13 research outputs found

    Effect of Feature Selection to Improve Accuracy and Decrease Execution Time with Predicating Learning Disabilities in School Going Children

    Get PDF
    Learning disability in school children is the representation of brain disorder which includes several disorders in which school going child faces the difficulties. The evaluation of learning disability is a crucial and important task in the field of educational field. This process can be accomplished by using data mining approaches. The efficiency of this approach is based on the feature selection while performing the prediction of the learning disabilities. In paper mainly aims on the efficient method of feature selection to improve the accuracy of prediction and classification in school going children. Feature selection is a process to collect the small subset of the features from huge dataset. A commonly used approach in feature selection is ranking the individual features according to some criteria and then search for an optimal feature subset based on evaluation criterion to test the optimality. In the Wrapper model we use some predetermined learning algorithm to find out the relevant features and test them. It requires more computations, so if there are large numbers of features we prefer to filter. In this paper first we have used feature selection attribute algorithms Chi-square. Info Gain, and Gain Ratio to predict the relevant features. Then we have applied fast correlation base filter algorithm on given features. Later classification is done using KNN and SVM. Results showed reduction in computational cost and time and increase in predictive accuracy for the student model. The objective of this work is to predict the presence of Learning Disability (LD) in school-aged children more accurately and help them to develop a bright future according to his choice by predicting the success at the earliest

    A Survey on Feature Selection Algorithms

    Get PDF
    One major component of machine learning is feature analysis which comprises of mainly two processes: feature selection and feature extraction. Due to its applications in several areas including data mining, soft computing and big data analysis, feature selection has got a reasonable importance. This paper presents an introductory concept of feature selection with various inherent approaches. The paper surveys historic developments reported in feature selection with supervised and unsupervised methods. The recent developments with the state of the art in the on-going feature selection algorithms have also been summarized in the paper including their hybridizations. DOI: 10.17762/ijritcc2321-8169.16043

    A fast feature selection algorithm applied to automatic faults diagnosis of rotating machinery

    Get PDF
    This work presents a fast algorithm to reduce the number of features of a classification system increasing the performance without loss of quality. The experiments show that the proposed algorithm can reduce the number of features quickly as well as increase the quality of the predictions simultaneously. Three features extractions were used to generate the initial pool of features of the system. Comparative results of the proposed algorithm with the classical sequential forward selection algorithm are shown.Keywords: feature selection, feature extraction, fault diagnosis, rotating machinery, supervised learning

    Hybrid Feature Selection Approach Based on GRASP for Cancer Microarray Data

    Get PDF
    Microarray data usually contain a large number of genes, but a small number of samples. Feature subset selection for microarray data aims at reducing the number of genes so that useful information can be extracted from the samples. Reducing the dimension of data sets further helps in improving the computational efficiency of the learning model. In this paper, we propose a modified algorithm based on the tabu search as local search procedures to a Greedy Randomized Adaptive Search Procedure (GRASP) for high dimensional microarray data sets. The proposed Tabu based Greedy Randomized Adaptive Search Procedure algorithm is named as TGRASP. In TGRASP, a new parameter has been introduced named as Tabu Tenure and the existing parameters, NumIter and size have been modified. We observed that different parameter settings affect the quality of the optimum. The second proposed algorithm known as FFGRASP (Firefly Greedy Randomized Adaptive Search Procedure) uses a firefly optimization algorithm in the local search optimzation phase of the greedy randomized adaptive search procedure (GRASP). Firefly algorithm is one of the powerful algorithms for optimization of multimodal applications. Experimental results show that the proposed TGRASP and FFGRASP algorithms are much better than existing algorithm with respect to three performance parameters viz. accuracy, run time, number of a selected subset of features. We have also compared both the approaches with a unified metric (Extended Adjusted Ratio of Ratios) which has shown that TGRASP approach outperforms existing approach for six out of nine cancer microarray datasets and FFGRASP performs better on seven out of nine datasets

    OBKA-FS: an oppositional-based binary kidney-inspired search algorithm for feature selection

    Get PDF
    Feature selection is a key step when building an automatic classification system. Numerous evolutionary algorithms applied to remove irrelevant features in order to make the classifier perform more accurate. Kidney-inspired search algorithm (KA) is a very modern evolutionary algorithm. The original version of KA performed more effectively compared with other evolutionary algorithms. However, KA was proposed for continuous search spaces. For feature subset selection and many optimization problems such as classification, binary discrete space is required. Moreover, the movement operator of solutions is notably affected by its own best-known solution found up to now, denoted as Sbest. This may be inadequate if Sbest is located near a local optimum as it will direct the search process to a suboptimal solution. In this study, a three-fold improvement in the existing KA is proposed. First, a binary version of the kidney-inspired algorithm (BKA-FS) for feature subset selection is introduced to improve classification accuracy in multi-class classification problems. Second, the proposed BKA-FS is integrated into an oppositional-based initialization method in order to start with good initial solutions. Thus, this improved algorithm denoted as OBKA-FS. Third, a novel movement strategy based on the calculation of mutual information (MI), which gives OBKA-FS the ability to work in a discrete binary environment has been proposed. For evaluation, an experiment was conducted using ten UCI machine learning benchmark instances. Results show that OBKA-FS outperforms the existing state-of-the-art evolutionary algorithms for feature selection. In particular, OBKA-FS obtained better accuracy with same or fewer features and higher dependency with less redundancy. Thus, the results confirm the high performance of the improved kidney-inspired algorithm in solving optimization problems such as feature selection

    A Framework for Augmenting Building Performance Models Using Machine Learning and Immersive Virtual Environment

    Get PDF
    Building performance models (BPMs), such as building energy simulation models, have been widely used in building design. Existing BPMs are mainly derived using data from existing buildings. They may not be able to effectively address human-building interactions and lack the capability to address specific contextual factors in buildings under design. The lack of such capability often contributes to the existence of building performance discrepancies, i.e., differences between predicted performance during design and the actual performance. To improve the prediction accuracy of existing BPMs, a computational framework is developed in this dissertation. It combines an existing BPM with context-aware design-specific data involving human-building interactions in new designs by using a machine learning approach. Immersive virtual environments (IVEs) are used to acquire data describing design-specific human-building interactions, a machine learning technique is used to combine data obtained from an existing BPM, and IVEs are used to generate an augmented BPM. The potential of the framework is investigated and evaluated. An artificial neural network (ANN)-based greedy algorithm combines context-aware design-specific data obtained from IVEs with an existing BPM to enhance the simulations of human-building interactions in new designs. The results of the application show the potential of the framework to improve the prediction accuracy of an existing BPM evaluated against data obtained from the physical environment. However, it lacks the ability to determine the appropriate combination between context-aware design-specific data and data of the existing BPM. Consequently, the framework is improved to have ability to determine an appropriate combination based on a specified performance target. A generative adversarial network (GAN) is used to combine context-aware design-specific data and data of an existing BPM using the performance target as guide to generate an augmented BPM. The results confirm the effectiveness of this new framework. The performance of the augmented BPMs generated using the GAN-based framework is significantly better than the updated BPMs generated using the ANN-based greedy algorithm. The framework is completed by incorporating a robustness analysis to assist investigations of robustness of the GAN regarding the uncertainty involved in the input parameters (i.e., an existing BPM and context-aware design-specific data). Overall, this dissertation shows the promising potential of the framework in enhancing performance of BPMs and reducing performance discrepancies between estimations made during design and in performance in actual buildings

    Individual and ensemble functional link neural networks for data classification

    Full text link
    This study investigated the Functional Link Neural Network (FLNN) for solving data classification problems. FLNN based models were developed using evolutionary methods as well as ensemble methods. The outcomes of the experiments covering benchmark classification problems, positively demonstrated the efficacy of the proposed models for undertaking data classification problems

    Automated detection of depression from brain structural magnetic resonance imaging (sMRI) scans

    Full text link
     Automated sMRI-based depression detection system is developed whose components include acquisition and preprocessing, feature extraction, feature selection, and classification. The core focus of the research is on the establishment of a new feature selection algorithm that quantifies the most relevant brain volumetric feature for depression detection at an individual level
    corecore