5,095 research outputs found

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1

    Fully dynamic all-pairs shortest paths with worst-case update-time revisited

    Full text link
    We revisit the classic problem of dynamically maintaining shortest paths between all pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions of nodes and their incident edges. We give worst-case guarantees on the time needed to process a single update (in contrast to related results, the update time is not amortized over a sequence of updates). Our main result is a simple randomized algorithm that for any parameter c>1c>1 has a worst-case update time of O(cn2+2/3log4/3n)O(cn^{2+2/3} \log^{4/3}{n}) and answers distance queries correctly with probability 11/nc1-1/n^c, against an adaptive online adversary if the graph contains no negative cycle. The best deterministic algorithm is by Thorup [STOC 2005] with a worst-case update time of O~(n2+3/4)\tilde O(n^{2+3/4}) and assumes non-negative weights. This is the first improvement for this problem for more than a decade. Conceptually, our algorithm shows that randomization along with a more direct approach can provide better bounds.Comment: To be presented at the Symposium on Discrete Algorithms (SODA) 201

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself

    Efficient Approximation Schemes for Uniform-Cost Clustering Problems in Planar Graphs

    Get PDF
    We consider the k-Median problem on planar graphs: given an edge-weighted planar graph G, a set of clients C subseteq V(G), a set of facilities F subseteq V(G), and an integer parameter k, the task is to find a set of at most k facilities whose opening minimizes the total connection cost of clients, where each client contributes to the cost with the distance to the closest open facility. We give two new approximation schemes for this problem: - FPT Approximation Scheme: for any epsilon>0, in time 2^{O(k epsilon^{-3} log (k epsilon^{-1}))}* n^O(1) we can compute a solution that has connection cost at most (1+epsilon) times the optimum, with high probability. - Efficient Bicriteria Approximation Scheme: for any epsilon>0, in time 2^{O(epsilon^{-5} log (epsilon^{-1}))}* n^O(1) we can compute a set of at most (1+epsilon)k facilities whose opening yields connection cost at most (1+epsilon) times the optimum connection cost for opening at most k facilities, with high probability. As a direct corollary of the second result we obtain an EPTAS for Uniform Facility Location on planar graphs, with same running time. Our main technical tool is a new construction of a "coreset for facilities" for k-Median in planar graphs: we show that in polynomial time one can compute a subset of facilities F_0 subseteq F of size k * (log n/epsilon)^O(epsilon^{-3}) with a guarantee that there is a (1+epsilon)-approximate solution contained in F_0

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution
    corecore