2 research outputs found

    A STUDY ON LOW-PHASE-NOISE 77-GHZ CMOS TRANSMITTER FOR FMCW RADAR

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 남상욱.This thesis presents design methodology and experimental verification of a low-phase-noise 77-GHz CMOS FMCW (Frequency Modulated Continuous Wave) radar transmitter. It is quite difficult to design a low-phase-noise signal generator at millimeter-wave frequencies in CMOS because gain of CMOS transistors is extremely low at those frequencies. When using a frequency multiplier, it is relatively advantageous to design a low-phase-noise signal source because a VCO can be designed at lower frequency band where gain of active devices is high. When using multiple stage frequency multipliers to achieve low-phase-noise performance, the operating frequency range can be reduced and DC power consumption can be increased. Therefore, in this thesis, two methods for realizing 77-GHz CMOS low-phase-noise signal source have been proposed. One method is to combine a ×6 frequency multiplier and a 12.8-GHz FMCW signal generator. In this case, a VCO, an injection-locked VCO buffer, a ×3 frequency multiplier (tripler), and a ×2 frequency multiplier (doubler) constituting the 77-GHz signal generator are designed as a four-stage coupled injection-locked oscillator (ILO) chain which is oscillated and injected into the output signal of the preceding stage. The VCO used in the 12.8-GHz PLL (phase locked loop) was designed using linearized transconductance (LiT: Linearized Transconductance) technology to have low phase noise characteristics and was designed to be simpler than the existing LiT VCO using a 3:2 transformer. Since the PLL is designed as the integer-N type, an external frequency modulated triangular reference signal must be injected into the phase frequency detector (PFD) of the PLL to generate the FMCW signal. The fabricated transmitter chip supports FMCW output signals in the 76.81-77.95 GHz band when supplied with the external reference triangular signal from 50.00 to 50.75 MHz. The RF output power is about 8.9 dBm and consumes 116.7 mW of DC power. The measured phase noise is -91.16 dBc/Hz at the 1-MHz offset of the 76.81-GHz carrier frequency, which is the lowest phase noise characteristic of the previously announced 77-GHz CMOS transmitter and transceiver. A transmitter module for 77-GHz radar performance measurement was fabricated by combining the transmitter chip with the on-chip feeder that can solve the millimeter-wave packaging problem. The other is a method of combining a ×28 frequency multiplier and a 2.75-GHz FMCW signal generator. As in the previous method, the VCO, a ×7 multiplier, and two ×2 multipliers constituting the 77-GHz signal generator are each designed as a 4-stage ILO chain. The VCO used in the 2.75-GHz PLL is designed as a class-C type that improves the startup problem to have low-phase-noise characteristics. As in the previous case, an integer-N type PLL is used. The fabricated transmitter chip supports FMCW output signals in the 76.26-78.23 GHz band when supplied with the external reference triangular signal from 42.55 to 43.65 MHz. The RF output power is about -18 dBm and consumes 195.4 mW of DC power. The measured phase noise is -93.64 dBc/Hz at the 1-MHz offset of the 78.13-GHz carrier frequency, which is even lower phase noise characteristic than the ×6 frequency multiplier based transmitter chip.Chapter 1. Introduction 1 1.1 Types and Applications of Automotive Radars 2 1.1 Research Strategy 7 Chapter 2. Frequency and Architecture selection 12 2.1 LiT VCO 14 2.2 Class-C VCO 19 2.3 Injection-Locked Oscillator Chain 24 2.4 Summary 29 Chapter 3. 77-GHz FMCW Radar Transmitter with 12.8-GHz PLL and 6 Frequency Multiplier 30 3.1 Proposed LiT VCO 33 3.2 6 Multiplier and Power Amplifier 40 3.3 Measurement Results 46 3.3.1 LiT VCO Measurement Results 46 3.3.2 77-GHz Transmitter (v1) Measurement Results 49 3.4 Summary 60 Chapter 4. 77-GHz FMCW Radar Transmitter with 2.75-GHz PLL and 28 Frequency Multiplier 62 4.1 Proposed class-C VCO 65 4.2 28 Multiplier and Power Amplifier 73 4.3 Measurement Results 80 4.3.1 Class-C VCO Measurement Results 80 4.3.2 77-GHz Transmitter (v2) Measurement Results 83 4.4 Summary 90 Chapter 5. Conclusion 92 Bibliography 94 Abstract 97Docto

    System Modeling of Next Generation Digitally Modulated Automotive RADAR (DMR)

    Get PDF
    abstract: State-of-the-art automotive radars use multi-chip Frequency Modulated Continuous Wave (FMCW) radars to sense the environment around the car. FMCW radars are prone to interference as they operate over a narrow baseband bandwidth and use similar radio frequency (RF) chirps among them. Phase Modulated Continuous Wave radars (PMCW) are robust and insensitive to interference as they transmit signals over a wider bandwidth using spread spectrum technique. As more and more cars are equipped with FMCW radars illuminate the same environment, interference would soon become a serious issue. PMCW radars can be an effective solution to interference in the noisy FMCW radar environment. PMCW radars can be implemented in silicon as System-on-a-chip (SoC), suitable for Multiple-Input-Multiple-Output (MIMO) implementation and is highly programmable. PMCW radars do not require highly linear high frequency chirping oscillators thus reducing the size of the final solution. This thesis aims to present a behavior model for this promising Digitally modulated radar (DMR) transceiver in Simulink/Matlab. The goal of this work is to create a model for the electronic system level framework that simulates the entire system with non-idealities. This model includes a Top Down Design methodology to understand the requirements of the individual modules’ performance and thus derive the specifications for implementing the real chip. Back annotation of the actual electrical modules’ performance to the model closes the design process loop. Using Simulink’s toolboxes, a passband and equivalent baseband model of the system is built for the transceiver with non-idealities of the components built in along with signal processing routines in Matlab. This model provides a platform for system evaluation and simulation for various system scenarios and use-cases of sensing using the environment around a moving car.Dissertation/ThesisMasters Thesis Engineering 201
    corecore