255 research outputs found

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    Hybrid feature selection technique for intrusion detection system

    Get PDF
    High dimensionality’s problems have make feature selection as one of the most important criteria in determining the efficiency of intrusion detection systems. In this study we have selected a hybrid feature selection model that potentially combines the strengths of both the filter and the wrapper selection procedure. The potential hybrid solution is expected to effectively select the optimal set of features in detecting intrusion. The proposed hybrid model was carried out using correlation feature selection (CFS) together with three different search techniques known as best-first, greedy stepwise and genetic algorithm. The wrapper-based subset evaluation uses a random forest (RF) classifier to evaluate each of the features that were first selected by the filter method. The reduced feature selection on both KDD99 and DARPA 1999 dataset was tested using RF algorithm with ten-fold cross-validation in a supervised environment. The experimental result shows that the hybrid feature selections had produced satisfactory outcome

    Implementation and Analysis of Combined Machine Learning Method for Intrusion Detection System

    Get PDF
    As one of the security components in Network Security Monitoring System, Intrusion Detection System (IDS) is implemented by many organizations in their networks to detect and address the impact of network attacks. There are many machine-learning methods that have been widely developed and applied in the IDS. Selection of appropriate methods is necessary to improve the detection accuracy in the application of machine-learning in IDS. In this research we proposed an IDS that we developed based on machine learning approach. We use 28 features subset without content features of  Knowledge Data Discovery (KDD) dataset to build machine learning model. From our analysis and experiment we get 28 features subset of KDD dataset that are most likely to be applied for the IDS in the real network. The machine learning model based on this 28 features subset obtained 99.9% accuracy for both two-class and multiclass classification. From our experiments using the IDS we have developed show good performance in detecting attacks on real networks

    Click Fraud Detection in Online and In-app Advertisements: A Learning Based Approach

    Get PDF
    Click Fraud is the fraudulent act of clicking on pay-per-click advertisements to increase a site’s revenue, to drain revenue from the advertiser, or to inflate the popularity of content on social media platforms. In-app advertisements on mobile platforms are among the most common targets for click fraud, which makes companies hesitant to advertise their products. Fraudulent clicks are supposed to be caught by ad providers as part of their service to advertisers, which is commonly done using machine learning methods. However: (1) there is a lack of research in current literature addressing and evaluating the different techniques of click fraud detection and prevention, (2) threat models composed of active learning systems (smart attackers) can mislead the training process of the fraud detection model by polluting the training data, (3) current deep learning models have significant computational overhead, (4) training data is often in an imbalanced state, and balancing it still results in noisy data that can train the classifier incorrectly, and (5) datasets with high dimensionality cause increased computational overhead and decreased classifier correctness -- while existing feature selection techniques address this issue, they have their own performance limitations. By extending the state-of-the-art techniques in the field of machine learning, this dissertation provides the following solutions: (i) To address (1) and (2), we propose a hybrid deep-learning-based model which consists of an artificial neural network, auto-encoder and semi-supervised generative adversarial network. (ii) As a solution for (3), we present Cascaded Forest and Extreme Gradient Boosting with less hyperparameter tuning. (iii) To overcome (4), we propose a row-wise data reduction method, KSMOTE, which filters out noisy data samples both in the raw data and the synthetically generated samples. (iv) For (5), we propose different column-reduction methods such as multi-time-scale Time Series analysis for fraud forecasting, using binary labeled imbalanced datasets and hybrid filter-wrapper feature selection approaches

    Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

    Get PDF
    Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations

    A feature selection method based on auto-encoder for internet of things intrusion detection

    Get PDF
    The evolution in gadgets where various devices have become connected to the internet such as sensors, cameras, smartphones, and others, has led to the emergence of internet-of-things (IoT). As any network, security is the main issue facing IoT. Several studies addressed the intrusion detection task in IoT. The majority of these studies utilized different statistical and bio-inspired feature selection techniques. Deep learning is a family of techniques that demonstrated remarkable performance in the field of classification. The emergence of deep learning techniques has led to configure new neural network architectures that is designed for the feature selection task. This study proposes a deep learning architecture known as auto-encoder (AE) for the task of feature selection in IoT intrusion detection. A benchmark dataset for IoT intrusions has been considered in the experiments. The proposed AE has been carried out for the feature selection task along with a simple neural network (NN) architecture for the classification task. Experimental results showed that the proposed AE showed an accuracy of 99.97% with a false alarm rate (FAR) of 1.0. The comparison against the state of the art proves the efficacy of AE
    corecore