2,784 research outputs found

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Deep Adaptive Learning for Writer Identification based on Single Handwritten Word Images

    Get PDF
    There are two types of information in each handwritten word image: explicit information which can be easily read or derived directly, such as lexical content or word length, and implicit attributes such as the author's identity. Whether features learned by a neural network for one task can be used for another task remains an open question. In this paper, we present a deep adaptive learning method for writer identification based on single-word images using multi-task learning. An auxiliary task is added to the training process to enforce the emergence of reusable features. Our proposed method transfers the benefits of the learned features of a convolutional neural network from an auxiliary task such as explicit content recognition to the main task of writer identification in a single procedure. Specifically, we propose a new adaptive convolutional layer to exploit the learned deep features. A multi-task neural network with one or several adaptive convolutional layers is trained end-to-end, to exploit robust generic features for a specific main task, i.e., writer identification. Three auxiliary tasks, corresponding to three explicit attributes of handwritten word images (lexical content, word length and character attributes), are evaluated. Experimental results on two benchmark datasets show that the proposed deep adaptive learning method can improve the performance of writer identification based on single-word images, compared to non-adaptive and simple linear-adaptive approaches.Comment: Under view of Pattern Recognitio

    Pointwise Convolutional Neural Networks

    Full text link
    Deep learning with 3D data such as reconstructed point clouds and CAD models has received great research interests recently. However, the capability of using point clouds with convolutional neural network has been so far not fully explored. In this paper, we present a convolutional neural network for semantic segmentation and object recognition with 3D point clouds. At the core of our network is pointwise convolution, a new convolution operator that can be applied at each point of a point cloud. Our fully convolutional network design, while being surprisingly simple to implement, can yield competitive accuracy in both semantic segmentation and object recognition task.Comment: 10 pages, 6 figures, 10 tables. Paper accepted to CVPR 201

    Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

    Full text link
    Unlike on images, semantic learning on 3D point clouds using a deep network is challenging due to the naturally unordered data structure. Among existing works, PointNet has achieved promising results by directly learning on point sets. However, it does not take full advantage of a point's local neighborhood that contains fine-grained structural information which turns out to be helpful towards better semantic learning. In this regard, we present two new operations to improve PointNet with a more efficient exploitation of local structures. The first one focuses on local 3D geometric structures. In analogy to a convolution kernel for images, we define a point-set kernel as a set of learnable 3D points that jointly respond to a set of neighboring data points according to their geometric affinities measured by kernel correlation, adapted from a similar technique for point cloud registration. The second one exploits local high-dimensional feature structures by recursive feature aggregation on a nearest-neighbor-graph computed from 3D positions. Experiments show that our network can efficiently capture local information and robustly achieve better performances on major datasets. Our code is available at http://www.merl.com/research/license#KCNetComment: Accepted in CVPR'18. *indicates equal contributio
    • …
    corecore