410 research outputs found

    A gas-kinetic BGK solver for two-dimensional turbulent compressible flow

    Get PDF
    In this paper, a gas kinetic solver is developed for the Reynolds Average Navier-Stokes (RANS) equations in two-space dimensions. To our best knowledge, this is the first attempt to extend the application of the BGK (Bhatnagaar-Gross-Krook) scheme to solve RANS equations with a turbulence model using finite difference method. The convection flux terms which appear on the left hand side of the RANS equations are discretized by a semi-discrete finite difference method. Then, the resulting inviscid flux functions are approximated by gas-kinetic BGK scheme which is based on the BGK model of the approximate collisional Boltzmann equation. The cell interface values required by the inviscid flux functions are reconstructed to higher-order spatial accuracy via the MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws) variable interpolation method coupled with a minmod limiter. As for the diffusion flux terms, they are discretized by a second-order central difference scheme. To account for the turbulence effect, a combined k-ε / k-ω SST (Shear-Stress Transport) two-equation turbulence model is used in the solver. An explicit-type time integration method known as the modified fourth-order Runge-Kutta method is used to compute steady-state solutions. The computed results for a supersonic flow past a flat plate where the transition is artificially triggered at 50% of plate length are presented in this paper. Validating the computed results against existing analytical solutions and also comparing them with results from other well-known numerical schemes show that a very good agreement is obtained

    Modeling and simulation in supersonic three-temperature carbon dioxide turbulent channel flow

    Full text link
    This paper pioneers the direct numerical simulation (DNS) and physical analysis in supersonic three-temperature carbon dioxide (CO2) turbulent channel flow. CO2 is a linear and symmetric triatomic molecular, with the thermal non-equilibrium three-temperature effects arising from the interactions among translational, rotational and vibrational modes under room temperature. Thus, the rotational and vibrational modes of CO2 are addressed. Thermal non-equilibrium effect of CO2 has been modeled in an extended three-temperature BGK-type model, with the calibrated translational, rotational and vibrational relaxation time. To solve the extended BGK-type equation accurately and robustly, non-equilibrium high-accuracy gas-kinetic scheme is proposed within the well-established two-stage fourth-order framework. Compared with the one-temperature supersonic turbulent channel flow, supersonic three-temperature CO2 turbulence enlarges the ensemble heat transfer of the wall by approximate 20%, and slightly decreases the ensemble frictional force. The ensemble density and temperature fields are greatly affected, and there is little change in Van Driest transformation of streamwise velocity. The thermal non-equilibrium three-temperature effects of CO2 also suppress the peak of normalized root-mean-square of density and temperature, normalized turbulent intensities and Reynolds stress. The vibrational modes of CO2 behave quite differently with rotational and translational modes. Compared with the vibrational temperature fields, the rotational temperature fields have the higher similarity with translational temperature fields, especially in temperature amplitude. Current thermal non-equilibrium models, high-accuracy DNS and physical analysis in supersonic CO2 turbulent flow can act as the benchmark for the long-term applicability of compressible CO2 turbulence.Comment: Carbon dioxide flow, Vibrational modes, Three-temperature effects, Supersonic turbulent channel flow

    Ein Gas-Kinetic Scheme Ansatz zur Modellierung und Simulation von Feuer auf massiv paralleler Hardware

    Get PDF
    This work presents a simulation approach based on a Gas Kinetic Scheme (GKS) for the simulation of fire that is implemented on massively parallel hardware in terms of Graphics Processing Units (GPU) in the framework of General Purpose computing on Graphics Processing Units (GPGPU). Gas kinetic schemes belong to the class of kinetic methods because their governing equation is the mesoscopic Boltzmann equation, rather than the macroscopic Navier-Stokes equations. Formally, kinetic methods have the advantage of a linear advection term which simplifies discretization. GKS inherently contains the full energy equation which is required for compressible flows. GKS provides a flux formulation derived from kinetic theory and is usually implemented as a finite volume method on cell-centered grids. In this work, we consider an implementation on nested Cartesian grids. To that end, a coupling algorithm for uniform grids with varying resolution was developed and is presented in this work. The limitation to local uniform Cartesian grids allows an efficient implementation on GPUs, which belong to the class of many core processors, i.e. massively parallel hardware. Multi-GPU support is also implemented and efficiency is enhanced by communication hiding. The fluid solver is validated for several two- and three-dimensional test cases including natural convection, turbulent natural convection and turbulent decay. It is subsequently applied to a study of boundary layer stability of natural convection in a cavity with differentially heated walls and large temperature differences. The fluid solver is further augmented by a simple combustion model for non-premixed flames. It is validated by comparison to experimental data for two different fire plumes. The results are further compared to the industry standard for fire simulation, i.e. the Fire Dynamics Simulator (FDS). While the accuracy of GKS appears slightly reduced as compared to FDS, a substantial speedup in terms of time to solution is found. Finally, GKS is applied to the simulation of a compartment fire. This work shows that the GKS has a large potential for efficient high performance fire simulations.Diese Arbeit präsentiert einen Simulationsansatz basierend auf einer gaskinetischen Methode (eng. Gas Kinetic Scheme, GKS) zur Simulation von Bränden, welcher für massiv parallel Hardware im Sinne von Grafikprozessoren (eng. Graphics Processing Units, GPUs) implementiert wurde. GKS gehört zur Klasse der kinetischen Methoden, die nicht die makroskopischen Navier-Stokes Gleichungen, sondern die mesoskopische Boltzmann Gleichung lösen. Formal haben kinetische Methoden den Vorteil, dass der Advektionsterms linear ist. Dies vereinfacht die Diskretisierung. In GKS ist die vollständige Energiegleichung, die zur Lösung kompressibler Strömungen benötigt wird, enthalten. GKS formuliert den Fluss von Erhaltungsgrößen basierend auf der gaskinetischen Theorie und wird meistens im Rahmen der Finiten Volumen Methode umgesetzt. In dieser Arbeit betrachten wir eine Implementierung auf gleichmäßigen Kartesischen Gittern. Dazu wurde ein Kopplungsalgorithmus für die Kombination von Gittern unterschiedlicher Auflösung entwickelt. Die Einschränkung auf lokal gleichmäßige Gitter erlaubt eine effiziente Implementierung auf GPUs, welche zur Klasse der massiv parallelen Hardware gehören. Des Weiteren umfasst die Implementierung eine Unterstützung für Multi-GPU mit versteckter Kommunikation. Der Strömungslöser ist für zwei und dreidimensionale Testfälle validiert. Dabei reichen die Tests von natürlicher Konvektion über turbulente Konvektion bis hin zu turbulentem Zerfall. Anschließend wird der Löser genutzt um die Grenzschichtstabilität in natürlicher Konvektion bei großen Temperaturunterschieden zu untersuchen. Darüber hinaus umfasst der Löser ein einfaches Verbrennungsmodell für Diffusionsflammen. Dieses wird durch Vergleich mit experimentellen Feuern validiert. Außerdem werden die Ergebnisse mit dem gängigen Brandsimulationsprogramm FDS (eng. Fire Dynamics Simulator) verglichen. Die Qualität der Ergebnisse ist dabei vergleichbar, allerdings ist der in dieser Arbeit entwickelte Löser deutlich schneller. Anschließend wird das GKS noch für die Simulation eines Raumbrandes angewendet. Diese Arbeit zeigt, dass GKS ein großes Potential für die Hochleistungssimulation von Feuer hat
    corecore