387 research outputs found

    Application of Fuzzy State Aggregation and Policy Hill Climbing to Multi-Agent Systems in Stochastic Environments

    Get PDF
    Reinforcement learning is one of the more attractive machine learning technologies, due to its unsupervised learning structure and ability to continually even as the operating environment changes. Applying this learning to multiple cooperative software agents (a multi-agent system) not only allows each individual agent to learn from its own experience, but also opens up the opportunity for the individual agents to learn from the other agents in the system, thus accelerating the rate of learning. This research presents the novel use of fuzzy state aggregation, as the means of function approximation, combined with the policy hill climbing methods of Win or Lose Fast (WoLF) and policy-dynamics based WoLF (PD-WoLF). The combination of fast policy hill climbing (PHC) and fuzzy state aggregation (FSA) function approximation is tested in two stochastic environments; Tileworld and the robot soccer domain, RoboCup. The Tileworld results demonstrate that a single agent using the combination of FSA and PHC learns quicker and performs better than combined fuzzy state aggregation and Q-learning lone. Results from the RoboCup domain again illustrate that the policy hill climbing algorithms perform better than Q-learning alone in a multi-agent environment. The learning is further enhanced by allowing the agents to share their experience through a weighted strategy sharing

    Soccer Coach Decision Support System

    Get PDF
    The savage essence and nature of sports means those who work on it hunt for the win. The sport enterprise is undergoing a gigantic digital transformation focused on imaging, real time and data analysis employed in the competitions. Conventional process methods in sports management such as fitness and health establishments, training, growth and match or game realisation are all being revolutionized by the sport digitization. In team sports it is well known that is needful an enough and simple digital methodology to organize and construct a feasible strategy. Digitization in sports is perpetually evolving and requires pervasive challenges. The sports and athletics digitization success is based on what is being done with collection of more data. Competitive advantages go to those who produce powerful operations using the data and acting on it in real time. The potential impact of these sport features in sport team operations is powerful. Data does not ride all decisions, but it empowers knowledgeable decisions. In these world circumstances, our vision with this system was born from a dream helping soccer sport management systems embrace and improve its contest success. Our perspective problem is how a decision support system for soccer coaches helps them to take enhancement decisions better. To face this problem we have created a soccer coach decision support system. This system is organised in two joined components; the first simulates the prediction of the soccer match winner through a data driven neural network. This component output activates the second to operate the logic rules learning and provides the stats, analysis, decision making and additionally plans improvements like drills and training procedures. This helps on the preparation towards upcoming matches as well as being aligned with their style and playing concepts. Future scalability and development, will analyse the mental and moral features of the teams by virtue of their athlete’s behavior changes

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    OBSERVER-BASED-CONTROLLER FOR INVERTED PENDULUM MODEL

    Get PDF
    This paper presents a state space control technique for inverted pendulum system. The system is a common classical control problem that has been widely used to test multiple control algorithms because of its nonlinear and unstable behavior. Full state feedback based on pole placement and optimal control is applied to the inverted pendulum system to achieve desired design specification which are 4 seconds settling time and 5% overshoot. The simulation and optimization of the full state feedback controller based on pole placement and optimal control techniques as well as the performance comparison between these techniques is described comprehensively. The comparison is made to choose the most suitable technique for the system that have the best trade-off between settling time and overshoot. Besides that, the observer design is analyzed to see the effect of pole location and noise present in the system

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    USING COEVOLUTION IN COMPLEX DOMAINS

    Get PDF
    Genetic Algorithms is a computational model inspired by Darwin's theory of evolution. It has a broad range of applications from function optimization to solving robotic control problems. Coevolution is an extension of Genetic Algorithms in which more than one population is evolved at the same time. Coevolution can be done in two ways: cooperatively, in which populations jointly try to solve an evolutionary problem, or competitively. Coevolution has been shown to be useful in solving many problems, yet its application in complex domains still needs to be demonstrated.Robotic soccer is a complex domain that has a dynamic and noisy environment. Many Reinforcement Learning techniques have been applied to the robotic soccer domain, since it is a great test bed for many machine learning methods. However, the success of Reinforcement Learning methods has been limited due to the huge state space of the domain. Evolutionary Algorithms have also been used to tackle this domain; nevertheless, their application has been limited to a small subset of the domain, and no attempt has been shown to be successful in acting on solving the whole problem.This thesis will try to answer the question of whether coevolution can be applied successfully to complex domains. Three techniques are introduced to tackle the robotic soccer problem. First, an incremental learning algorithm is used to achieve a desirable performance of some soccer tasks. Second, a hierarchical coevolution paradigm is introduced to allow coevolution to scale up in solving the problem. Third, an orchestration mechanism is utilized to manage the learning processes
    • …
    corecore