
A Gas-Kinetic BGK Solver for Two-Dimensional 
Turbulent Compressible Flow 

 
Ong J. Chit, Ashraf A. Omar, Waqar Asrar and Ahmad F. Ismail 

Department of Mechanical Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia 
 
 

Abstract - In this paper, a gas kinetic solver is developed 
for the Reynolds Average Navier-Stokes (RANS) equations 
in two-space dimensions. To our best knowledge, this is the 
first attempt to extend the application of the BGK 
(Bhatnagaar-Gross-Krook) scheme to solve RANS 
equations with a turbulence model using finite difference 
method. The convection flux terms which appear on the left 
hand side of the RANS equations are discretized by a semi-
discrete finite difference method. Then, the resulting 
inviscid flux functions are approximated by gas-kinetic 
BGK scheme which is based on the BGK model of the 
approximate collisional Boltzmann equation. The cell 
interface values required by the inviscid flux functions are 
reconstructed to higher-order spatial accuracy via the 
MUSCL (Monotone Upstream-Centered Schemes for 
Conservation Laws) variable interpolation method coupled 
with a minmod limiter. As for the diffusion flux terms, they 
are discretized by a second-order central difference 
scheme. To account for the turbulence effect, a combined k-
ε / k-ω SST (Shear-Stress Transport) two-equation 
turbulence model is used in the solver. An explicit-type time 
integration method known as the modified fourth-order 
Runge-Kutta method is used to compute steady-state 
solutions. The computed results for a supersonic flow past a 
flat plate where the transition is artificially triggered at 
50% of plate length are presented in this paper. Validating 
the computed results against existing analytical solutions 
and also comparing them with results from other well-
known numerical schemes show that a very good agreement 
is obtained. 

Keywords: Finite Difference Method, BGK Scheme, 
Compressible Turbulent Flow, Turbulence Model. 

 

1 Introduction 
  Throughout the history of computational fluid 
dynamics development, many numerical schemes have been 
created to solve practical application of gas dynamics. The 
key design criterion of any numerical schemes is to 
maximize robustness and accuracy. This requirement is 
particularly important in compressible flows involving high-
speed flow where intense shock waves and boundary layers 
may simultaneously exist. Among those notable and 
successful are the Godunov-type and flux vector splitting 

schemes. Besides these numerical schemes that stem from 
the discretization of the convective terms, the gas-kinetic 
schemes have attracted much attention in recent years due to 
their high robustness and accuracy.  

 Recent developments have seen the emergence of 
another class of scheme known as the gas-kinetic schemes 
that are developed based on the Boltzmann equation. 
[15,19] Mainly, there are two groups of gas-kinetic schemes 
and the difference lies within the type of Boltzmann 
equation use in the gas evolution stage. One of them is the 
well-known KFVS (Kinetic Flux Vector Splitting) scheme 
which is based on the collisionless Boltzmann equation and 
the other is based on the collisional BGK (Bhatnagaar-
Gross-Krook) model [3] where the BGK scheme is derived. 
Like any other FVS method, the KFVS scheme is very 
diffusive and less accurate in comparison with the Roe-type 
FDS method. The diffusivity of the FVS schemes is mainly 
due to the particle or wave-free transport mechanism, which 
sets the CFL time step equal to particle collision time. [4] In 
order to reduce diffusivity, particle collisions have to be 
modeled and implemented into the gas evolution stage. One 
of the distinct approaches to take particle collision into 
consideration in gas evolution can be found in Xu. [15] In 
this method, the collision effect is considered by the BGK 
model as an approximation of the collision integral in the 
Boltzmann equation. It is found that this gas-kinetic BGK 
scheme possesses accuracy that is superior to the flux vector 
splitting schemes and avoids the anomalies of FDS-type 
schemes. [5-9] 

 Turbulent flow motions occur in vast majority of fluid 
applications. To name a few: fluid flow in a pipe, flow 
processes in combustion chamber and even flow over an 
airfoil will exhibit a chaotic complex motion defined as 
turbulent flow. The most elegant solution to any turbulent 
flow is via the Direct Numerical Simulation (DNS) of 
turbulence. This approach is implemented by discretizing 
the Navier-Stokes equations with higher order accurate 
numerical scheme and solved using extremely fine grid 
mesh. An alternative approach to the DNS technique would 
be the adoption of Large Eddy Simulation (LES), which 
draws the advantages of the direct simulation of turbulence 
flows and the solution of the Reynolds averaged equations 
through closure assumptions. Although the popularity of 
DNS and LES have become noticeable [10-12] due to rapid 
development of high performance computing technology, 
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the general trend of computing turbulent flows still remain 
with the solution of Reynolds-Averaged Navier-Stokes 
(RANS) equations with the inclusion of Reynolds stresses 
into the original full Navier-Stokes equations. Resolving the 
turbulent flows via this means proved to be computationally 
cheaper. [13,14] The closure equations that provide the 
additional Reynolds stresses in the RANS equations are 
calculated from turbulence models. 

 In the present work, a flow solver based on the gas-
kinetic BGK scheme is developed and tested. The BGK 
scheme is used to approximate the convective flux terms, 
while a second-order central scheme is used to discretize the 
diffusive flux terms of the RANS equations, coupled with a 
combined k-ε / k-ω SST two-equation turbulence model to 
provide the required Reynolds stresses to resolve the 
turbulent flow. The numerical solver is tested with a 
supersonic flow past a flat plate where a transition is 
artificially triggered at 50% of plate length in order to assess 
its computational capabilities. The computed results are 
compared with existing analytical solutions of Spalding and 
Chi [1] and also comparing them with results from other 
well-known numerical schemes show that a very good 
agreement is obtained.  

2 Numerical methods 
 The two-dimensional normalized Reynolds-averaged 
Navier-Stokes equations in the computational space can be 
written in strong conservation form as 
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With ρ, U, V, p and ε are the macroscopic density, x-
component of velocity, the y-component of velocity, the 
pressure and total energy, respectively. While, τxx, τxy, τyy 
are the shear stress terms and qx, qy are the heat conduction 
terms along the x- and y-directions, respectively. A detailed 
description about the viscous shear stresses appearing in the 
above equations can be found in Hoffmann and Chiang. 
[16] 

 From the perspective of RANS computation, the 
viscosity μ in the stress terms and the term (μ / Pr) in the 
heat conduction terms are modeled as 

 

trlrr

tl

ppp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+=

μμμ

μμμ
 (2) 

where the subscripts l and t represent laminar and turbulent 
contributions, respectively. The parameter (Pr) t is called the 
turbulent Prandtl number and for air it is generally taken to 
be 0.9 for wall bounded flows. The closure model chosen to 
yield the turbulent viscosity μ t that appears in the RANS 
equations is the combined k-ε / k-ω SST two-equation 
turbulence model which is given as  
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where the production of turbulence Pk is defined as 
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The closure constants used in the preceding equations are 
outlined clearly in Ref. [17]. 



 A standard BGK scheme is based on the collisional 
Boltzmann equation and it is written in two dimensions as 
[15] 
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where f is the real particle distribution function and g is the 
equilibrium state approached by f within a collision time 
scale τ. Both f and g are functions of space x, y; time t; 
particle velocity u, v; and internal degrees of freedom ς. The 
equilibrium state g in the 2D BGK model is the Maxwell-
Boltzmann distribution function and it has the following 
form 
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where λ is a function of density and pressure, λ = ρ / 2p. ς is 
a K dimensional vector which accounts for the internal 
degrees of freedom such as molecular rotation, translation 
and vibration. The dimensional vector, K is related to the 
specific heat ratios and the space dimension by the relation 
K = (4 - 2γ) / (γ - 1), where for a diatomic gas γ = 1.4. The 
relations between the densities of mass ρ, momentum 
(ρU,ρV), and total energy ε with the distribution function f 
are derived from the following moment relation 
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where dΞ = dudvdς is the volume element in the phase 
space while Ψ is the vector of moments given as 
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With the moment relation defined in Eq. (8), a similar 
approach could be adopted in obtaining the numerical fluxes 
across cell interfaces and they are given as 
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where Fx and Gy are the physical flux in the x- and y-
direction, respectively. A general solution for f of Eq. (7) at 
the cell interface (xi+1/2, yj) in two-dimensions is obtained as 
[7] 
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where φ = e-t/τ is an adaptive parameter. For a first-order 
scheme φ can be fixed in the numerical calculations. When 
the BGK scheme is extended to high-order, the value of φ 
should depend on the real flow situations. Finally, the gas-
kinetic BGK numerical flux across the cell interface in the 
x-direction can be computed as 
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where Fe
x is the equilibrium flux function and Ff

x is the 
non-equilibrium or free stream flux function. Hence, the 
numerical flux for the BGK scheme at the cell interface in 
the x-direction are obtained from Eq. (12) as,  
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While the numerical flux at the cell interface in the y-
direction is obtained in a similar manner and the resulting 
relation is presented as 
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 In extending the numerical scheme to high-order 
spatial accuracy, the MUSCL approach [18] is adopted 
together with the minmod limiter. Hence, the left and right 
states of the primitive variables ρ, U, V, p at a cell interface 
could be obtained through the non-linear reconstruction of 
the respective variables and are given as 
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where Q is a primitive variable and the subscript l, and r 
correspond to the left and right side of a considered cell 
interface. In addition, ΔQi+1/2,j = Qi+1,j – Qi,j; ΔQi-1/2,j = Qi,j 
– Qi-1,j; and ΔQi+3/2,j = Qi+2,j – Qi+1,j. The minmod limiter 
used in the reconstruction of flow variables in Eq. (15) is 
given as 

 ( ) [ ),1min(,0max),1mod(min ]Ω=Ω=Ωφ  (16) 

Where the quantity Ω is determined based on the ratio of 
(ΔQi+1/2,j / ΔQi-1/2,j) for left hand side reconstruction and 
(ΔQi+3/2,j / ΔQi+1/2,j) for right hand side reconstruction, 
respectively.  

 For the time integration of steady state problems, an 
explicit formulation is chosen for the current solver which 



utilizes a fourth-order Runge-Kutta method. Applying this 
method to the generalized two-dimensional RANS 
equations provides the following results 
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3 Results and discussions  
3.1 Supersonic flow over flat plate 
 The objective of this test case is to provide a platform 
to validate the solutions obtained from the developed BGK 
flow solver incorporated with a turbulence model (i.e. 
combined k-ε / k-ω SST) with an existing analytical solution 
given by Spalding and Chi. [1] 

 In this flow problem, an incoming supersonic laminar 
flow is initiated in the free stream. The transition to 
turbulent flow along the flat plate is artificially triggered 
and placed at 50 % of the plate length. The following free 
stream conditions are specified: Mach number M∞ = 2.0, 
density ρ = 1.25 kg/m3, temperature T∞ = 300.0 K and 
Reynolds number Re∞ = 3.762x106. The Reynolds number 
is based on a reference length taken as L∞ = 0.08 m. A 
structure grid is created by an algebraic grid generation 
method with clustering near the surface and at the inlet to 
resolve high flow gradient areas. The resulting mesh has a 
size of 100 by 50 grid points and is shown in Fig. 1. As for 
the specification of condition along the boundaries, the 
following are enforced: at left boundary the inflow 
conditions are specified as free-stream; at right and top 
boundaries, their conditions are determined by means of 
extrapolation from the interior domain; and the bottom 
boundary which locates the flat plate is set to assume 
adiabatic wall with no-slip conditions.  
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Figure 1: Computational domain for supersonic flow over a 
flat plate. 

 The quantities computed via the numerical solvers that 
are presented in this paper consist of skin friction 
coefficient, non-dimensional velocity profile (located at x = 
0.06 m), and boundary layer thickness, presented in Fig. 2-
4. Through these figures, comparisons are made among the 
numerical schemes themselves and to the analytical data 
that will provide a good ground to assess the computational 
behavior of each scheme with the circle symbol representing 
the analytical data. Figure 2 compares the skin friction 
coefficient distributions along the flat plate. The results 
depicted in this figure showed that the BGK scheme is 
capable of resolving the skin friction coefficient accurately 
prior to transition but with a small disagreement in the 
turbulent section of the flow where such a small percentage 
of disagreement in the prediction of turbulent flow has been 
reported to be acceptable.. This behavior is also evident in 
other numerical schemes’ results such as Roe FDS scheme 
and central difference scheme with TVD.  
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Figure 2: Comparisons of skin friction coefficients for the 
turbulent flat plate at M∞= 2.0 and Re∞ = 3.762E06. 

Next, the comparisons of non-dimensional velocity profiles 
located at x = 0.06 m is presented in Fig. 3. The illustrated 
results in this figure showed that a good agreement can be 
seen among the numerical results with the analytical data.  
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Figure 3: Comparison of velocity profiles for the turbulent 
flat plate at M∞= 2.0 and Re∞ = 3.762E06. 

This deduction can also be applied and seen in Fig. 4 which 
illustrates the comparisons of boundary layer thickness 
generated by each numerical solver. 
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Figure 4: Comparison of boundary layer thicknesses for the 
turbulent flat plate at M∞= 2.0 and Re∞ = 3.762E06. 

4 Conclusions 
 A numerical solver based on the collisional BGK 
model of the Boltzmann equation has been successfully 
developed to simulate two-dimensional compressible 
turbulent flow based on the Reynolds-Averaged Navier-
Stokes equations which utilizes a combined k-ε / k-ω SST 
turbulence model to provide the turbulent eddy viscosity.  A 
supersonic flow over a flat plate which undergoes transition 
from laminar to turbulent flow is selected in the current 
study to asses the numerical capabilities of this solver. The 
computed results for this test case clearly demonstrate that 
the BGK scheme is able to provide a good resolution of the 
flow. This claim is justified by comparisons of the 
numerical findings of the BGK scheme with existing 
analytical data and numerical results from other renowned 
numerical solvers. 
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