2,851 research outputs found

    Deep Projective 3D Semantic Segmentation

    Full text link
    Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3D-CNNs), have achieved below-expected results. Such methods require voxelizations of the underlying point cloud data, leading to decreased spatial resolution and increased memory consumption. Additionally, 3D-CNNs greatly suffer from the limited availability of annotated datasets. In this paper, we propose an alternative framework that avoids the limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we first project the point cloud onto a set of synthetic 2D-images. These images are then used as input to a 2D-CNN, designed for semantic segmentation. Finally, the obtained prediction scores are re-projected to the point cloud to obtain the segmentation results. We further investigate the impact of multiple modalities, such as color, depth and surface normals, in a multi-stream network architecture. Experiments are performed on the recent Semantic3D dataset. Our approach sets a new state-of-the-art by achieving a relative gain of 7.9 %, compared to the previous best approach.Comment: Submitted to CAIP 201

    Instance-Level Salient Object Segmentation

    Full text link
    Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.Comment: To appear in CVPR201

    Forecasting Hands and Objects in Future Frames

    Full text link
    This paper presents an approach to forecast future presence and location of human hands and objects. Given an image frame, the goal is to predict what objects will appear in the future frame (e.g., 5 seconds later) and where they will be located at, even when they are not visible in the current frame. The key idea is that (1) an intermediate representation of a convolutional object recognition model abstracts scene information in its frame and that (2) we can predict (i.e., regress) such representations corresponding to the future frames based on that of the current frame. We design a new two-stream convolutional neural network (CNN) architecture for videos by extending the state-of-the-art convolutional object detection network, and present a new fully convolutional regression network for predicting future scene representations. Our experiments confirm that combining the regressed future representation with our detection network allows reliable estimation of future hands and objects in videos. We obtain much higher accuracy compared to the state-of-the-art future object presence forecast method on a public dataset
    • …
    corecore