction and Motivation

2.1.1. Background

Multiprocessor systems are widely used in a fast-growing number of real-time

applications as well as embedded systems. In hard real-time systems, meeting all deadlines

is critical, while in soft real-time (SRT) systems, missing a few deadlines does not

drastically affect the system performance. However, it would compromise the quality of

the service (QoS). Some examples of such systems are video conference applications,

online gaming, e-commerce transactions, chatting, IM (instant messaging), Cloud

applications [33] and IoT (Internet-of-Things) [16].

In such systems, jobs meeting their deadlines will gain a benefit (also called reward) for

the system. Hence, researchers focus on increasing benefits to improve the QoS. Besides

the total benefit, other factors also influence the QoS, such as makespan (the time

difference between the start and finish of a sequence of jobs or tasks), flow time (the time

needed to finish a job), and the deadline-miss ratio. However, most existing scheduling

models focus on one of these factors in order to improve the system performance. The

major approaches, which multiprocessor real-time scheduling algorithms follow, are

partitioning, global scheduling, and some hybrid of the two, called semi-partitioning [14],

[17], and [19].

Global scheduling can have higher overhead in at least two respects: the contention

delay and the synchronization overhead for a single dispatching queue is higher than for

per-processor queues; the cost of resuming a task may be higher on a different processor

than on the processor where it last executed, due to inter-processor interrupt handling and

40

cache reloading. The latter cost can be quite variable, since it depends on the actual portion

of a task’s memory that remains in cache when the task resumes execution, and how much

of that remnant will be referenced again before it is overwritten [33]. These issues are

discussed at some length by Srinivasan et al. [34].

2.1.2. Related Works

We discuss the related works in the following categories:

2.1.2.1. QoS and Benefit-aware Scheduling

Elnably et al. [33] study fair resource allocation and propose a benefit-aware model for

QoS in Cloud applications. In contrast, Alhussian, Zakaria and Hussin [35] prefer global

scheduling and try to improve real-time multiprocessor scheduling algorithms by relaxing

the fairness and reducing the number of preemptions and migrations.

Amirijoo, Hansson and Son [36] have discussed specification and management of QoS

in real-time databases supporting imprecise computations. Benefit-aware scheduling of

periodic tasks on uniprocessor systems has also been studied by Aydin et al. [30], and Hou

and Kumar [37]. Zu and Cheng [38] proposed a real-time scheduling method for tasks,

with hierarchically dependent benefit-aware sub-tasks, through a multimedia and

image/video transmission case study. Chen, Kuo and Yang discussed a profit-driven

uniprocessor scheduling with energy and timing constraints [39]. Awerbuch et al. [29]

proposed a benefit-aware model for scheduling aperiodic tasks on uniprocessor systems

which can also be applied to multiprocessors.

41

We have also studied benefit-aware scheduling of aperiodic real-time tasks on multi-

processor systems (Sanati and Cheng in [20], [21], and [32]). The performance analysis

and comparative experimental results of our proposed algorithms versus another state-of-

the art method proposed in [29] showed that our technique achieved significant

improvements in reducing the overall response time (i.e., scheduling time plus makespan

of the task sets), increasing the total benefit and reducing missed deadlines, all of which

enhance QoS. However, that method is designed for scheduling one instance (i.e.,

aperiodic) tasks only, and cannot solve the problem of scheduling periodic soft real-time

tasks on multiprocessor systems, on which relatively very little research has been done.

2.1.2.2. Semi-Partitioned Scheduling

Semi-partitioned real-time scheduling algorithms extend partitioned ones by allowing

a subset of tasks to migrate. Given the goal of “less overhead,” it is desirable for such

strategy to be boundary-limited and to allow a migrating task to migrate only between

successive invocations (job boundaries). Non-boundary-limited schedulers allow jobs to

migrate, which can be expensive in practice, if jobs maintain much cached state.

Previously proposed semi-partitioned algorithms for soft real-time (SRT) tasks such as

EDF-fm and EDF-os [40] have two phases: an offline assignment phase, where tasks are

assigned to processors and fixed tasks (which do not migrate) are distinguished from

migrating ones; and an online execution phase. In their execution phase, rules that extend

EDF (Earliest-Deadline-First) scheduling are used. In EDF-fm, the number of processors

to which jobs of a migrating task can migrate to, is limited to two, and in EDF-os, each

42

processor can be assigned to only two migrating tasks. The goal in these EDF-based semi-

partitioning strategies is to minimize tardiness.

2.1.2.3. Approximation Algorithms in Scheduling

Approximation algorithms are often used to attack difficult optimization problems,

such as job scheduling on multiprocessor systems which is an NP-hard problem [1]. We

applied greedy and load-balancing algorithms for benefit-aware multiprocessor scheduling

of aperiodic real-time tasks [20], [21], [32]. Chen, Yang and Kuo [19] used greedy

approximation in real-time task replication for fault tolerance in identical multiprocessor

systems. Chen and Chakraborty [41] have studied the approximation of partitioned

scheduling by exploiting resource augmentation with (1) speeding up or (2) allocating

more processors.

2.1.3. The Objective

Our objective in this study is to enhance the QoS by reducing flow times and missed

deadlines, while increasing the total benefit obtained by completed periodic tasks. Hence,

we semi-partition the tasks and allow different jobs of any task to be assigned to different

processors as they arrive (migration at job boundaries) based on their benefit-aware

priorities and their workloads. This method can also be used as a framework to direct SRT

systems with mixed set of tasks (aperiodic and periodic) by defining their deadlines

accordingly.

43

2.1.4. The Contribution

In this work, we propose a new technique which, to our knowledge, is the first online

benefit-aware semi-partitioned scheduling for periodic soft real-time tasks in

homogeneous multiprocessor systems. Scheduling is based on the task priority, depending

on the benefit density function of each task. As in LBBA (load-balanced benefit-aware

algorithm) [21], we use an online choice of two approximation algorithms (load-balancing

and greedy approximation) for partitioning lower priority tasks that are waiting, at job

boundaries and no migration is allowed after a job (or sub-task) is assigned to a processor.

However, unlike the original LBBA, the method proposed in this work is designed for

periodic tasks and works for systems with both implicit and non-implicit deadlines.

We summarize some highlights of this technique as follows:

 An enhanced usage of the processing time by approximately balancing the workload

of the processors, which reduces the idle times and flow times

 When different benefit density functions are assigned to different tasks in a system,

it increases the total gained benefit by prioritizing tasks based on their benefit density

functions.

Our method has advantages over existing semi-partitioning schedulers, such as:

 No prior information is needed for scheduling. Hence, unlike other semi-partitioning

methods, there is no offline phase, and no need to pre-select migrating tasks

(different jobs of which can be assigned to different processors).

 In EDF-fm, the number of processors on which different jobs of each migrating task

can be processed is limited to two. In EDF-fm and EDF-os, each processor cannot

44

accept jobs from more than two migrating tasks. Our proposed method has neither

of these limitations.

 It reduces runtime overhead by not allowing migration in the middle of job

executions (which is allowed in global scheduling methods such as Global EDF

[43]).

 It also reduces overhead by keeping the preempted jobs and the running one on the

same stack for each processor (details in Section 2.2), unlike EDF-os which replaces

the preempted jobs by the running ones, appends the preempted jobs to a queue and

fetches them again at their resume time.

In the next section, we explain our novel semi-partitioning hybrid model called LBBA-

bid, which combines benefit and cost models, for optimizing QoS in soft real-time systems

of periodic tasks with benefit-aware implicit deadlines. In Section 2.3, we provide the

theoretical analysis of this algorithm. Sections 2.4 and 2.5 respectively include our proposal

of two more variations of LBBA-bid, one with a non-implicit deadline definition (LBBA-

bnc) and the other one with a different factor considered for load-balancing (UBBA). In

Section 2.6, we demonstrate all three proposed models through an example. Section 2.7

includes the performance analysis of all three proposed approaches based on the results of

our extensive simulation experiments on synthetic task sets in comparison with the state-

of-the-art. In Section 2.8, we conclude this work. and suggest the future work. Based on

our conclusion, we introduce a novel general framework for benefit-aware multiprocessor

scheduling of SRT systems with aperiodic, periodic or mixed tasks, performance analysis

of which can be a worthwhile future work.

45

2.2. LBBA-bid for Implicit Deadlines

In this section, I define the system and task model, methodology and notations/phrases

used in our proposed LBBA-bid algorithm [44] for periodic tasks with implicit deadlines.

2.2.1. System and Task Model

A multiprocessor system with m identical processors is considered for semi-partitioned,

preemptive scheduling of periodic soft real-time task sets with implicit deadline (or

non-implicit, depending on the application). Each processor has its own pool (for ready

tasks), stack (for preempted and running tasks) and garbage collection (for completed and

tasks which missed deadlines). Each task may be released at any time. Tasks are

independent in execution and there are no precedence constraints among them. Preemption

is allowed. A desired property of the system in this method is the possibility to delay jobs

without drastically reducing the overall system performance.

2.2.2. Methodology

A hybrid model (combining benefit and cost models) is proposed for online scheduling

of periodic tasks in SRT systems. In this method, we apply our novel partitioning

technique, in addition to online choice of approximation algorithms as follows. Figure 2.1

summarizes our hybrid methodology for scheduling periodic soft real-time task sets on

multiprocessor systems.

46

2.2.2.1. Semi-Partitioning Model

This algorithm applies online semi-partitioning. In this partitioning approach, no job

migration is allowed. In other words, each job, i.e., an instance of a task, will be assigned

to a processor at release time (with no migrations), based on the job's priority, worst-case

execution time, and the current workloads of the processors. However, different instances

of a periodic task may be assigned to different processors. This method is possible since

instead of using a shared pool, each processor has its own pool for the ready tasks assigned

to it. Partitioning jobs at their release time reduces the runtime overhead of job migrations

which is allowed in global scheduling.

2.2.2.2. Online Choice of Approximation Algorithms

Similar to LBBA, we consider greedy and load-balancing approximation algorithms,

one of which will be chosen online based on the conditions of the system to distribute the

waiting tasks among the processors at job boundaries and/or schedule higher priority tasks

Reward-based
Priority Setting

•Variable priority
Assignment over
time for ready
and waiting jobs

•Fixed priority
Assignment for
scheduled jobs at
their start time

Hybrid
Scheduling

•Reward Model:
Scheduling of
high priority jobs

•Cost Model:
Greedy/load-
balancing
approx. for
partitioning low
priority jobs

Reward
Calculation

•No reward for
incomplete jobs

•Calculate
gained reward
by each
completed job
and add it to
the total reward

Fig. 2.1: Our method

47

whenever there are several possible choices. Flow time reduction, and also enhanced CPU

usage by reducing idle times are advantages of this technique.

2.2.3. Definitions

The definitions of the phrases and notations used in this method are as follows:

2.2.3.1. Periodic Tasks

A periodic task, in real-time systems, is a task that is periodically released at a constant

rate. Usually, two parameters are used to describe a periodic task Ti: its worst-case

execution time wi as well as its period pi. An instance of a periodic task Ti is known as a

job and is denoted as Ti,j, where j = 1, 2, 3, … . The implicit deadline of a job is the arrival

time of its successor. For example, the deadline of the jth job of task Ti, which is Ti,j, would

be the arrival time of job Ti,(j+1), that is at jpi. However, it can be non-implicit and defined

based on objectives and criticalities of the systems and applications. Time is slotted and

expressed by t. To demonstrate that our model can be used to model a video streaming

server, a frame can be considered as the time between two consecutive time slots, where

all tasks generate a job and the length of a frame is the least common multiple of task

periods [37].

2.2.3.2. Task Utilization

Another important parameter used to describe a task Ti is its utilization and is defined

as ui = wi / pi. The utilization of a task is the portion of time that it needs to execute after it

has been released and before it reaches its deadline.

48

2.2.3.3. Notation

The notation used throughout this chapter is defined as follows:

pi – period of task Ti

wi – worst-case execution time of task Ti, considered as workload of task Ti

ri,j – release time of job Ti,j

si,j – start time of the execution of job Ti,j

ci,j – completion time of job Ti,j

Bri,j – benefit-aware break point of job Ti,j, is:

 Bri,j = si,j +2wi (1)

This means if twice the execution time of a running job has passed from its start time

and it has not finished its execution yet, then it cannot gain any benefit for the system, even

if its deadline has not passed.

Note: The formulas for this benefit-aware break point, benefit density function and its

restriction, gained benefit, variable and fixed priority of a job, as provided below, have

been originally proposed (with explanation and analysis) by Awerbuch et al., in [29], and

were also adopted in LBBA [21], [32].

βi (t) – benefit density function of task Ti at time t, for (t ≥ wi), which is a non-increasing,

non-negative function, with the following restriction to be satisfied for each βi (t):

	β 	

β 	
	

49

For t < wi, there would be no benefit gained by job Ti,j, since it has certainly not

completed its execution at time t. The above condition guarantees that in case a job is

delayed as long as its worst-case execution time, then its gained benefit decreases at most

by the constant . Constant and the benefit-density functions are defined based on the

requirements of real applications and can be different from one application to another.

f i,j – flow time of job Ti,j:

 fi,j = ci,j – ri,j (2)

bi,j – benefit, gained by a completed job Ti,j :

 bi,j = wi. βi (f i,j)

βi is a non-negative non-increasing function; thus, the sooner a job finishes, the more

benefit it gains. Also, between two jobs with the same benefit density function and same

flow time, the one with larger execution time adds more benefit to the system.

di,j (t) – variable priority of job Ti,j at time t, before scheduling (t < si,j):

di,j (t) = βi (t + wi – ri,j)

d i,j – fixed priority of job Ti,j, when it is scheduled and starts running:

di,j = βi (si,j + wi – ri,j)

Di,j – deadline of job Ti,j,

Note: We propose and analyze our model with two different types of deadlines, implicit

and non-implicit.

Implicit deadline (Next-Job-Release time):

Di,j = ri,(j+1)

50

 Di,j = ri,j + pi (3)

 Non-implicit deadline (Next-Job-Completion time):

 Di,j = ci,(j+1)

Wpl – Current execution time on the pool of processor l

Wsl – Current execution time on the stack of processor l

Wl – Current workload or execution time on processor l:

Wl = Wpl + Wsl

Ul, Upl, Usl – Total current utilization on processor l, its pool and stack, respectively.

U – Maximum possible utilization of the system with m identical processors:

U = m

ui – Utilization of every job of the task Ti :

ui = wi / pi

£i – Laxity of job Ti,j :

 £i = pi – wi (4)

δi,j – delay of job Ti,j , that is the time Ti,j has to wait after it is released until it is scheduled

and starts its execution:

 δi,j = si,j – ri,j (5)

φi,j(k) – time elapsed during the kth preemption of Ti,j

φi,j – time elapsed during all the preemptions of Ti,j

§i,j – stretch time of job Ti,j , that is the extra time Ti,j stays in the system in addition to its

execution time.

51

 §i,j = fi,j – wi (6)

 §i,j = δi,j + φi,j (7)

2.2.4. LBBA-bid Algorithm

In this system, the tasks are periodic and the events are new job (or sub-task) arrival,

job completion, and reaching the break point of a job. The algorithm takes action when a

new job arrives, a running job completes, or when a running job reaches its break point.

Arriving jobs are prioritized, and then are either scheduled and started to run on the

assigned processors or partitioned and sent to the pools of the processors. The job on top

of each stack is the job that is running and all other jobs in the stacks are preempted. The

jobs on the stacks or the ones in the pools cannot migrate to any other processor. However,

different jobs of a task can be assigned to different processors at their arrival time. This

algorithm is called LBBA-bid, LBBA with benefit-aware implicit deadlines.

The algorithm consists of the following phases:

2.2.4.1. Prioritizing

The priority of each ready and unscheduled job (located in each pool) at time t, denoted

by di,j(t) (for t si,j), is variable with time. However, when a job Tk (k can be any pair of

i,j) starts its execution, its priority is calculated as d’k = βk (sk + wk – rk) (lines 12 and 46 of

the pseudo-code, Algorithm 2). The notation d’k is used for the fixed priority of the running

job Tk on top of the stack. This priority is given to the job Tk when it starts its execution.

Its start time, sk , is used in the function instead of variable t, thus its priority is no longer

52

dependent on time. Since sk, wk, and rk are all constants, the priority of a job will not change

after its start time (for t > sk).

2.2.4.2. Scheduling / Execution / Preemption

Once a new job Ti,j is released, if there is a processor such that its stack is empty (lines

9 through 20), then the newly released job is pushed onto the stack and starts running. If

there is no idle processor, but the preemption condition (line 52) is met for any running job,

then the job Ti,j preempts the one currently running, and starts its execution. As mentioned

in Sub-section 2.3.3, the preemption condition we applied here, was originally proposed

by Awerbuch et al. [29]. They used this condition to prove the constant ratio

competitiveness of 10C2 for their benefit-aware algorithm (Constant C is defined in 2.3.3).

It also limits the number of preemptions and their overhead by preventing a new job Ti,j

from preempting the running jobs with lower priorities unless the priority of the new job is

more than four times the priority of running job(s).

2.2.4.3. Online Partitioning (load-balancing/greedy)

If more than one high-priority job is able to preempt some running job(s), to decide

which job should be sent to which stack, we send the job with the largest execution time,

w, to the processor with the minimum remaining workload, the second largest job to the

processor with the second smallest remaining workload, so on so forth. This way we are

able to balance the workload among the processors (lines 24 through 36).

 However, in case there is only one high priority job at a time instant which can preempt

more than one running job, we assign it to the stack of the processor with minimum

53

remaining execution time (greedy approximation, lines 42 through 49). If the priority of

the released job is not high enough to be scheduled right away, it will be partitioned among

the pools of the processors using an online choice of load balancing or greedy

approximation.

2.2.4.4. Reaching Break Point or Deadline

If a job reaches its break point or its deadline (lines 50-56) and its execution is not

completed yet, it will not be able to gain any benefit; therefore, it will be popped from the

stack and sent to garbage collection. The deadline of a job is its period (Next-Job-Release

time of the same task) and its break point [29] is twice its execution time after it starts

running. A job must finish its execution before its deadline or break point (whichever is

less) to be considered as completed.

2.2.4.5. Completion / Discarding / Benefit Calculation

When a currently running job on a processor completes, it is popped from the stack.

Then, the processor runs the next job on its stack (i.e., resumes the last preempted job) if

di,j(t) ≤ 4d’k for all the jobs Ti,j in its pool. Otherwise, it gets the job with max di,j(t) from

its pool, pushes it onto the stack and runs it. The completed jobs or those that reach their

break points are going to be sent to the garbage collection. If a job completes, its gained

benefit is calculated and added to the total benefit (line 62).

The summary of the algorithm is provided in pseudo-code as follows:

54

ALGORITHM 2: LBBA-bid

1 Required: One or more jobs arrive at time t ≥ 0

2 {

3 /* TempList: list of ready jobs waiting for distribution among processors */

4 Append the arrived job(s) to the TempList

5 Calculate the priority of each job Ti,j in the TempList: di,j(t) = Bi(t + wi – ri,j)

6 Sort TempList based on the priority

7 If (at least one stack is empty)

8 {

9 Push the highest priority job(s) Ti,j onto empty stack(s) of idle processor(s) l

10 Add its execution time wi to total workload of the stack of the processor l (Wsl)

11 Recalculate total workload of processor l: Wl = Wpl + Wsl

12 Calculate the fixed priority of Ti,j using its start time si,j: : d’i,j(t) = Bi(si,j + wi – ri,j)

13 Start executing Ti,j

14 }

15 Else

16 {

17 /* no empty stack */

18 /* preempt if possible otherwise partition among the pools */

19 Compare the priority of the ready jobs in TempList with the priority of the running jobs

20 (indicated by index k) on top of the stacks:

21 If (di,j(t) ≤ 4d’k (for each job Ti,j in TempList and each running job Tk))

22 {

23 /* no preemption allowed */

24 /* partition the ready jobs among the pools (Load-Balanced Partitioning) */

25 For (each job Ti,j in TempList)

55

ALGORITHM 2: LBBA-bid (Continued)

26 {

27 Sort the processors in ascending order of their total remaining workload on

28 their pools and stacks:

29 Wl = Wpl + Wsl

30 Append the job Ti,j with largest execution time wi to the pool of the processor l

31 with the minimum remaining work load;

32 /* load balancing */

33 Remove Ti,j from TempList

34 Add its execution time wi to total workload of the pool of processor l (Wpl)

35 Recalculate total workload of processor l: Wl = Wpl + Wsl

36 }

37 }

38 Else

39 /* if (di,j(t) > 4d’k) then (Ti,j preempts Tk)*/

40 /* If Ti,j has more than one choice of processors, it will be pushed onto the stack whose

41 processor has the least workload (greedy approximation) */

42 {

43 Stop the execution of job Tk (preempt Tk)

44 Push the job Ti,j onto the stack on top of Tk

45 Start executing Ti,j

46 Calculate the fixed priority of Ti,j using si,j,: d’i,j(t) = Bi(si,j + wi – ri,j)

47 Add the execution time of Ti,j to the total workload of that stack (Wsl)

48 Recalculate total workload of the Processor l: Wl = Wpl + Wsl

49 }

50 /* check if any of the running jobs on top of the stacks has reached its

56

ALGORITHM 2: LBBA-bid (Continued)

51 deadline Di,j (Di,j = ri,j + pi) or break point Bri,j = si,j +2wi:*/

52 If t > min (Di,j , Bri,j)

53 {

54 Remove the job from the stack

55 Send it to the Garbage Collection of the processor;

56 }

57 Else (if Ti,j not preempted), continue its execution

58 /* for every completed job Ti,j calculate benefit bi */

59 bi = wi. βi (fi)

60 }

61 /* calculate the sum of all benefits gained, q being the number of completed jobs */

62 B = ∑

63 }

2.3. Analysis

2.3.1. LBBA-bid Analysis

In LBBA-bid, a job must complete by the end of period, i.e., before the next job of the

same task is released. The benefit-awareness attribute of LBBA also requires a job not to

take longer than twice its worst-case execution time after its start time to complete (more

details and analysis provided in Chapter 1); otherwise, it would be discarded from the

system without gaining any benefit. This means no job in this method can be tardy, i.e.,

finish its execution after its deadline. Therefore, having tardiness equal to zero, there is no

57

need for a tardiness bound analysis. However, the above restriction will induce an upper

bound on the delay each job may have after being released till it is scheduled and starts its

execution.

Theorem 1 – If Bri,j > Di,j, and Ti,j is not preempted while running, the latest time Ti,j

can be started, while remaining schedulable is Max (si,j) = ri,j +£i.

Proof. Recall the definition of break point (eq. (1)),

Bri,j = si,j +2wi

If Bri,j > Di,j, then Ti,j can continue until the next job arrives, and if Ti,j is not preempted

while running, the following condition must hold for it to meet its deadline:

si,j + wi ≤ Di,j

From eq. (3): si,j + wi ≤ ri,j + pi

 si,j – ri,j ≤ pi – wi

From (4) and (5): δi,j ≤ £i

Therefore, the maximum delay in starting a job execution is equal to its laxity. This

defines the upper bound on the start time as follows:

 Max (si,j) = ri,j +£i ■

Corollary 3.1.1 – Job Schedulability Condition: If a job Ti,j is scheduled at its Max(si,j)

and Bri,j > Di,j, then it cannot be preempted during its execution, to be able to meet its

deadline. If a higher priority job is scheduled on the same processor and Ti,j is preempted,

then Ti,j will miss the deadline and will not gain any benefit.

58

Proof. From Theorem 1, we deduce that Ti,j must complete its execution without any

interruption to be schedulable, because the time period between its start time and deadline

is exactly equal to its execution time. Thus, if it is preempted, it will not be able to meet its

deadline. ■

Theorem 2 – If the utilization of a job Ti,j is equal to or more than half (wi ≥ ½ pi) and

(Bri,j ≤ Di,j), then it has to start running as soon as it is released, without preemption, to be

able to meet its deadline.

Proof. If Bri,j ≤ Di,j, then

 si,j +2wi ≤ Di,j

si,j +2wi ≤ ri,j + pi

si,j – ri,j ≤ pj – 2wi

 δ i,j ≤ pi – 2wi (8)

If ui ≥ ½, pi ≤ 2wi,

and from (8): Max (δ i,j)= 0

So, the theorem is proved. ■

On the other hand, in order to gain any benefit, the following condition must hold:

fi,j ≤ pi

By definition, eq. (2):

ci,j – ri,j ≤ pi,

and from (6) and (7):

 wi + φi,j + δ i,j ≤ pi (9)

59

Corollary 3.1.2 - The upper bound on preemption time is the laxity of the job Ti,j, and

that is when it starts at release time without any delay (from eq. (9)):

Max (φi,j) = £i

Proof. This is deduced from Theorem 2 and eq. (9). ■

This condition holds for the highest priority jobs which can preempt another job at their

release time, or get immediately scheduled on an idle processor. Jobs that are partitioned

into the pools with a waiting time (delay) cannot have a preemption time up to their laxities;

otherwise, they would miss their deadline. Hence, there would be cases of missed deadlines

if the delay in scheduling and/or total time a job spends in preemptions would pass the

upper bounds or the above conditions are violated.

I proceed by proposing two modified versions of LBBA-bid in the Sections 4 and 5; the

first is to be applied for systems with non-implicit deadlines, and the second is for balancing

job utilization among processors instead of balancing their worst case execution time.

Experimental performance evaluation was conducted for all three versions versus the state-

of-the-art and is presented in Section 2.7.

2.4. LBBA-bnc for Non-Implicit Deadlines

In order to let more jobs continue their execution until they complete and gain some

benefit for the system, we relax the benefit-aware implicit deadline (bid) by changing it to

benefit-aware non-implicit deadline of next-job-completion time (bnc). This non-implicit

deadline definition is applicable and beneficiary to the applications or embedded systems

in which the QoS expectation allows this relaxation of deadline. In LBBA-bnc, the

definition of Di,j used in the LBBA-bid will be modified to:

60

 Line 51: Di,j = ci,(j+1)

Then, if Ti,j is still running on one processor when Ti,j+1 is released, there will be two

possible cases.

Case (1) - The priority of Ti,j+1 is not high enough and it has to be partitioned and sent

to a pool. Then, there will be two scenarios in which both jobs meet their deadlines and

gain benefit for the system:

1. If Ti,j+1 is not sent to the pool of the same processor of Ti,j , and Ti,j completes

while Ti,j+1 is waiting, or it has started and still running, the benefit gained by Ti,j

is added to the total benefit and its processing time has not been wasted.

2. If Ti,j+1 is waiting on the pool of the same processor Ti,j is running on, then Ti,j has

to complete before the laxity of Ti,j+1 ends. In this case, both jobs meet their

deadlines.

Case (2) – The priority of Ti,j+1 is high enough to be scheduled on an idle processor or

preempt a running job and starts its execution. Then, if Ti,j completes while Ti,j+1 is still in

the system, either running or preempted, Ti,j meets its deadline and adds its gained benefit

to the total benefit.

2.5. UBBA – Utilization Balancing

Some EDF-based semi-partitioning algorithms (e.g., EDF-os) consider balancing the

utilization of the tasks (u) instead of the workload or execution time (w), with the objective

of making the task sets schedulable and reducing tardiness. However, LBBA-bid and

LBBA-bnc balance the execution time among the processors. To be able to study the

61

difference in the performance and QoS of the proposed methods and other (EDF-based)

algorithms, I modified LBBA-bid to introduce another version of the algorithm, called

UBBA, which partitions the jobs among the processors by approximately balancing their

utilizations.

In the UBBA (utilization-balanced benefit-aware) algorithm, I replaced the load-

balancing part (lines 25-31) of the algorithm with the following lines and the same method

applies to the greedy approximation. Also every time a job is added to a pool or pushed on

a stack, its utilization will be added to the total remaining utilization of that processor

(instead of w). As shown in an example (Section 2.6) and in experimental evaluations

(Section7), this method cannot balance the workload of the processors as well as LBBA-

bid.

Utilization-Balancing Approximation (for Partitioning)

25 For (each job Ti,j in TempList)

26 {

27 Sort the processors in ascending order of their

28 total remaining utilization on their pools and

29 stacks:

30 Ul = ∑ Upl + ∑ Usl // l is processor index

31 Append the job Ti,j with largest utilization ui,j to the pool…

62

2.6. A Motivating Example

This section demonstrates how the proposed algorithms schedule a set of tasks through

an example. Assume a system with 2 identical processors and three periodic tasks as shown

in Table 2.1. To simplify the example and make it easier to follow, assume that the tasks

are synchronous and released at time t = 0, with the same benefit density function (e.g., f(x)

= 1/x).

The tasks can represent the processing steps for different parts of a JPEG image handled

by a real-time priority-driven coding and transmission scheme [42]. In this scheme,

important parts of an image are given higher priority (and then higher benefits if

completely processed) over less important parts. Thus, the high-priority parts can achieve

high image quality, while the low-priority parts, with a slight sacrifice of quality, can

achieve a significant compression rate and hence save the power/energy of a low-power

wireless system.

The LCM (Least common multiple) of periods of these tasks (i.e., the hyper-period) is

30. Therefore, we illustrate the schedule within the first 30 units of time. During this time

interval, 6 instances of T1, 10 instances of T2 and 3 instances of T3 will be released. Their

total utilizations will be
	
 (+ +

). This is less than 2, i.e., the maximum possible

utilization of a 2 processor system.

Table 2.1: An example of 3 periodic tasks

 T1 T2 T3
W 3 2 7
P 5 3 10

63

Therefore, the necessary condition for the task set to be schedulable is met, although it

would not be sufficient. The following sub-sections explain how our methods schedule the

above task set in comparison with EDF-based schedulers, Global EDF and EDF-os.

2.6.1. Benefit-aware schedulers

We start the scheduling process using LBBA-bid and then explain how differently

LBBA-bnc and UBBA schedule the same task set. The initial priority setting is the same

in the three proposed method.

The priority of each task is calculated and the tasks are sorted in a descending order of

their priorities. T2,1 (the first instance of T2) with the highest priority is pushed on the stack

of processor 1, denoted as P1, T1,1 with the second highest priority is scheduled on P2 and

T3,1 with the lowest priority has to wait. Since the current workload on P1 is 2 and on P2 is

3, T3,1 is partitioned and sent to the pool of P1, with the lowest current workload or

execution time.

At time t = 2, T2,1 is completed and its benefit is calculated and equals 1 for the given

benefit density function. Then, T3,1 is transferred from the pool to the stack of P1 and starts

running. T1,1 is completed at t = 3, the same time that the next instance of T2 (denoted as

T2,2) is released and having P2 idle, it starts running on P2 immediately. The benefit of T1,1

is calculated and added to the total benefit. The chronological status of the system is listed

below:

t = 5: T2,2 finishes, T1,2 is released and starts on P2.

 Total benefit = 3

64

t = 6: T2,3 is released; its priority is set to 1/2 (1/(6+2-6)), compared to the priority of the

running jobs, 1/3 for T1,2, and 1/9 for T3,1, T2,3 preempts T3,1 (1/2 > 4/9) and starts

on P1.

t = 8: T1,2 finishes on P2; T2,3 finishes on P1; their benefits are calculated and added to

the total benefit. Total benefit =5; T3,1 resumes on P1.

t = 9: T2,4 is released and starts on P2.

t = 10: T1,3 and T3,2 are released.

No preemption is possible.

The current remaining workload of each processor is as follows:

W1 = 1 (remaining from T3,1)

W2 = 1 (remaining from T2,4)

So, the scheduler sends T1,3 to the pool of P1 and T3,2 to the pool of P2.

t = 11: T3,1 and T2,4 finish. T1,3 and T3,2 are transferred from the pools to the stacks of P1

and P2 respectively, and start. The benefits of T3,1 (w31/f31 = 7/11) and T2,4 (w24/f24

= 2/(11-9) = 2/2 = 1) are added to the total benefit resulting in 6.64.

t = 12: T2,5 is released. Its priority is not high enough to preempt any of T1,3 and T1,2. It is

sent to the pool of P1 with the least current workload:

 W1 = 2 (remained from T1,3)

 W2 = 6 (remained from T3,2)

t = 14: T1,3 finishes on P1. Its benefit (3/4) is added to the total benefit resulting in 7.39.

 T2,5 starts on P1.

65

Fig. 2.2: Scheduling diagram for LBBA-bid, LBBA-bnc and UBBA

t = 15: T1,4 and T2,6 are released. T2,5 is incomplete and hence misses the deadline and

gains no benefit. T2,6 starts on P1 after T2,5 is sent to garbage collection. T1,4 is sent

to the pool of P1, because:

 W1 = 2 (after starting T2,6)

 W2 = 3 (remained from T3,2)

The rest of the scheduling process is illustrated in Figure 2.2, along with the schedules

provided by LBBA-bid and UBBA. UBBA will act the same at t = 12, for balancing the

load based on utilizations, because the utilization of P1 (2/3) is less than P2 (6/7). However,

its scheduling is different from LBBA-bid at t =15, since utilization of P1 (2/2) is more

than P2 (3/7). Therefore, T1,4 will be sent to the pool of P2.

 P1 T2,1 T3,1 T2,3 T3,1 T 1,3 T2,5 T2,6 T 1,4 T1,5 T2,8 T2,9 T1,6

LBBA-bid

 P2 T1,1 T2,2 T1,2 T2,4 T 3,2 T2,7 T3,3 T2,10

 P1 T2,1 T3,1 T2,3 T3,1 T 1,3 T2,5 T 1,4 T2,7 T3,3 T2,10

 LBBA-bnc

 P2 T1,1 T2,2 T1,2 T2,4 T 3,2 T2,6 T1,5 T2,8 T2,9 T1,6

 P1 T2,1 T3,1 T2,3 T3,1 T 1,3 T2,5 T 2,6 T2,7 T1,5 T2,8 T2,9 T2,10

UBBA

 P2 T1,1 T2,2 T1,2 T2,4 T 3,2 T1,4 T3,3 T1,6

 Completed Preempted Missed Deadline Idle Time

 3 5 8 9 11 18 20 23 25 27 30

 2 6 8 11 14 15 17 20 23 24 26 29

 2 6 8 11 14 16 19 21 28 30

 3 5 8 9 11 18 20 27 29

 2 6 8 11 14 15 17 18 20 23 24 26 27 29

 3 5 8 9 11 18 20 27 30 t

66

In LBBA-bnc, priority settings, scheduling and partitioning the rest of the ready jobs

among the pools of the processors are the same as LBBA-bid, except for the case of having

a job released when the previous job of the same task is not yet completed. This occurs at

t = 15, when T2,5 is still running and T2,6 is released; and at t = 24, when T2,9 is released and

T2,8 is incomplete. In LBBA-bnc, a job misses its non-implicit deadline if the next job of

the same task completes (on another processor).

Hence, it allows two consecutive jobs of a task to have their executions, on two different

processors, partially overlapped. Therefore, if the job that is released first completes first,

it meets the deadline and can add its gained benefit to the total benefit. Thus, this relaxation

of the deadline would reduce the tardiness (i.e., the number of missed deadlines) and as

shown in Figure 2.2, LBBA-bnc schedules all the jobs in this example, while two jobs in

LBBA-bid and three jobs in UBBA method miss their deadlines.

 The deadline in both LBBA-bid and UBBA is implicit, and both prioritize the tasks

based on their benefit and approximately balance the processors workload. However, the

weaker performance of UBBA compared to LBBA-bid is due to its load-balancing method

being based on the job utilization instead of the worst-case execution time of the jobs, as

explained in Section 2.5.

2.6.2. EDF-based Schedulers: Global EDF and EDF-os

Now, in order to compare the behavior of these benefit-aware methods with the state-

of-the-art, we schedule the same task set using two very well known, EDF-based

algorithms, Global EDF [43] and EDF-os [40]. Global scheduling in case of implicit

deadlines is known to be optimal for sporadic task sets, i.e., it can correctly schedule the

67

set (without any time-constraint violations) when there is a correct schedule for that set.

However, global scheduling entails higher runtime overheads by allowing any jobs of any

tasks to migrate among processors. EDF-os (optimal semi-partitioned EDF) aims to reduce

the overhead by partitioning at job-boundary and uses the term optimal meaning that it can

correctly schedule a task set, having a guaranteed tardiness bound for each task. In both

algorithms, tasks are preemptive and allowed to be tardy, i.e., in case a task misses its

deadline, it continues until it completes its execution and will not be discarded.

Under Global EDF scheduling, three jobs, T3,1, T1,7 and T1,0 miss their deadlines and

get tardy. Also, the jobs scheduled on P1 cannot finish by the end of LCM (i.e., hyper-

period) and the tardiness will propagate through the next LCMs. In the EDF-os

schedule, tasks are sorted based on their utilization as {T3 (0.7), T2 (0.67), T1 (0.6)}. T3 and

T2 are set as fixed tasks and T1 as a migrating task with 0.3 utilization on the same processor

T3 is scheduled (P2 in Figure 2.3), and the remaining 0.3 on P1. Therefore, P2 is the first

processor for T1 and it gets a higher priority over the fixed tasks on P1 which is not its first

processor. Then, T2, the task with the earliest deadline is a fixed task (non-migrating) and

gets lower priority than T1 which is migrating, having less utilization, but a later deadline.

Consequently, 5 out of 10 jobs of task T2 (in the first LCM of 30) are tardy, which

means 50% tardiness possibility for T2 with earliest deadline in the example. Also, as

shown in Figure 2.3, this tardiness is propagated to the next LCM which can cause even

more tardiness in the rest of the schedule.

68

Fig. 2.3: Scheduling diagram for Global EDF and EDF-os

An upper bound for tardiness of fixed jobs under EDF-os scheduling is given in [40]:

“Theorem 2. Suppose that at least one migrating task executes on processor Pp and

let τi be a fixed task on Pp. If Pp has two migrating tasks (refer to Prop. 3), denote

them as τh and τl, where τh has higher priority; otherwise, denote its single migrating

task as τh, and consider τl to be a “null” task with Tl = 1, sl,p = 0, and Cl = 0. Then,

τi has a maximum tardiness of at most:

 ∆i = [(sh,p)(∆h + 2Th) + 2Ch + (sl,p)(∆ l + 2Tl) + 2Cl] / (1−sh,p −sl,p)”

Global EDF:

EDF-os:

2 6 8 11 14 15 17 20 22 24 26 29 31 t

 3 5 8 9 11 12 14 20 23 30 t

 2 3 5 8 10 12 14 15 18 20 22 24 25 28 29 31 t

 3 10 13 20 23 30 t

P1

P2

T2,1 T2,2 T1,2 T2,3 T2,4 T2,5 T1,4 T2,6 T2,7 T2,8 T2,9 T1,6 T2,9 T2,10

T1,1 T3,1 T1,3 T3,2 T1,5 T3,3

T1,1 T2,2 T1,2 T2,4 T3,2 T2,5 T3,2 T1,5 T3,3

T2,1 T3,1 T2,3 T3,1 T1,3 T2,6 T1,4 T2,7 T2,8 T2,9 T1,6 T2,10

P1

P2

Preempted

Idle Time

Completed

Tardy (Completed late)

 First LCM

69

In this example, P1 has only one migrating job and Ch = 3, Th = 5, and ∆h = - 2 (lateness

of a migrating job can be negative by their definition, i.e., the difference of its completion

time and deadline). So the above formula is simplified to:

(sh,p)(∆h + 2Th) + 2Ch / 1− sh,p = (9/30 (-2 + 10) + 6) / 1 - 9/30

 = 8.4 / 0.7

 = 12

This means the upper bound of tardiness for each job of T2 is 12, while its period is

3. Also, the tardiness bound for the fixed task i has no relationship with its deadline in their

formula. Also, giving higher priority to the migrating task(s) with smaller utilization than

the fixed tasks on the same processor (not the earlier deadline) doesn’t follow the EDF

scheduling rule. Hence, EDF-os is a partial-EDF scheduling method.

One of the properties of our targeted SRT system model is that there is a specific period

of time for each task in which if and only if the task is complete, it is beneficial to the

system. In case a job completes after its benefit-aware break point or deadline (arrival

(implicit) or completion (non-implicit) of the next job of the same task) whichever is

earlier, then not only does a tardy job gain no benefit for the system, but it also wastes the

processing time which could be assigned to another job in order to meet its deadline and

gain more benefit. Hence, the QoS will be affected (i.e., decreased) by allowing jobs to be

tardy, in Global EDF and EDF-os, instead of discarding them after missing their deadlines.

As shown in Figure 2.3, late completion or tardiness of T2,7 caused T2,10 to get tardy, too.

The same scenario repeats for EDF-os when T2,6 starts running after its deadline (t = 18)

and in addition to being tardy, it also prevents T2,7, T2,9, and T2,10 from meeting their

70

deadlines. Nevertheless, if T2,6 was discarded at its deadline, three latter jobs we mentioned

could have finished on time and also T2,9 would not have been preempted. Reducing the

missed deadline ratio and number of preemptions can enhance a system's QoS.

Therefore, in order to make a better judgment in the empirical comparison of our benefit-

aware methods with Global EDF and EDF-os, we implemented their scheduling methods

but with the same firm benefit-aware deadlines considered in our methods, to see which

one could gain more benefit, with less preemptions and lower missed deadlines ratio. The

details of our simulation experiments are provided in the next section.

71

2.7. Experimental Evaluation

Through extensive experiments on synthetic periodic task sets, we conducted an

comparative performance evaluation for the three proposed algorithms, LBBA-bid, BBA-

bnc, UBBA, and two other state-of-the-art algorithms, Global EDF with global scheduling

approach [43] and EDF-os which is a semi-partitioned scheduling [40]. We compare the

schedulability (job completion rate), job flow time, gained benefit, and the number of

preemptions in the proposed algorithms with Global EDF and EFD-os, which are known

as optimal methods for scheduling periodic tasks, to show how close our benefit-aware

scheduling methods are to the optimal solution, in term of schedulability, while increasing

the total benefit gained, and reducing cost by decreasing flow time and preemptions.

2.7.1. Performance Metrics

In this work, we consider the following measurements to evaluate and compare the

performance of the three proposed algorithms, plus Global EDF and EDF-os.

For each task set in its LCM, we measure:

 Average Benefit per job =
	 	 	 	

	 	 	

Note: We consider this benefit accrual measurement for all the algorithms in our

experiments, even Global EDF and EDF-os. Our objective for measuring gained benefit in

Global EDF and EDF-os algorithms, claimed to have optimal schedulability, is to evaluate

their performances for the systems in which tasks have different benefit density functions.

 Avg. Preemptions per job =
	 	 	 	

72

 Schedulability =
	 	 	 	 	 	

 Avg. Flow time Stretch =
	 	 ℎ	 	 	 	 	

 (Stretch ratio of job Ti,j =
	 	

	 	
)

2.7.1. Experimental Setting

We implemented the algorithms using Netbeans 8.1, on Intel core i7- 6700HQ CPU at

2.6 GHz speed, 64 bit OS, 16 GB RAM and 6 MB cache. We randomly generated periodic

task sets with uniform distribution of periods in the range of [1, 30] for 2, 4, 6, and 8

processors. Three different benefit density functions, , , were assigned to the tasks,

and the experiments were repeated for systems with 75% and nearly 100% utilizations.

Task sets were generated with a uniform distribution as follows:

 30% with light utilization in range of [0.001, 0.1]

 40% medium utilization within [0.1, 0.4]

 30% heavy utilization within [0.5, 0.9]

For simulating systems with nearly full utilization, we generated the tasks until the total

utilization was in the range of [90%, 100%]. We ran hundreds of trials for each

multiprocessor setting and calculated the average amount of recorded results for the

metrics.

73

2.7.3. Results and Discussion

The results of our extensive experiments are shown in Figures 2.4 through Figure 2.9.

We discuss the results of our comparisons based on our performance metrics as follows:

a) Average Preemptions per Job

In all of our algorithms, the average numbers of preemptions were very close and the

results were shown as overlapping lines in the graphs for 75% utilizations and almost the

same as Global EDF. However, for near full utilization, UBBA showed a slightly better

performance. Our methods improved (i.e., decreased) the results of EDF-os in near full

utilization systems as listed below (See Figure 2.4 (a) and (b). P stands for processors):

 UBBA: From 54% (2P) to 85% (8P)

 LBBA-bid: From 49% (2P) to 77% (8P)

 UBBA-bnc: From 44% (2P) to 72% (8P)

b) Flow Time Stretch Ratio

The flow time stretch ratio shows how much longer than its WCET, in average, each job

takes to complete. For example, 1.11 means that flow time is 11% longer than WCET. As

can be seen in the graphs, LBBA-bid had the best performance in reducing flow time in

systems with near full utilization. It showed more than 50% improvement (6 and 8P) to

74% (2P) compared to Global EDF, and from 48% (6 and 8P) to 64% (2P) improvement

compared to EDF-os, both on near full utilization systems (See Figure 2.5 (a) and (b)).

74

c) Schedulability and Missed Deadline Ratio

LBBA-bid for implicit deadlines, scheduled 99.7% (2P) to 99.9% (8P) in 75%

utilization, and 90% (2P) to 95% (8P) in near full utilization. Schedulability of LBBA-bnc

(for tasks with non-implicit deadlines) was 100% for the systems with 75% utilization, and

from 99% (2P) to 99.64% (8P) for near full utilization (Figure 2.6 (a) and (b)). These results

show that our benefit-based algorithms outperform the state-of-the-art, e.g., EDF-os, from

11% to 20%.

The missed deadline ratio (Figures 2.8 and 2.9) of less than 1% in LBBA-bnc can be

negligible, having the maximum benefit per job gained by LBBA-bnc among all the tested

algorithms and considering the fact that these results are for the worst-case execution time

of the tasks, and in real cases tasks may take shorter time to complete.

d) Average Benefit per Job

In our simulation experiments, as the utilization increased, our proposed algorithms

outperformed the others. The benefit gained by LBBA-bid and LBBA-bnc were up to

12.5% more than the others for 2P, and 20% more for 8P in near full utilization systems

(Figure 2.7).

75

Fig. 2.4: Average preemptions per job versus number of processors in the systems

2P 4P 6P 8P
LBBA-bid 0.0771 0.0304 0.0144 0.0072

LBBA-bnc 0.0772 0.0304 0.0144 0.0072

UBBA 0.0747 0.0275 0.0120 0.0057

Global EDF 0.0531 0.0378 0.0236 0.0149

EDF-os 0.0651 0.1869 0.1787 0.1859

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

 p
re

em
p

ti
on

s
p

er
 j

ob

a) ~ 75% Utilization

2P 4P 6P 8P
LBBA-bid 0.161 0.126 0.094 0.082

LBBA-bnc 0.179 0.153 0.113 0.098

UBBA 0.147 0.100 0.069 0.055

Global EDF 0.140 0.134 0.112 0.094

EDF-os 0.318 0.319 0.322 0.356

0.00

0.10

0.20

0.30

0.40

A
ve

ra
ge

 p
re

em
p

ti
on

s
p

er
 j

ob

b) ~ 95% Utilization

76

Fig. 2.5: Average flow time stretch ratio per job vs. number of processors in the systems

2P 4P 6P 8P

LBBA-bid 1.0390 1.0221 1.0158 1.0109

LBBA-bnc 1.0419 1.0237 1.0168 1.0114

UBBA 1.0450 1.0250 1.0198 1.0135

Global EDF 1.2086 1.0621 1.0320 1.0210

EDF-os 1.0448 1.0346 1.0402 1.0334

1.00

1.05

1.10

1.15

1.20

F
lo

w
ti

m
e

S
tr

et
ch

 R
at

io

a) ~ 75% Utilization

2P 4P 6P 8P
LBBA-bid 1.1605 1.1231 1.1237 1.1123

LBBA-bnc 1.4357 1.2605 1.2099 1.1923

UBBA 1.2206 1.1601 1.1422 1.1464

Global EDF 1.6126 1.3625 1.2621 1.2273

EDF-os 1.4380 1.2714 1.2331 1.2160

1.00

1.20

1.40

1.60

1.80

F
lo

w
 t

im
e

st
re

tc
h

 r
at

io

b) ~ 95% Utilization

77

2P 4P 6P 8P

LBBA-bid 99.66% 99.74% 99.82% 99.91%

LBBA-bnc 99.99% 100.00% 100.00% 100.00%

UBBA 99.33% 99.02% 99.27% 99.57%

Global EDF 100.00% 100.00% 100.00% 100.00%

EDF-os 85.89% 92.45% 91.96% 91.58%

50%

60%

70%

80%

90%

100%

S
ch

ed
u

la
b

il
it

y

a) ~ 75% Utilization

2P 4P 6P 8P

LBBA-bid 90.26% 92.52% 94.13% 95.22%

LBBA-bnc 98.81% 99.28% 99.62% 99.64%

UBBA 88.52% 89.71% 90.93% 91.15%

Global EDF 99.83% 99.99% 100.00% 99.33%

EDF-os 81.02% 81.85% 82.12% 80.74%

50%

60%

70%

80%

90%

100%

S
ch

ed
u

la
b

il
it

y

b) ~ 95% Utilization

78

Fig. 2.6: Average schedulability percentage versus number of processors in the system

Fig. 2.7: Average benefit per job versus number of processors in the system

2P 4P 6P 8P

LBBA-bid 0.5739 0.5903 0.5977 0.6190

LBBA-bnc 0.5746 0.5911 0.5982 0.6194

UBBA 0.5718 0.5866 0.5942 0.6166

Global EDF 0.5427 0.5818 0.5938 0.6172

EDF-os 0.4852 0.5288 0.5298 0.5493

0.40

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

 b
en

ef
it

 p
er

 J
ob

a) ~ 75% Utilization

2P 4P 6P 8P

LBBA-bid 0.5352 0.5697 0.5814 0.5886

LBBA-bnc 0.5382 0.5743 0.5882 0.5941

UBBA 0.5263 0.5563 0.5656 0.5589

Global EDF 0.5120 0.5586 0.5771 0.5727

EDF-os 0.4839 0.4991 0.5027 0.4916

0.40

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

 b
en

ef
it

 p
er

 J
ob

b) ~ 95% Utilization

79

Fig. 2.8: Missed deadline ratio versus number of processors (~ 95% Utilization)

Fig. 2.9: Missed deadline ratio versus number of processors (~ 75% Utilization)

80

2.8. Summary

In this Chapter, I proposed a new semi-partitioning approach to schedule soft real-time

periodic task sets on identical multiprocessor systems to enhance their QoS. This method

allows task migration at job-boundaries, i.e., different instances (or jobs) of each task can

be assigned to any of the processors in the system at their release time. However, after they

are partitioned, no migration is allowed.

This hybrid method for scheduling periodic tasks is a combination of benefit model and

cost model which increases the total benefit while balancing the workload among the

processors for reducing flow time and deadline misses. In this dissertation, the upper

bounds on the delays and preemptions in accordance to the task utilizations, and

schedulability conditions of periodic tasks were provided.

In addition, experimental performance analysis was conducted for the proposed

algorithms, LBBA-bid for periodic tasks with implicit deadlines, LBBA-bnc with non-

implicit deadlines, and UBBA with utilization-balancing, compared to the-state-of-the-art,

Global EDF and EDF-os, in terms of total gained benefit, job completion rate or

schedulability, number of preemptions per job and flow time stretch ratio.

 In these simulation experiments, LBBA-bid showed the best performance among the

algorithms for implicit deadlines, resulting in the highest amount of gained benefit. LBBA-

bnc for tasks with non-implicit deadlines, allows parallel processing of two consecutive

jobs of the same task until they can complete in the same order they are released, i.e., each

job of a task has to complete before the next job of that task. Otherwise, it will be discarded.

This relaxation of deadline in LBBA-bnc, provided a near optimal schedulability in the

81

conducted experiments, without the runtime overhead of task migrations (during execution

of any task instance) allowed in Global EDF, while having almost the same benefit as

gained by LBBA-bid.

As the number of processors and utilization of the system increases, the advantage of

using the proposed models for reducing number of preemption, decreasing flow times,

increasing gained benefit and schedulability is more substantial, and overall, they can

enhance QoS in systems with SRT periodic tasks.

82

3. Conclusion and Perspectives

3.1. List of Contributions

In our research, we were interested in online benefit-aware preemptive multiprocessor

scheduling of soft real-time tasks. Benefit-awareness in scheduling is very essential for the

Quality of service (QoS) in soft real-time applications and embedded system with tasks

that are not equally critical or beneficial to the system. These applications may have

aperiodic, periodic or mixed task sets. Some examples of such applications are medical

monitoring systems and video surveillance which have both periodic and aperiodic tasks.

They periodically receive data, analyze and record it. However, if they receive and process

an abnormal data, they must send alert which is an aperiodic task.

In this work, we first proposed a novel solution for aperiodic task sets (called LBBA).

The proposed scheduler is a hybrid technique, combining benefit and cost models, which

improves the quality of service in the systems, by gaining more benefit at lower cost. We

introduced an online choice of approximation algorithms for partitioning lower priority

tasks among the processors while the higher priority tasks get scheduled as soon as they

are released. LBBA is superior to other existing methods (such as BBA [29]) in principle,

since:

 LBBA is a novel hybrid model of soft real-time multiprocessor scheduling. In

contrast to BBA, which only follows a benefit model, LBBA is a combination of benefit

and cost models. That is, it aims to minimize makespan in order to achieve the maximum

benefit at the lowest cost.

83

 No synchronization is needed for fetching the jobs from a shared pool. That is

because a separate pool is assigned to each processor in contrast to the other method (BBA)

where all processors use a shared pool.

 LBBA facilitates load-balanced partitioning of waiting jobs, while this case is

not considered in BBA.

 LBBA optimizes the CPU usage and minimizes the total idle time of the

processors by balancing the workload among them.

 LBBA improves Quality-of-Service (QoS) by reducing missed deadline ratio:

LBBA reduces the possibility of starvation for low priority jobs, comparing to BBA. It also

has a Minimal Response time, including both scheduling and execution time, for a job set

(up to 300 times faster response time than BBA in our experiments shown in 1.4.1.2.).

 LBBA is computationally less expensive than BBA, as we prove in sub-section 1.3.2.

In the second part of our work, we proposed benefit-aware multiprocessor scheduling

methods for soft real-time periodic tasks with implicit and non-implicit deadlines, called

LBBA-bid and LBBA-bnc, respectively. We empirically compared our solutions with the

state-of-the-art (Global EDF and EDF-os) and the results of our simulation experiments

showed superiority of our methods in the sense of gaining more benefits per job, less

preemptions, shorter flow times and 90 to 95 percent schedulability in systems with near

full utilization (for implicit deadlines) and above 99% schedulability for tasks with non-

implicit deadlines.

3.2. Future Work and Perspectives

For further research, our suggestions are as follows:

84

a) General Framework for Benefit-Aware Multiprocessor Scheduling of SRT Tasks

Based on the conclusion, I propose a general framework for benefit-aware

multiprocessor scheduling in a SRT system of aperiodic, periodic or mixed tasks to be

analyzed, implemented and evaluated in future work. I define the framework as follows:

 In order to support QoS enhancement for a wider domain of soft real-time applications

and embedded systems, I propose a multi-mode framework to be adopted by

multiprocessor systems with any combination of aperiodic and/or periodic, SRT tasks (i.e.,

each task can be aperiodic or one instance, periodic with implicit deadline or periodic with

non-implicit deadline). Tasks will dynamically select one of the three scheduling modes as

soon as they are released (see Figure 3.1).

This framework applies the LBBA model for aperiodic tasks, LBBA-bid for periodic

tasks which have implicit deadlines, and LBBA-bnc for scheduling periodic tasks with

non-implicit deadlines. LBBA-bid and LBBA-bnc are considered for scheduling periodic

tasks in this general framework, since they showed the best overall performance in our

extensive experimental evaluations compared to the other methods. Figure 3.1 is a schema

of the framework. Every task arrives with an index showing its attribute (AP for aperiodic,

periodic with implicit deadline or PN for periodic with non-implicit deadline).

CTA will be a built-in function in the framework which checks the value of the attribute

index and based on the value directs the task to the appropriate scheduler.

85

Fig. 3.1: General framework for SRT benefit-aware multiprocessor scheduling

In Figure 3.1, the framework is shown as a package of three separate schedulers, LBBA,

LBBA-bid, and LBBA-bnc. However, many functions such as priority assignment, benefit-

aware scheduling, load-balanced partitioning and benefit calculation, are the same in all

three methods. Hence, for code optimization, all three schedulers can share the functions

that are common among them, and only the functions responsible for setting the deadlines

(according to the task attributes) and checking for missed deadlines will be implemented

separately.

b) SRT Applications and Embedded Systems

These proposed methods can be applied to actual SRT applications and embedded

systems, such as video streaming or RT medical monitoring systems, with periodic and/or

mixed tasks for more evaluations.

LBBA

LBBA-bid

LBBA-bnc

AP

PI

PN

CTA Task Arrival

CTA – Check task attribute
AP – Aperiodic task
PI – Periodic task with implicit deadline
PN – Periodic task with non-implicit deadline

86

c) Task Dependencies

Another worthwhile extension of this research is studying models with inter-task

dependencies such as precedence constraints. Such tasks can be shown in a Direct Acyclic

Graph (DAG).

T1

T6

T5

T4

T3

T2

Fig. 3.2: An example of a DAG task set

87

References

[1] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Edited by D. S. Hochbaum,

“Approximation Algorithms for NP-Hard Problems,” Chapter 2: “Approximation

Algorithms for Bin Packing: A Survey,” page 67, 1997.

[2] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies”, SIAM Journal on Applied

Mathematics, 17:263-269, 1969.

[3] L. Welch and S. Brandt, “Toward a Realization of the Value of Benefit in Real-Time

Systems,” Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2001), San

Francisco, California, April 23-24, 2001.

[4] R. Rajkumar, C. Lee, J. P. Lehozcky, and D.P. Siewiorek, “A Resource Allocation Model for

QoS Management,” Proc. 18th IEEE Real-Time Systems Symposium, pp. 298-307, December

1997.

[5] E. Chang and A. Zakhor, “Scalable Video Coding Using 3-D Subband Velocity Coding and

Multi-Rate Quantization,” Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing,

pp. 574-577, July 1993.

[6] E. Chang and A. Zakhor, “Scalable Video Data Placement on Parallel Disk Data Arrays,”

Proc. ISIT/SPIE Symp. Electronic Imaging Science and Technology, pp. 208-223, February

1994.

[7] W. Feng and J. W. S. Liu, “An Extended Imprecise Computation Model for Time-Constrained

Speech Processing and Generation,” Proc. IEEE Workshop Real-Time Applications, pp. 76-

80, May 1993.

[8] C. J. Turner and L. L. Peterson, “Image Transfer: An End-to-End Design,” Proc. SIGCOMM

Symp. Comm. Architectures and Protocols, pp. 258-268, August 1992.

88

[9] M. Boddy and T. Dean, “Solving Time-Dependent Planning Problems,” Proc. 11th Int'l Joint

Conf. Artificial Intelligence (IJCAI-89), pp. 979-984, August 1989.

[10] B. Hayes-Roth, “Architectural Foundations for Real-Time Performance in Intelligent Agents,”

Journal of Real-Time Systems, vol. 2, no. 1, pp. 99-125, 1990.

[11] S. Zilberstein and S. J. Russell, “Anytime Sensing, Planning and Action: A Practical Model

for Robot Control,” Proc. 13th Int'l Joint Confs. Artificial Intelligence, pp. 1402-1407, 1993.

[12] E. J. Horvitz, “Reasoning under Varying and Uncertain Resource Constraints,” Proc. Seventh

Nat'l Conf. Artificial Intelligence (AAAI-88), pp. 111-116, August 1988.

[13] J. Grass and S. Zilberstein, “A Value-Driven System for Autonomous Information Gathering,”

Journal of Intelligent Information Systems, vol. 14, pp. 5-27, March 2000.

[14] R. E. Korf, “Real-Time Heuristic Search,” Artificial Intelligence, vol. 42, no. 2, pp. 189-212,

1990.

[15] S. V. Vrbsky and J. W. S. Liu, “APPROXIMATE: A Query Processor that Produces

Monotonically Improving Approximate Answers,” IEEE Trans. Knowledge and Data Eng.,

vol. 5, no. 6, pp. 1056-1068, December 1993.

[16] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions”, Future Generation Computer Systems 29

(2013) 1645–1660

[17] S. Irani and Anna R. Karlin, edited by D.S. Hochbaum, “Approximation Algorithms for NP-

Hard Problems,” Chapter 13: “Online Computation,” page 552, 1997.

[18] C. Y. Yang, J. Chen, and T. W. Kuo, “An Approximation Algorithm for Energy-Efficient

Scheduling on A Chip Multiprocessor,” ACM/IEEE Design, Automation, and Test in Europe

(DATE), Munich, Germany, March 2005.

89

[19] J. J. Chen, T. W. Kuo, and C. Y. Yang, “Real-Time Task Replication for Fault Tolerance in

Identical Multiprocessor Systems,” the 13th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), Bellevue, WA, USA, April 3-6, 2007.

[20] B. Sanati and A. M. K. Cheng, “Maximizing Job Benefits on Multiprocessor Systems Using

a Greedy Algorithm,” WiP Session of the 14th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), April 2008.

[21] B. Sanati and A. M. K. Cheng, “Efficient Online Benefit-Aware Multiprocessor Scheduling

Using an Online Choice of Approximation Algorithms,” the 11th IEEE International

Conference on Embedded Software and Systems (ICESS 2014), Paris, France, August 20-

22, 2014.

[22] C. F. Kuo, T. W. Yang, and T. W. Kuo, “Dynamic Load Balancing for Multiple Processors,”

IEEE 12th International Conference on Real-Time and Embedded Computing Systems and

Applications (RTCSA 2006), Sydney, Australia, August 16-18, 2006.

[23] E. Piel, P. Marquet, J. Soula, and J. L. Dekeyser, “Load-Balancing for a Real-Time System

Based on Asymmetric Multi-Processing,” The 16th Euromicro Conference on RealTime

Systems, WiP, April 2004.

[24] S. A. Brandt and G. J. Nutt, “Flexible Soft Real-Time Processing in Middleware,” Journal of

Real- Time Systems, Kluwer, 2001.

[25] E. D. Jensen, C. D. Locke, and H. Tokuda, “A Time Driven Scheduling Model for Real-

Time Operating Systems,” Proceedings of the Real-Time Systems Symposium, 112-122,

IEEE CS Press, 1985.

[26] L. R. Welch, B. Ravindran, B. Shirazi, and C. Bruggeman, “Specification and Analysis of

Dynamic, Distributed Real-Time Systems,” in Proceedings of the 19th IEEE Real-Time

Systems Symposium, 72-81, IEEE Computer Society Press, 1998.

90

[27] D. Andrews, L. R. Welch, and S. Brandt, “A Framework for Using Benefit Functions In

Complex Real Time Systems”, Journal of Parallel and Distributed Computing Practices,

Volume 5, No. 1, March 2002.

[28] G. Buttazzo, M. Spuri, and F. Sensini, “Value vs. Deadline Scheduling in Overload

Conditions,” in Proceedings of the 19th IEEE Real-Time Systems Symposium, IEEE

Computer Society Press, 1998.

[29] B. Awerbuch, Y. Azar, and O. Regev, “Maximizing Job Benefits On-Line”, Proceedings of

the third International Workshop, APPROX, Germany, September 2000.

[30] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal Reward-Based Scheduling

For Periodic Real-Time Tasks,” IEEE Transactions On Computers, vol. 50, no. 2, February

2001.

[31] J.K. Dey, J. Kurose, and D. Towsley, “On-Line Scheduling Policies for a Class of IRIS

(Increasing Reward with Increasing Service) Real-Time Tasks,” IEEE Trans. Computers,

vol. 45, no. 7, pp. 802-813, July 1996.

[32] B. Sanati and A. M. K. Cheng, “LBBA: An Efficient Online Benefit-Aware Multiprocessor

Scheduling for Qos via Online Choice of Approximation Algorithms,” Future Generation

Computer Systems, vol. 59, pp. 125–135, 2016.

[33] A. Elnably, K. Du, and P. Varman, “Reward Scheduling for QoS in Cloud Applications,” in

Proc. of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, 2012.

[34] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah, “The Case for Fair Multiprocessor

Scheduling,” in Proc. of the 11th International Workshop on Parallel and Distributed Real-

time Systems, April 2003.

[35] H. Alhussian, N. Zakaria, and F. A. Hussin, “An Efficient Real-Time Multiprocessor

Scheduling Algorithm,” Journal of Convergence Information Technology, January 2014.

91

[36] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and Management of QoS in Real-

Time Databases Supporting Imprecise Computations,” IEEE Transactions on Computers,

vol. 55, pp. 304–319, March 2006.

[37] I-H. Hou, and P.R. Kumar, ”Scheduling Periodic Real-Time Tasks with Heterogeneous

Reward Requirements,” in Proc. of the 32nd IEEE Real-Time Systems Symposium, 2011.

[38] Ming Zu and Albert M. K. Cheng, “ Real-Time Scheduling of Hierarchical Reward-Based

Tasks,'' in Proc. of IEEE-CS Real-Time Technology and Applications Symposium, May 2003.

[39] J. J. Chen, T. W. Kuo, and C. L. Yang, “Profit-Driven Uniprocessor Scheduling with Energy

and Timing Constraints,” in Proc. of the ACM Symposium on Applied Computing, Nicosia,

Cyprus, pp. 834 – 840, 2004.

[40] J. H. Anderson, J. P. Erickson, U. C. Devi, and B.N. Casses, “Optimal Semi-Partitioned

Scheduling in Soft Real-Time Systems,” in Proc. of the 20th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA), August 20-22,

2014.

[41] J. J. Chen, and S. Chakraborty, “Partitioned Packing and Scheduling for Sporadic Real-Time

Tasks in Identical Multiprocessor Systems,” in Proc. of the 24th Euromicro Conference on

Real-Time Systems (ECRTS), pp. 24-33, 2012.

[42] A. M. K. Cheng, and F. Shang, "Priority-Driven Coding and Transmission of Progressive

JPEG Images for Real-Time Applications," Journal of VLSI Signal Processing-Systems for

Signal, Image and Video Technology, vol. 47, pp. 169-182, 2007.

[43] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global EDF Scheduling for Parallel

Real-Time Tasks,” Real-Time Systems, vol. 51, no. 4, pp. 395-439, 2015.

92

[44] B. Sanati, A.M.K. Cheng, and N. Troutman, “Online Benefit-Aware Semi-Partitioned

Scheduling of Periodic Soft Real-Time Tasks for QoS Enhancement”, Technical Report no.

UH-CS-16-02, University of Houston, Department of Computer Science, 2016.

