3 research outputs found

    Semilogarithmic Nonuniform Vector Quantization of Two-Dimensional Laplacean Source for Small Variance Dynamics

    Get PDF
    In this paper high dynamic range nonuniform two-dimensional vector quantization model for Laplacean source was provided. Semilogarithmic A-law compression characteristic was used as radial scalar compression characteristic of two-dimensional vector quantization. Optimal number value of concentric quantization domains (amplitude levels) is expressed in the function of parameter A. Exact distortion analysis with obtained closed form expressions is provided. It has been shown that proposed model provides high SQNR values in wide range of variances, and overachieves quality obtained by scalar A-law quantization at same bit rate, so it can be used in various switching and adaptation implementations for realization of high quality signal compression

    Log-Polar Quantizer with the Embedded G.711 Codec

    Get PDF
    In this paper a new two-dimensional vector quantizer for memoryless Gaussian source, realized in polar coordinates, is proposed. The G.711 codec is embedded in our vector quantizer, and therefore our vector quantizer is compatible with the G.711 codec. It is simple for realization and it has much better performances, compared to the G.711 codec, such as much higher SQNR (signal-to-quantization noise ratio) for the same bit-rate, or bit-rate decrease for the same SQNR. The G.711 codec is widely used in many systems, especially in PSTN (public switched telephone network). Due to compatibility with the G.711 standard, our vector quantizer can be realized with simple software modification of the existing the G.711 codec, and therefore it can be very easily implemented in PSTN and other systems. So, small investments are needed for wide implementation of our model, but significant improvement of performances can be obtained

    Projektovanje kvantizera za primenu u obradi signala i neuronskim mrežama

    Get PDF
    Scalar quantizers are present in many advanced systems for signal processing and transmission, аnd their contribution is particular in the realization of the most important step in digitizing signals: the amplitude discretization. Accordingly, there are justified reasons for the development of innovative solutions, that is, quantizer models which offer reduced complexity, shorter processing time along with performance close to the standard quantizer models. Designing of a quantizer for a certain type of signal is a specific process and several new methods are proposed in the dissertation, which are computationally less intensive compared to the existing ones. Specifically, the design of different types of quantizers with low and high number of levels which apply variable and a fixed length coding, is considered. The dissertation is organized in such a way that it deals with the development of coding solutions for standard telecommunication signals (e.g. speech), as well as other types of signals such as neural network parameters. Many solutions, which belong to the class of waveform encoders, are proposed for speech coding. The developed solutions are characterized by low complexity and are obtained as a result of the implementation of new quantizer models in non-predictive and predictive coding techniques. The target of the proposed solutions is to enhance the performance of some standardized solutions or some advanced solutions with the same/similar complexity. Testing is performed using the speech examples extracted from the well-known databases, while performance evaluation of the proposed coding solutions is done by using the standard objective measures. In order to verify the correctness of the provided solutions, the matching between theoretical and experimental results is examined. In addition to speech coding, in dissertation are proposed some novel solutions based on the scalar quantizers for neural network compression. This is an active research area, whereby the role of quantization in this area is somewhat different than in the speech coding, and consists of providing a compromise between performance and accuracy of the neural network. Dissertation strictly deals with the low-levels (low-resolution) quantizers intended for post-training quantization, since they are more significant regarding compression. The goal is to improve the performance of the quantized neural network by using the novel designing methods for quantizers. The proposed quantizers are applied to several neural network models used for image classification (some benchmark dataset are used), and as performance measure the prediction accuracy along with SQNR is used. In fact, there was an effort to determine the connection between these two measures, which has not been investigated sufficiently so far
    corecore