7,789 research outputs found

    A betting interpretation for probabilities and Dempster-Shafer degrees of belief

    Get PDF
    There are at least two ways to interpret numerical degrees of belief in terms of betting: (1) you can offer to bet at the odds defined by the degrees of belief, or (2) you can judge that a strategy for taking advantage of such betting offers will not multiply the capital it risks by a large factor. Both interpretations can be applied to ordinary additive probabilities and used to justify updating by conditioning. Only the second can be applied to Dempster-Shafer degrees of belief and used to justify Dempster's rule of combination.Comment: 20 page

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View

    Full text link
    Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.Comment: Accepted by IEEE Transactions on Signal Processin

    Probability in the Everett World: Comments on Wallace and Greaves

    Get PDF
    It is often objected that the Everett interpretation of QM cannot make sense of quantum probabilities, in one or both of two ways: either it can't make sense of probability at all, or it can't explain why probability should be governed by the Born rule. David Deutsch has attempted to meet these objections. He argues not only that rational decision under uncertainty makes sense in the Everett interpretation, but also that under reasonable assumptions, the credences of a rational agent in an Everett world should be constrained by the Born rule. David Wallace has developed and defended Deutsch's proposal, and greatly clarified its conceptual basis. In particular, he has stressed its reliance on the distinguishing symmetry of the Everett view, viz., that all possible outcomes of a quantum measurement are treated as equally real. The argument thus tries to make a virtue of what has usually been seen as the main obstacle to making sense of probability in the Everett world. In this note I outline some objections to the Deutsch-Wallace argument, and to related proposals by Hilary Greaves about the epistemology of Everettian QM. (In the latter case, my arguments include an appeal to an Everettian analogue of the Sleeping Beauty problem.) The common thread to these objections is that the symmetry in question remains a very significant obstacle to making sense of probability in the Everett interpretation.Comment: 17 pages; no figures; LaTe

    Sequential Two-Player Games with Ambiguity

    Get PDF
    If players' beliefs are strictly non-additive, the Dempster-Shafer updating rule can be used to define beliefs off the equilibrium path. We define an equilibrium concept in sequential two-person games where players update their beliefs with the Dempster-Shafer updating rule. We show that in the limit as uncertainty tends to zero, our equilibrium approximates Bayesian Nash equilibrium by imposing context-dependent constraints on beliefs under uncertainty.

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize
    • …
    corecore