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Learning Spatial-Semantic Context with Fully
Convolutional Recurrent Network for Online

Handwritten Chinese Text Recognition
Zecheng Xie, Zenghui Sun, Lianwen Jin∗, Hao Ni and Terry Lyons

Abstract—Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set,
ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to
translate online pen-tip trajectories into informative signature feature maps, successfully capturing the analytic and geometric
properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network
(MC-FCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence
while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make
predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon
constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks,
Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.50% and 96.58%, respectively, which are
significantly better than the best result reported thus far in the literature.

Index Terms—Handwritten Chinese text recognition, path signature, residual recurrent network, multiple spatial contexts, implicit
language model
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1 INTRODUCTION

IN recent years, increasingly in-depth studies have led
to significant developments in the field of handwrit-

ten text recognition. Various methods have been pro-
posed by the research community, including integrated
segmentation-recognition methods [1], [2], [3], [4], [5], hid-
den Markov models (HMMs) and their hybrid variants [6],
[7], segmentation-free methods [8], [9], [10] with long short-
term memory (LSTM) and multi-dimensional long short-
term memory (MDLSTM), and integrated convolutional
neural network (CNN)-LSTM methods [11], [12], [13], [14].
In this paper, we investigate the most recently developed
methods for online handwritten Chinese text recognition
(OHCTR), which is an interesting research topic presenting
the following challenges: a large character set, ambiguous
segmentation, and variable-length input sequences.

Segmentation is the fundamental component of hand-
written text recognition, and it has attracted the attention of
numerous researchers [1], [2], [3], [4], [5], [15], [16]. Among
the above-mentioned methods, over-segmentation [1], [2],
[3], [4], [5], i.e., an integrated segmentation-recognition
method, is the most efficient method and still plays a
crucial role in OHCTR. The basic concept underlying over-
segmentation is to slice the input string into sequential
character segments whose candidate classes can be used to
construct the segmentation-recognition lattice [2]. Based on
the lattice, path evaluation, which integrates the recogni-
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tion scores, geometry information, and semantic context, is
conducted to search for the optimal path and generate the
recognition result. In practice, segmentation inevitably leads
to mis-segmentation, which is barely rectifiable through
post-processing and thus degrades the overall performance.

Segmentation-free methods are flexible alternative meth-
ods that completely avoid the segmentation procedure. H-
MMs and their hybrid variants [6], [7] have been widely
used in handwritten text recognition. In general, the input
string is converted into slices by sliding windows, followed
by feature extraction and frame-wise prediction using an
HMM. Finally, the Viterbi algorithm is applied to search
for the best character string with maximum a posteriori
probability. However, HMMs are limited not only by the
assumption that their observation depends only on the cur-
rent state but also by their generative nature that generally
leads to poor performance in labeling and classification
tasks, as compared to discriminative models. Even though
hybrid models that combine HMMs with other network
architectures, including recurrent neural networks [17] and
multilayer perceptrons [18], have been proposed to alleviate
the above-mentioned limitations by introducing context into
HMMs, they still suffer from the drawbacks of HMMs.

The recent development of recurrent neural networks,
especially LSTM [8], [9], [19] and MDLSTM [10], [19], has
provided a revolutionary segmentation-free perspective to
the problem of handwritten text recognition. In general,
LSTM is directly fed with a point-wise feature vector that
consists of the (x, y)-coordinate and relative features, while
it recurrently updates its hidden state and generates per-
frame predictions for each time step. Then, it applies con-
nectionist temporal classification (CTC) to perform tran-
scription. It is worth noting that LSTM and MDLSTM have
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Fig. 1. Overview of the proposed method. Variable-length pen-tip trajectories are first translated into offline signature feature maps that preserve
the essential online information. Then, a multi-spatial-context fully convolutional recurrent network (MC-FCRN) take input of the signature feature
maps with receptive fields of different scales in a sliding window manner and generate a predicting sequence. Finally, an implicit LM is proposed to
derive the final label sequence by exploiting the semantic context of embedding vectors that are transformed from the predicting sequence.

been successfully applied to handwritten text recognition
in Western languages, where the character set is relatively
small (e.g., for English, there are only 52 classes; therefore
it is easy to train the network). However, to the best of our
knowledge, very few studies have attempted to address the
problem of large-scale (where, e.g., the text lines may be
represented by more than 7,000 basic classes of characters
and sum up to more than 1 million character samples)
handwritten text recognition problems such as OHCTR.

Architectures that integrate CNN and LSTM exhibit ex-
cellent performance in terms of visual recognition and de-
scription [20], [21], scene text recognition [12], [13], [14], and
handwritten text recognition [11]. In text recognition prob-
lems, deep CNNs generate highly abstract feature sequences
from input sequential data. LSTM is fed with such feature
sequences and generates corresponding character strings.
Jointly training LSTM with CNN is straightforward and
can improve the overall performance significantly. However,
in the above-mentioned methods, the CNNs, specifically
fully convolutional networks (FCNs), process the input
string with only a fixed-size receptive field in a sliding
window manner, which we claim is inflexible for uncon-
strained written characters in OHCTR. Moreover, a deep
integrated CNN-LSTM network is usually accompanied by
degradation problem [22] that slows down the convergence
procedure and affects the system optimization.

In this paper, we propose a novel solution (see Fig. 1)
that integrates path signature, a multi-spatial-context fully
convolutional recurrent network (MC-FCRN), and an im-
plicit language model (implicit LM) to address the problem
of unconstrained online handwritten text recognition. Path
signature, a recent development in the field of the rough
path theory [23], [24], [25], is a promising approach for
translating variable-length pen-tip trajectories into offline
signature feature maps in our system, because it effective-

ly preserves the online information that characterizes the
analytic and geometric properties of the path. Encouraged
by recent advances in deep CNNs and LSTMs, we propose
the MC-FCRN for robust recognition of signature feature
maps. MC-FCRN leverages the multiple spatial contexts that
correspond to multiple receptive fields in each time step to
achieve strong robustness and high accuracy. Furthermore,
we propose an implicit LM, which incorporates semantic
context within the entire predicting feature sequence from
both forward and reverse directions, to enhance the predic-
tion for each time step. The contributions of this paper can
be summarized as follows:

• We develop a novel segmentation-free MC-FCRN to
effectively capture the variable spatial contextual dy-
namics as well as the character information for high-
performance recognition. With a series of receptive
fields of different scales, MC-FCRN is able to model the
complicate spatial context with strong robustness and
high accuracy.

• The residual recurrent network, a basic component of
MC-FCRN, not only accelerates the convergence pro-
cess but also promotes the optimization result, while
adding neither extra parameter nor computational bur-
den to the system, as compared to ordinary stacked
recurrent network

• We propose an implicit LM that learns to model the
output distribution given the entire predicting feature
sequence. Unlike the statistical language model that
predicts the next word given only a few previous
words, our implicit LM exploits the semantic context
not only from the forward and reverse directions of the
text but also with arbitrary text length.

• Path signature, a novel mathematical feature set,
brought from the rough path theory [23], [24], [25]
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as a non-linear generalization of classical theory of
controlled differential equations, is successfully applied
to capture essential online information for long pen-
tip trajectories. Moreover, we investigate path signature
for learning the variable online knowledge of the input
string with different iterated integrals.

The remainder of this paper is organized as follows.
Section 2 reviews the related studies. Section 3 formally
introduces path signature. Section 4 details the network
architecture of FCRN and its extended version, namely
MC-FCRN. Section 5 describes the proposed implicit LM
and discusses the corresponding training strategy. Section 6
presents the experimental results. Finally, Section 7 con-
cludes the paper.

2 RELATED WORK

Feature extraction [26], [27], [28], [29], [30], [31] plays a cru-
cial role in traditional online handwritten text recognition.
The 8-directional feature [26], [29] is widely used in OHCTR
owing to its excellent ability to express stroke directions.
The projection of each trajectory point in eight directions
is calculated in a 2-D manner and eight pattern images
are generated accordingly. For further sophistication, Grave
et al. [8] considered not only the (x, y)-coordinate and its
relationship with its neighbors in the time series but also
the spatial information from an offline perspective, thus
obtaining 25 features for each point. However, the above-
mentioned techniques have been developed empirically.
Inspired by the theoretical work of Lyons and his colleagues
[23], [24], [25], we applied path signature to translate the
online pen-tip trajectories into offline signature feature maps
that maintain the essential features for characterizing the
online information of the trajectories. Furthermore, we can
use truncated path signature in practical applications to
achieve a trade-off between complexity and precision.

Yang et al. [32], [33] showed that the domain-specific
information extracted by the aforementioned methods can
improve the recognition performance with deep CNN (DC-
NN). However, DCNN-based networks are unable to han-
dle input sequences of variable length in OHCTR. On the
contrary, LSTM- and MDLSTM-based networks have an
inherent advantage in dealing with such input sequences
and demonstrate excellent performance in unconstrained
handwritten text recognition [8], [9], [34], [35]. Recently,
deep learning methods that integrate LSTM and CNN have
demonstrated outstanding capability in the field of visual
captioning [21], [36] and scene text recognition [12], [13].
However, in this paper, we show that the simple combina-
tion of CNN and LSTM cannot utilize their full potential,
which is probably due to the degradation problem [22]. On
the other hand, highway network [37] [38] and residual con-
nection [22] [39] were advocated to solve the degradation
problem [22] in training very deep networks. Therefore, we
take inspiration from them and present the residual recur-
rent network to realize faster and better optimization of the
system. Furthermore, our MC-FCRN also differs from these
methods in that it uses multiple receptive fields of different
scales to capture highly informative contextual features in
each time step. Such a multi-scale strategy originates from
traditional methods. The pyramid match kernel [40] maps

features to multi-dimensional multi-resolution histograms
that help to capture co-occurring features. The SIFT vectors
[41] search for stable features across all possible scales and
construct a high-dimensional vector for the key points. Fur-
ther, spatial pyramid pooling [42] allows images of varying
size or scale to be fed during training and enhances the net-
work performance significantly. GoogLeNet [43] introduced
the concept of “inception” whereby multi-scale convolution
kernels are integrated to boost performance. We have drawn
inspiration from these multi-scale methods to design our
MC-FCRN.

In general, language modeling is applied after feature
extraction and recognition in order to improve the overall
performance of the system [1], [2], [3], [4], [31], [44]. The
concept of ‘embedding’ plays a critical role in computational
linguistics. Traditionally, one character is strictly represent-
ed with one ‘embedding’ [45]. However, as emphasized by
Vilnis et al [46], representing an object as a single point in
space carries limitations. Instead, a density-based distribut-
ed embeddings can provide much more information of each
word, e.g. capturing uncertainty about a representation and
its relationship. Recently, Mukherjee [47] further verified
that a visual-linguistic mapping where words and visual
categories are both represented by distribution can improve
result at the intersection of language and vision, due to
the better exploiting of intra-concept variability in each
modality. In this paper, we take inspiration from their works
and take the predicting feature sequence, instead of one-hot
vectors, as input of the implicit LM to maintain the intra-
concept variability, which reflects recognition confidence
information in our problem. The recent development of
neural networks, especially LSTM, in the field of language
translation [48] and visual captioning [20], [21] has provided
us with a new perspective of language models. To the best
of our knowledge, neural networks were first applied to lan-
guage modeling by Bengio et al. [45]. Subsequently, Mikolov
et al. [49] used recurrent neural network, and Sundermeyer
et al. [50] used LSTM for language modeling. For language
translation, Sutskever et al. [48] used multilayered LSTM to
encode the input text into a vector of fixed dimensionality
and then applied another deep LSTM to decode the text
in a different language. For visual captioning, Venugopalan
et al. [21] and Pan et al. [20] extracted deep visual CNN
representations from image or video data and then used
an LSTM as a sequence decoder to generate a description
for the representations. Partially inspired by these methods,
we developed our implicit LM to incorporate semantic con-
text for recognition. However, unlike the above-mentioned
methods, which only derive context information from the
past predicted text, our implicit LM learns to make predic-
tions given the entire predicting feature sequence in both
forward and reverse directions.

3 PATH SIGNATURE

Proper translation of online data into offline feature maps
while retaining most, or hopefully all, of the online knowl-
edge within the pen-tip trajectory plays an essential role in
online handwritten recognition. To this end, we investigate
path signature, which was pioneered by Chen [51] in the
form of iterated integrals and developed by Lyons and
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Fig. 2. (a) Illustration of feature extraction of path signature. (b) A simple example of calculation of path signature features. (c) Path signature of one
typical online handwritten text example. (d) Left: path signature of the original pen-tip trajectories; Right: path signature of the pen-tip trajectories
with randomly added connections between adjacent strokes. It is notable that excepting for the additional connections, the original part of the
sequential data has the same path signature (same color).

his colleagues as a fundamental component of rough path
theory [23], [24], [25]. Path-signature was first introduced
into handwritten Chinese character recognition by Benjamin
Graham [52], and followed by Yang et al [32], [33], but
only at the character level. We go further by applying path
signature to extremely long sequential data that usually
consist of hundreds of thousands of points and prove its
effectiveness in OHCTR problem. In the following, we first
briefly introduce path signature theoretically, and then tech-
nically for sake of implementation and application.

Consider the pen strokes of the online handwritten text
collected from a writing plane H ⊂ R2. Then, a pen stroke
can be expressed as a continuous mapping denoted by D :
[a, b] → H with D = (D1

t , D
2
t ) and t ∈ [a, b]. For k ≥

1 and a collection of indexes i1, · · · , ik ∈ {1, 2}, the k-th
fold iterated integral of D along the index i1, · · · , ik can be
defined by

P (D)i1,··· ,ika,b =

∫
a<t1<···<tk<b

dDi1
t1 , · · · , dD

ik
tk
. (1)

The signature of the path is a collection of all the iterated
integrals of D:

P (D)a,b =(1, P (D)1a,b, P (D)2a,b, P (D)1,1a,b,

P (D)1,2a,b, P (D)2,1a,b, P (D)2,2a,b, · · · ), (2)

where the superscripts of the terms P (X)i1,··· ,ika,b run over
the set of all multi-indexes

G = {(i1, ..., ik)|i1, · · · , ik ∈ {1, 2}, k ≥ 1}. (3)

Then, the k-th iterated integral of the signature P (D)
(k)
a,b is

the finite collection of terms P (D)i1,··· ,ika,b with multi-indexes

of length k. More specifically, P (D)
(k)
a,b is the 2k-dimensional

vector defined by

P (D)
(k)
a,b = (P (X)i1,··· ,ika,b |i1, · · · , ik ∈ {1, 2}). (4)

In [25], it is proved that the whole signature of a path de-
termines the path up to time re-parameterization; i.e., path
signature can not only characterize the path displacement
and its further derivative as the classical directional features
do, but also provide more detailed analytic and geometric
properties of the path. In practice, we have to use the
truncated signature feature, which can capture the global
information on the path. Increasing the degree of truncated

signature results in the exponential growth of dimension but
may not always lead to significant gain.

Next, we describe the practical calculation of path sig-
nature in OHCTR from the implementation and application
point of view. As illustrated in Fig. 2a, the pen-tip trajecto-
ries of the online handwritten text samples are represented
by a sequence of uniform-time sampling points. First, the
uniform-time sampling trajectory is translated into equal-
distance sampling style. Then, to calculate the signature fea-
ture for a specific point, e.g., the red point in Fig. 2a, we esti-
mate the window-based signature P (D)t1,t3 that takes this
point as the midpoint. In order to calculate P (D)t1,t3 , we
first compute point-wise signature P (D)t1,t2 and P (D)t2,t3 ;
then combine them according to Chen’s identity [51].

As adjacent sampling points of text samples are connect-
ed by a straight line D = (D1

t , D
2
t ) with t ∈ [a, b], the

iterated integrals P (D)
(k)
a,b can be calculated iteratively as

follows:

P (D)
(k)
a,b =

{
1 , k = 0,

(P (D)
(k−1)
a,b ⊗4a,b)/k , k ≥ 1,

(5)

where4a,b := Db −Da denotes the path displacement and
⊗ represents the tensor product. In Fig. 2b, we provide a
simple example to explain the calculation of path signature
according to Eq. (5) and Eq. (2). Suppose we have two
adjacent straight lines D = (D1

t , D
2
t ) with t ∈ [t1, t2] and

D = (D1
t , D

2
t ) with t ∈ [t2, t3], as shown in Fig. 2a. Then,

following Chen’s identity [51], we can calculate the path
signature for the concatenation of these two paths as

P (D)
(k)
t1,t3 =

k∑
i=0

P (D)it1,t2 ⊗ P (D)k−it2,t3 . (6)

Given the pen-tip trajectories of online handwritten text,
for each sequential stroke point, we first compute the path
signature within a sliding window according to Eq. (2) and
Eq. (6). Then the path signature features of certain level
(k) along all the stroke points will form the corresponding
feature maps. Specifically, the path signature feature vector
of each stroke point spreads over 2(k+1)−1 two-dimensional
matrices, according to the coordinates of the stroke point
of the handwritten text data. The 0, 1, 2-th iterated inte-
gral signature feature maps, i.e., the above-mentioned two-
dimensional matrices, of one typical online handwritten text
example are visualized in Fig. 2c.
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In Fig. 2a, P (D)t1,t3 is computed with window size 3. In
practice, we set the window size as 9 to keep strong local
invariance and robustness. Fig. 2d shows that, although
connections are randomly added between adjacent strokes
within a character or between characters, their impact on the
path signature of the original input string is not significant,
which proves that path signature based on sliding window
has excellent local invariance and robustness.

4 MULTI-SPATIAL-CONTEXT FCRN
Unlike character recognition, where it is easy to normalize
characters to a fixed size, text recognition is complicated be-
cause it involves input sequences of variable length, such as
feature maps and online pen-tip trajectories. We propose a
new fully convolutional recurrent network (FCRN) for spa-
tial context learning to overcome this problem by leveraging
a fully convolutional network, a residual recurrent network,
and connectionist temporal classification, all of which nat-
urally take inputs of arbitrary size or length. Furthermore,
we extend our FCRN to multi-spatial-context FCRN (MC-
FCRN), as shown in Fig. 1, to learn multi-spatial-context
knowledge from complicated signature feature maps. In
the following subsections, we briefly introduce the basic
components of FCRN and explain their roles in the architec-
ture. Then, we demonstrate how MC-FCRN performs multi-
spatial-context learning for the OHCTR problem.

4.1 Fully Convolutional Recurrent Network
4.1.1 Fully Convolutional Network
DCNNs exhibit excellent performance in computer vision
applications such as image classification [39], [42], scene text
recognition [12], [13], and visual description [20], [21]. Fol-
lowing the approach of Long et al. [53], we remove the orig-
inal last fully connected classification layer from DCNNs to
construct a fully convolutional network. Fully convolutional
networks not only inherit the ability of DCNNs to learn
powerful and interpretable image features but also adapt to
variable input image size and generate corresponding-size
feature maps. It is worth noting that such CNN feature maps
contain strong spatial order information from the overlap
regions (known as receptive fields) of the original feature
maps. Such spatial order information is very important
and can be leveraged to learn spatial context to enhance
the overall performance of the system. Furthermore, unlike
image cropping or sliding window-based approaches, FCNs
eliminate redundant computations by sharing convolutional
response maps layer by layer to achieve efficient inference
and backpropagation.

4.1.2 The Residual Recurrent Network
Recurrent neural networks (RNNs), which are well known
for the self-connected hidden layer that recurrently transfers
information from output to input, have been widely adopt-
ed to learn continuous sequential features. Recently, long
short-term memory (LSTM) [54], a variant of RNN that over-
comes the gradient vanishing and exploding problem, has
demonstrated excellent performance in terms of learning
complex and long-term temporal dynamics in applications
such as language translation [55], visual description [20],

[21], and text recognition [12], [13]. Bidirectional LSTM
(BLSTM) facilitates the learning of complex context dynam-
ics in both forward and reverse directions, thereby out-
performing unidirectional networks significantly. Stacked
LSTM is also popular for sequence learning for accessing
higher-level abstract information in temporal dimensions.

Integrated CNN-LSTM systems demonstrate their out-
standing capability in visual recognition and description
[20], [21] and scene text recognition [12], [13], [14]. How-
ever, the degradation problem [39] usually accompanies
deep integrated CNN-LSTM networks and slows down the
convergence process. Driven by the significance of deep
residual learning [22], [39] for optimization of very deep
networks, we presented the residual recurrent network to
accelerate the convergence of our FCRN and obtain better
optimization result. Theoretically, we explicitly reformulate
the LSTM\BLSTM layer (denoted by h with parameter ωh)
as learning the spatial contextual information with reference
to the input. Denoting the l-th LSTM\BLSTM layer output
as ql(x), we have

ql(x) = h(ql−1(x)) + ql−1(x). (7)

Iteratively applying ql(x) = h(ql−1(x)) + ql−1(x) =
h(ql−1(x)) + h(ql−2(x)) + ql−2(x) to qL(x), we get

qL(x) = q0(x) +

L−1∑
l=0

h(ql(x)), (8)

where L is the total number of layers of the residual multi-
layered LSTM\BLSTM. Residual recurrent network has the
following advantages in jointly learning with deep CNN.
First, gradient information can easily pass through the
complex residual recurrent network through the identity
mapping qL(x) = q0(x) according to Eq. (8), as the term∑L−1

l=1 h(ql(x)) for the residual spatial learning is very small
and has not yet functioned in the early training stage. There-
fore, the system gains rapid growth in the nascent period (as
illustrated in Fig. 6 ). Furthermore, by gradually occupying a
greater proportion in Eq. (8), the term

∑L−1
l=1 h(ql(x)) plays

an increasingly important role in spatial context learning.
As a result, our residual recurrent network captures the
contextual information from a sequence through the term∑L−1

l=1 h(ql(x)) in an elegant manner, making the text recog-
nition process more efficient and reliable than processing
each character independently. Finally, the residual recurrent
network significantly promotes system performance while
not adding extra parameter or computational burden to the
system.

4.1.3 Transcription
Connectionist temporal classification (CTC), which facili-
tates the use of FCN and LSTM for sequential training
without requiring any prior alignment between input im-
ages and their corresponding label sequences, is adopted as
the transcription layer in our framework. Let C represent
all the characters used in this problem and let “blank”
represent the null emission. Then, the character set can
be denoted as C ′ = C ∪ {blank}. Given input sequences
u = (u1, u2, · · · , uT ) of length T , where ut ∈ R|C

′|, we can
obtain an exponentially large number of label sequences of
length T , refered to as alignments π, by assigning a label to
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each time step and concatenating the labels to form a label
sequence. The probability of alignments is given by

p(π|u) =

T∏
t=1

p(πt, t|u). (9)

Alignments can be mapped onto a transcription l by ap-
plying a sequence-to-sequence operation B, which first re-
moves the repeated labels and then removes the blanks. For
example, “tree” can be obtained by B from “ tt r ee e” or
“ t rr e eee ”. The total probability of a transcription can
be calculated by summing the probabilities of all alignments
that correspond to it:

p(l|u) =
∑

π:B(π)=l

p(π|u). (10)

As suggested by Graves and Jaitly [56], since the ex-
act position of the labels within a particular transcription
cannot be determined, we consider all the locations where
they could occur, thereby allowing a network to be trained
via CTC without pre-segmented data. A detailed forward-
backward algorithm to efficiently calculate the probability
in Eq. (10) was proposed by Graves [19].

4.2 Learning Multiple Spatial Contexts with Multi-
Spatial-Context FCRN (MC-FCRN)

In recent years, the concept of introducing contextual in-
formation within sequential data by using recurrent neural
network is gaining popularity [12], [13], [21], [36]. However,
very few studies have focused on incorporating multi-scale
context information into sequential recognition problem.
Given the fact that multi-scale strategies, such as SIFT [41],
pyramid match kernel [40], SPP [42] and GoogLeNet [43],
bring significant improvement in different area, we consider
it of great advantage to introduce the multi-scale strategy
into the sequential problems, such as OHCTR. Therefore
we propose a novel architecture, which we refer to as
multi-spatial context FCRN, to learn to model the multi-
spatial context within the sequential online handwritten text
data. In the following section, we will introduce MC-FCRN
progressively from a basic model, spatial context learning to
multi-spatial context learning.

4.2.1 Basic Model
First, we introduce a simple model having three compo-
nents: FCN (denoted by f with parameters ωf ), fully con-
nected layers (denoted by g with parameters ωg), and CTC.
Given signature feature maps x = (x1, x2, · · · , xT ), where
xt represents the receptive field of the t-th time step, the
objective of this model is to learn to make a prediction for
each receptive field:

o(zt, xt) = g(zt, f(xt)) (11)

s.t.

{∑|C′|
i=1 g(zt = C ′i, f(xt)) = 1,

g(zt, f(xt)) > 0.

where zt represents the prediction of the t-th time step
and o(zt, xt) models the probability distribution over all the
words in C ′ given the receptive field xt in the t-th time step.
Since each frame in the FCN feature sequence represents

a distribution over the character set without considering
any other feature vector, this simple model can hardly
incorporate any spatial context for recognition.

4.2.2 Learning Spatial Context

LSTM inherently possesses the advantage of processing
sequential data; thus, it is a good choice for capturing
spatial contextual information within an FCN feature se-
quence. Specially, we use the proposed residual recurren-
t network for spatial context learning and develop the
proposed FCRN by stacking the residual recurrent net-
work right after FCN. More importantly, the input of the
residual recurrent network is now the output of FCN, i.e.
q0(x) = (f(x1), f(x2) . . . f(xT )). Now based on Eq. (8), the
objective of the FCRN is to learn to make a prediction for
each time step given the entire input signature feature maps:

o(zt,x) = g(zt, q
t
L(x)) (12)

s.t.

{∑|C′|
i=1 g(zt = C ′i, q

t
L(x)) = 1,

g(zt, q
t
L(x)) > 0.

where the overall system has parameters ω = (ωf ,ωh,ωg),
qtL(x) is the t-th time step of the output feature sequence
of the residual recurrent network, and o(zt,x) models the
probability distribution over all the words in C ′ in the t-
th time step given the entire input signature feature maps
x. When we remove the term

∑L−1
l=1 h(ql(x)) from Eq. (8),

Eq. (12) simply reduce to Eq. (11). Therefore, the residual re-
current network plays a key role in learning spatial context
information in FCRN.

4.2.3 Learning Multiple Spatial Contexts

Before moving toward learning multiple spatial contexts, we
should first introduce the concept of receptive field and de-
scribe its role in learning multi-spatial context. A receptive
field is a rectangular local region of input images that can
be properly represented by a highly abstract feature vector
in the output feature sequence of FCN. Let rl represent the
local region size (width/height) of the l-th layer, and let the
(xl, yl)-coordinate denote the center position of this local
region. Then, the relationship of rl and (xl, yl)-coordinate
between adjacent layers can be formulated as follows:

rl = (rl+1 − 1)×ml + kl,

xl = ml × xl+1 + (
kl − 1

2
− pl),

yl = ml × yl+1 + (
kl − 1

2
− pl),

(13)

where k is the kernel size, m is the stride size, and p is
the padding size of a particular layer. Recursively applying
Eq. (13) to adjacent layers in the FCN from the last response
maps down to the original image should yield the region
size and the center coordinate of the receptive field that
corresponds to the related feature vector of the FCN feature
sequence.

Technically, the receptive fields of an ordinary fully
convolutional network are of the same scale, except for some
specially designed networks, such as GooLeNet. However,
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unconstrained handwritten Chinese text has severe recogni-
tion problem owing to its large character set, variable writ-
ing style and ambiguous segmentation problem. Therefore,
in OHCTR problem, it is significantly important to observe a
specific local region of the original input image with a series
of receptive fields of different scales.

In the following, we explain how to generate receptive
fields with different scales for each time step. We observe
that the size of the receptive field is sensitive to the kernel
size. Assume that the kernel size is increased from kl to
kl+∆kl. We can derive the following mapping from Eq. (13):
rl−1 = r′l−1 + ∆kl ×ml−1, where r′l−1is the original region
size of the (l − 1)-th layer. Thus, we have

r0 = r′0 + ∆kl ×
l−1∏
i=1

mi. (14)

In other words, if we increase the kernel size of the l-th
layer by ∆kl, then the receptive field will be enlarged by
∆kl×

∏l−1
i=1mi. As shown in Fig. 1 and Fig. 5, our MC-FCRN

split into three subnetworks after sharing the first four con-
volutional layer. These three subnetworks have increasing
numbers of convolutional layers, leading to increasingly
larger scale of receptive field (see Fig. 3). Further, note that
when kl = 2pl + 1 and ml = 1, the center position (i.e.,
(xl, yl)-coordinate) of the receptive field does not change
from higher layers to lower layers. Therefore, receptive
fields with different scales in the same time step have the
same center position, which ensures that multiple spatial
contexts are incorporated while confusion is avoided.

There are different ways to fuse the corresponding fea-
ture vectors of these multi-scale receptive fields. Typical-
ly, we can simply concatenate or add the vectors before
the residual recurrent network. However, we found that
the system can better benefit from multiple spatial con-
texts when fusing after the residual recurrent network.
Let q(x) represent the concatenation of the output fea-
ture sequences ({qL(x)}1, {qL(x)}2, {qL(x)}3, · · · ) of the
residual recurrent network with receptive fields of dif-
ferent scales. As shown in Fig. 3, at the t-th time step,
qt(x) = ({qtL(x)}1, {qtL(x)}2, {qtL(x)}3, · · · ) represents the
extracted features of receptive fields of increasing scales;
this is where the multi-spatial context comes. Formally, the
objective of our MC-FCRN is to learn to make a prediction
for each time step given the entire input signature feature
maps:

o(zt,x) = g(zt, q
t(x)) (15)

s.t.

{∑|C′|
i=1 g(zt = C ′i, q

t(x)) = 1,

g(zt, q
t(x)) > 0.

where o(zt,x) models the probability distribution over all
the words in C ′ in the t-th time step given the entire input
signature feature maps x.

Now, suppose p(πt, t|x) = g(zt = πt, q
t(x)). By Eq. (9),

the probability of alignments can be represented by:

p(π|x) =

T∏
t=1

g(zt = πt, q
t(x)). (16)
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Fig. 3. Illustration of multiple spatial contexts. Different receptive fields
in the same time step have the same center position, and their region
sizes should satisfy Eq. (14).

Then, the total probability of a transcription can be calculat-
ed by applying Eq. (16) to Eq. (10):

p(l|x) =
∑

π:B(π)=l

T∏
t=1

g(zt = πt, q
t(x)). (17)

The training is achieved by searching for ω that minimizes
the negative penalized log-likelihood:

L(Q) = −
∑

(x,l)⊂Q

ln{
∑

π:B(π)=l

T∏
t=1

g(zt = πt, q
t(x);ω)}+R(ω)

(18)
where l is the label sequence, Q represents the training set,
and R(ω) denotes the regularization term. In our experi-
ment, R is a weight decay penalty implemented with L2
regularization.

4.2.4 Discussion on MC-FCRN

Multi-scale strategy has been widely used in computer
vision, as it encourages analyzing the image from coarser
to finer levels and aggregates local feature in them [40],
[41], [42], [43]. Nevertheless, it has not been considered for
sequence labeling problem, like OHCTR. The proposed MC-
FCRN is a novel solution that introduces multi-scale strate-
gy into OHCTR problem and has the following remarkable
properties:
• For handwritten text recognition problem, normalization

on the text level easily results in characters of variable
scales, no mentioning the large amount of characters, cur-
sive writing styles and ambiguous segmentation problem.
With hierarchical-scale receptive fields, MC-FCRN can
generate informative feature that is robust and insensitive
to the complex and cursive handwritten Chinese hand-
written text.

• MC-FCRN explicitly keeps different receptive fields of the
same time step aligning at the same center position, as
illustrated in Fig. 3, thus it introduces the multi-scale spa-
tial context elegantly while avoiding confusion between
adjacent time steps, which consequently avoids oscillation
problem from gradient explosion during optimization.

• MC-FCRN is the first attempt to introduce multi-scale
spatial context for OHCTR sequence labeling problem.
It provides a simple yet effective way to deal with the



A SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

complicate handwritten Chinese text by enabling the sys-
tem to ‘observe’ the signature feature maps from multi-
scale perspectives. Besides, it is very easy to extend or
eliminate one specific ‘scale’ in MC-FCRN to keep the
trade-off between complexity and efficiency.

• The residual recurrent network of MC-FCRN not only
substantially accelerates the convergence procedure but
also promotes the performance significantly, while adding
neither extra parameter nor computational burden to the
system.

5 IMPLICIT LANGUAGE MODELING

We say that a system is an implicit language model (implicit
LM) if it does not directly learn the conditional probabil-
ities of the next word given previous words, but implic-
itly incorporates lexical constraints and prior knowledge
about the language to improve the system performance. The
network architecture of our implicit LM consists of three
components: the embedding layer, the language modeling
layer, and the transcription layer. Given the predicting fea-
ture sequence s = (s1, s2, · · · , sT ) from the multi-spatial-
context FCRN, the objective of the implicit LM is to learn to
make a prediction for each time step given the entire input
sequence:

f(zt, s) = U(zt, (M(s1),M(s2), · · · ,M(sT ))) (19)

s.t.

{∑|C′|
i=1 f(zt = C ′i|s) = 1,

f(zt|s) > 0.

where f(zt, s) models the probability distribution over all
the words in C ′ in the t-th time step given the entire
predicting feature sequence s, while the mappingM and the
probability function U represent two successive processing
stages that constitute the prediction procedure of the implic-
it LM.

In the first stage, the mapping M , implemented
by the embedding layer, translates the input sequence
s = (s1, s2, · · · , sT ) into real vectors (M(s1),M(s2), · · · ,
M(sT )), where M(st) ∈ Rm. Note that the mapping M
differs from the mapping C [45] in traditional neural lan-
guage models, because the embedding mapping used here
takes the input of a predicting feature vector, not just a one-
hot vector. It is noteworthy to mention that the predicting
feature vector here is highly related to character, playing a
very similar role to a one-hot vector. In Fig. 5, we visualize
10 categories of characters with their predicting feature
vector extracted from the predicting sequence of MC-FCRN.
From Fig. 5, we can observe the following properties of
the predicting feature vectors: (1) Although the predicting
features of the same character are different, they cluster
together in the feature space, maintaining distinct distance
from other characters. Such a phenomenon suggests that the
predicting feature can represent which character it probably
is. (2) There should exits a statistical central position for
each character in the feature space. The predicting features
of the same character do not have to distribute around this
central position strictly, so as to represent the intra-concept
variability [47]. Their distances to the central position of
a specific character reflect the confidence information of
being that character. More importantly, since our predicting

(a) (b)

Fig. 4. t-SNE visualization of the predicting feature vector of some typical
characters extracted from the output sequence of MC-FCRN (left) and
implicit LM (right). After applying implicit LM, the system manages to
rectify most of the unreasonably distributed feature vector by incorporat-
ing semantic context information.

feature vector do not neglect such confidence information
(compared to the one-hot vector), our implicit LM can take
advantage of it as well as semantic context to rectify the
misclassified characters, which has the same purpose when
we decode with statistical language model traditionally.

In the second stage, the probability function U , map-
s the embedding vectors for words in context (M(s1),
M(s2), · · · ,M(sT )) to a conditional probability distribu-
tion over all the words in C ′, i.e., the i-th element of
the output vector of U estimates the probability p(zt =
C ′i|(M(s1),M(s2), · · · ,M(sT ))). Then, we can represent
the function f(zt, s) by the composition of mappings M
and U as follows:

f(zt = C ′i, s) = U(C ′i, (M(s1),M(s2), · · · ,M(sT ))) (20)

In this paper, we implemented the embedding layer as a
fully connected layer that can be represented by a |C ′| ×m
matrix θM . The function U with parameters θU is im-
plemented by multilayered BLSTM for learning long-term
context from the forward and reverse directions. The overall
parameters for the implicit LM f are given by θ = (θM ,θU ).

Now, suppose p(πt, t|s) = f(zt = πt|s). By Eq. (9), the
probability of alignments can be represented by:

p(π|s) =

T∏
t=1

f(zt = πt|s). (21)

Then, the total probability of a transcription can be calculat-
ed by applying Eq. (21) to Eq. (10):

p(l|s) =
∑

π:B(π)=l

T∏
t=1

f(zt = πt|s). (22)

The training is achieved by searching for θ that minimizes
the negative penalized log-likelihood:

L(Q) = −
∑

(s,l)⊂Q

ln{
∑

π:B(π)=l

T∏
t=1

f(zt = πt|s;θ)}+R(θ)

(23)
where R(θ) is the regularization term.

5.1 Interesting Properties of Implicit Language Model
• Our implicit LM offers the unique advantage of lever-

aging semantic context from both directions of the text,
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significantly outperforming language models that only
predict the conditional probability of the next word given
previous words in one direction. Furthermore, because
LSTM can capture long-term complicated dynamics in
the sequence, our implicit LM has the potential to learn
semantic context from the entire sequence to enhance
recognition performance.

• The predicting feature sequence contains information that
indicates not only the predicted labels but also the confi-
dence about their prediction, providing much more in-
formation than a simple one-hot vector [45]. Thus, the
implicit LM is able to improve network performance by
exploiting the confidence information of the predicted
labels in addition to their semantic context knowledge.

• As shown in the experiments, implicit LM has significant
advantage over statistical LM in both decoding speed and
prediction accuracy, exhibiting great potential in practical
applications. Furthermore, unlike statistical LM whose
RAM size increases as the corpus grows, the implicit LM
has a fixed size that is determined by its network architec-
ture, making implicit LM an ideal alternative option for
the statistical LM in the case of a large corpus.

5.2 Training Strategy

In the process of implicit LM training, we do not update the
parameters of MC-FCRN. Given a training instance (x, l),
we feed the fixed-parameter MC-FCRN with the signature
feature maps x to obtain a predicting feature sequence of
length T . Then, the feature sequence with label l is used
to train the implicit LM. Note that the training set for the
implicit LM should contain semantic information, i.e., the
characters should be understandable in context. In fact, we
synthesized the text samples based on the corpora and
isolated characters in CASIA1.0-1.2 [57] to train implicit
LM and completely ignored the real training examples in
CASIA2.0-2.2 [57]. However, our training set for MC-FCRN
training does not contain any semantic knowledge. Actually,
we shuffle the order of the characters in each training
instance to achieve this effect. There are two main reasons
for using different training strategies during the training
procedure of MC-FCRN and the implicit LM. First, our MC-
FCRN and implicit LM can concentrate on learning spatial
context and semantic context, respectively. If we directly
learn spatial-semantic context in a unified network, then
such a network may heavily overfit the context informa-
tion of the training set. Second, because the training set
of CASIA2.0-2.2 has the same corpus as the test set, we
should not use the samples from the training set directly
for training, as it may lead to unfair comparison with the
results of other methods.

5.3 Statistical Language Model

In the post-processing procedure, the language model plays
a significant role in decoding the prediction sequence [2], [3],
[4]. The decoding algorithm proposed by Graves et al. [56]
is adopted in our experiments to incorporate the traditional
statistical language model.

6 EXPERIMENTS

To evaluate the effectiveness of the proposed system, we
conducted experiments on the standard benchmark dataset
CASIA-OLHWDB [57] and the ICDAR2013 Chinese hand-
writing recognition competition dataset [58] for uncon-
strained online handwritten Chinese text recognition.

6.1 Databases

In the following experiments, we used the training set of
CASIA-OLHWDB [57], including both unconstrained text
lines and isolated characters, as our training data. The train-
ing set of CASIA2.0-2.2 (one subset of CASIA-OLHWDB for
OHCTR problem) contains 4072 pages of handwritten texts,
with 41,710 text lines, including 1,082,220 characters of 2650
classes. We randomly split the training set into two groups,
with approximately 90% for training and the remainder
for validation and further parameter learning for language
modeling. The isolated training character samples (totally
3,129,496 character samples) of CASIA1.0-1.2 (one subset
of CASIA-OLHWDB) were also used to construct synthetic
text data for system optimization. Two popular benchmark
datasets for unconstrained online handwritten Chinese text
recognition were used for performance evaluation, i.e., the
test set of CASIA2.0-2.2 (Dataset-CASIA) and the test set
of the online handwritten Chinese text recognition task of
the ICDAR 2013 Chinese handwriting recognition compe-
tition [58] (Dataset-ICDAR). Dataset-CASIA contains 1020
text pages, including 268,924 characters of 2626 classes,
while Dataset-ICDAR contains 3432 text lines, including
91,576 characters of 1375 classes. Note that for general-
pupose recognition and fair comparison with previous work
[2], [3], [4], our system had 7356 classes and was trained
using not only handwritten texts of CASIA2.0-2.2 but also
synthetic text data based on isolated characters from CASIA-
OLHWDB.

For language modeling, we conducted experiments us-
ing both the implicit LM and the statistical language model.
Three corpora were used in this paper: the PFR corpus
[59], which contains news text of 2,199,492 characters from
the 1998 People’s Daily corpus; the PH [60] corpus, which
contains news text of 3,697,028 characters from the People’s
Republic of China’s Xinhua news recorded between January
1990 and March 1991; and the CLDC corpus [61], which
contains contemporary corpus of approximately 50 million
characters in 7,356 classes collected by the Institute of Ap-
plied Linguistics. For statistical language modeling, we used
the SRILM toolkit [62] to build our language model.

6.2 Experimental Setting

The detailed architecture of our MC-FCRN and implicit LM
is shown in Fig. 5. Batch Normalization [63] was applied
after all but the first two convolutional layers in order to
achieve faster convergence and avoid over-fitting. As the
recognition system consists of more class categories (7356)
than that of the training set of CASIA2.0-2.2 (2650), the
training procedure of MC-FCRN is divided into two stages.
In the first stage, synthetic text data based on the isolated
characters are taken for network optimization. When the
network reaches convergence, it is finetuned on the real
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samples from CASIA2.0-2.2. Note that, the order of char-
acters in each text sample was randomly shuffled to discard
the semantic context for fairness. To accelerate the training
process, our network was trained with shorter texts seg-
mented from text lines in the training data, which could be
normalized to the same height of 126 pixels while retaining
the width at fewer than 576 pixels. In the test phase, we
maintained the same height but increased the width to 2400
pixels in order to include the text lines from the test set.

We constructed our experiments within the CAFFE [64]
deep learning framework, in which LSTM is implemented
following the approach of Venugopalan et al. [21] while the
other processes are contributed by ourselves. Further, we
used AdaDelta as the optimization algorithm with ρ = 0.9.
The experiments were conducted using GeForce Titan-X
GPUs. For performance evaluation, we used the correct rate
(CR) and accuracy rate (AR) as performance indicators, as
specified in the ICDAR 2013 Chinese handwriting recogni-
tion competition [65].

6.3 Experimental Results
6.3.1 Effect of Path Signature
Table 1 summarizes the recognition results of FCRN with
path signature for different truncated levels (Sig0, Sig1,
Sig2, and Sig3). Sig0 implies that only the k = 0 iterated
integral is considered in the experiments, Sig1 implies that
the k = 0 and k = 1 iterated integrals are considered in the
experiments, and so on for Sig2 and Sig3. The experiments
showed that the system performance improves monotoni-
cally from 85.14% to 87.94% on Dataset-ICDAR and from
89.58% to 92.22% on Dataset-CASIA as the path signature
increases from Sig0 to Sig3. This proves the effectiveness
of applying path signature to the OHCTR problem. Such
results are obtained because the path signature captures
more essential information from the pen-tip trajectories with
higher iterated integrals. We also observed that the perfor-
mance improvement slows down as the iterated integrals
increase, because the iterated integral of the path increases
rapidly in dimension with severe computational burden
while carrying very little information. We also compare
the path signature with previous state-of-the-art feature,
i.e., the 8-directional feature [29]. As listed in Table 1, it
can be seen that all Sig1-Sig3 outperform the 8-Dir feature.
As Sig2 achieves a reasonable trade-off between efficiency
and complexity, we selected it for feature extraction in the
following experiments.

6.3.2 Effect of Multiple Spatial Contexts
In our system, the residual recurrent network acts as the
basic component for spatial context learning. As listed in

TABLE 1
Effect of Path Signature (Percent)

Path
signatures

Feature
maps

Dataset-ICDAR Dataset-CASIA
CR AR CR AR

Sig0 1 85.14 83.60 89.58 87.67
Sig1 3 86.83 85.82 91.47 90.54
Sig2 7 87.82 86.85 92.29 91.38
Sig3 15 87.94 87.20 92.22 91.58

8-Dir [29] 8 85.71 83.32 90.48 87.82
8-Dir+Sig0 9 87.67 86.52 92.05 91.00

k: 64×3×3, s: 1×1, p: 0 ×1

k: 2×2, s: 2×2

k: 32(number)×3(height)×3(width), s: 1×1, p: 0×1

Path signature: 126×576(train) 126×2400(test)

Input: pen-tip trajectory

k: 2×2, s: 2×2

k: 128×3×3, s: 1×1, p: 0×1

k: 2×2, s: 2×2

k: 256×3×3, s: 1×1, p: 0×1

n: 512/1024/1536 (FCRN/2C-FCRN/3C-FCRN, respectively)

n: 512/1024/1536

transcription

n: 7356+1

c: 512

c: 512

embedding layer

n: 1024

n: 7356+1

transcription

MC-FCRN

Implicit

Language 

Model

FCRN

2C-FCRN

3C-FCRN

convolution

pooling

BLSTM \ LSTM

fully connected layer

the residual BLSTM \ LSTM

n: 1024

Notation of symbols:

k : number of convolutional kernel; s : stride size ; p : padding size

n : number of neural unit 

c : number of LSTM/BLSTM cells

k: 128×1×1, s: 1×1, p: 0×1

k: 512×1× 1, s: 1×1

k: 2×2, s: 2×2

k:512×3×3, s:1×1, p:1×1 
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Fig. 5. Illustration of network architecture of MC-FCRN.

Table 2, the residual recurrent network clearly has advan-
tages over the conventional recurrent network for both
unidirectional and bidirectional LSTM. Specifically, we drew
the curves of the correct rate for all these four networks for
the first training stage (see Section 6.2) on the validation
set in Fig. 6. The comparison of the curves conveys two
vital messages. First, the residual recurrent network sub-
stantially accelerates the convergence procedure from the
very beginning, e.g., the first five epoches. This is because
the recurrent network had not yet functioned during that
period; thus FCN network can be optimized directly with
CTC loss function through the residual connection. Second,
as time progressed, the recurrent network gradually aug-
ments its impact on the recognition result by increasingly
incorporating more spatial contextual information in an
elegant manner. Therefore, the FCRN with the residual
recurrent network tends to achieve superior results, and

TABLE 2
Effect of Residual Recurrent Network (Percent)

Architecture Dataset-ICDAR Dataset-CASIA
CR AR CR AR

LSTM 85.67 84.60 90.14 89.17
Residual LSTM 87.82 86.85 92.29 91.38

BLSTM 87.96 87.28 92.69 92.15
Residual BLSTM 89.24 88.32 93.66 92.96
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TABLE 3
Effect of Spatial Context (Percent)

System Foot print
MB (RAM)

Dataset-ICDAR Dataset-CASIA
runtime CR AR runtime CR AR

FCRN 49.8 108s 87.82 86.85 163s 92.29 91.38
2C-FCRN 109.5 211s 90.17 88.88 341s 94.47 93.31
3C-FCRN 181.8 299s 90.76 89.52 458s 94.72 93.74
FCRN-2 109.5 207s 89.26 88.37 342s 93.61 92.83
FCRN-3 181.8 302s 89.79 88.76 455s 94.02 93.23

GoogLeNet (6 inception) 60.5 165s 80.72 79.27 290s 83.08 81.86
GoogLeNet (9 inception) 81.0 179s 72.20 71.39 311s 76.81 75.94

TABLE 4
Effect of Semantic Context (Percent)

System Foot print
MB (RAM)

Dataset-ICDAR Dataset-CASIA
runtime CR AR runtime CR AR

FCRN(Baseline) w.o. LM 49.8 1.8min 87.82 86.85 2.7min 92.29 91.38
implicit

LM
PH

65.4 1.7 ±0.5min
93.92 93.34

5 ±0.5min
94.26 93.74

PFR 94.21 93.69 94.43 93.89
CLDC 95.33 94.52 96.39 95.80

statistical
LM

PH 11.1
130 ±5min

91.78 90.70
360 ±10min

94.22 93.11
PFR 6.6 91.93 90.88 94.27 93.10

CLDC 576.3 92.67 91.81 96.09 95.50
implicit LM + statistical LM CLDC 641.7 132±5min 95.79 95.04 365±10min 96.81 96.27
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Fig. 6. Curves of correct rate of (residual) recurrent network on validation
set for the first training stage (refer to Section 6.2).

more importantly, with less oscillation.
The effects of multiple spatial contexts are summarized

in Table 3, and the network architectures of FCRN, 2C-
FCRN, and 3C-FCRN are shown in Fig. 5. From Fig. 5,
we can see that FCRN, 2C-FCRN, and 3C-FCRN have
one, two, and three receptive fields of different scales for
each time step, respectively. The experiments showed that
the system performance improved monotonically for both
Dataset-ICDAR and Dataset-CASIA in the order of FCRN,
2C-FCRN, and 3C-FCRN, suggesting that we successfully
leveraged the multiple spatial contexts by using multiple
receptive fields and improved the system performance. Fur-
thermore, we designed FCRN-2 and FCRN-3 such that their
architectures and sizes were similar to those of 2C-FCRN
and 3C-FCRN, except that their receptive fields for each time
step were of the same scale. As listed in Table 3, although
FCRN-3 does benefit from increased parameter number, its
performance is even lower than that of 2C-FCRN, which
further verifies the significance of the additional spatial
context.

The inception mechanism of GoogLeNet, a similar but
different way to leverage multiple spatial contexts, demon-
strated outstanding ability in image classification and object
detection task. Therefore, we replaced the fully convolution-
al network with GoogLeNet using 6 inception layers and 9
inception layers, respectively, with proper customization to

maintain a reasonable length of the output feature sequence.
However, as listed in Table 3, incorporating the inception
does not yield sufficiently good results. There are two
reasons to explain this phenomenon. First, in MC-FCRN,
we carefully maintain different receptive fields of the same
time step at the same center position (as illustrated in Fig.3),
while the inception mechanism of GoogLeNet encourages
different scales of convolution kernel to fuse together, and
stack upon one another. The stacked inception layers did
perform well in the image-based classification problem, but
caused confusion between adjacent time steps, thus failing
in the sequence labeling problem, like OHCTR. Second, the
gradient explosion problem frequently occurs during the
training of integrated GoogLeNet-LSTM network. Note that
in this paper, we have already used multiple ways to avoid
the loss oscillation problem, such as using Bath Normaliza-
tion strategy and residual recurrent network, but oscillation
still occurs with GoogLeNet-LSTM during optimization.

6.3.3 Effect of Semantic Context
To evaluate the effectiveness of the implicit LM, we con-
ducted experiments based on FCRN text line recognizer and
three different corpora, i.e., the PFR, PH and CLDC corpus.
As listed in Table 4, both the implicit LM and statistical
language model substantially improved the system perfor-
mance on both Dataset-ICDAR and Dataset-CASIA. In the
table, we also observe the superiority of the implicit LM
over the statistical language model, especially on Dataset-
ICDAR. We attribute this superiority to the potential abil-
ity of the implicit LM to learn semantic context from the
entire sequence as well as the confidence information of
the predicted words. Furthermore, the evaluation time for
Dataset-ICDAR and Dataset-CASIA testing data is provided
as runtime term on the table. With the maximum number of
the prefix paths for beam search on the statistical language
model set to 100, the proposed implicit LM is approximately
70 times faster than the statistical language model, thus
exhibiting a significant advantage for practical applications.
Furthermore, unlike the statistical language model where its
RAM size increases as the corpus grows, the implicit LM has
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TABLE 5
Comparison with Previous Methods Based on Correct Rate and Accuracy Rate (Percent) for Dataset-ICDAR and Dataset-CASIA

Method
Dataset-ICDAR Dataset-CASIA

w.o. LM with LM w.o. LM with LM
CR AR CR AR CR AR CR AR

Shi et al., 2016 [12] 85.14 83.60 - - 89.58 87.67 - -
Wang et al., 2012 [1] - - - - - - 92.76 91.97
Zhou et al., 2013 [3] - - 94.62 94.06 87.93 85.92 94.34 93.75
Zhou et al., 2014 [4] - - 94.76 94.22 - - 95.32 94.69

VO-3 [58] - - 95.03 94.49 - - - -
2C-FCRN (residual LSTM) + CLDC (implicit LM) 90.17 88.88 96.01 95.46 94.47 93.31 97.07 96.72

2C-FCRN (residual LSTM) + CLDC (statistical LM) 90.17 88.88 94.51 93.45 94.47 93.31 97.01 96.49
2C-FCRN (residual LSTM) + CLDC (implicit LM & statistical LM) 90.17 88.88 96.58 96.09 94.47 93.31 97.50 97.23

Sun et al., 2016 [66] (2765 classes) 90.18 89.12 94.43 93.40 95.82 95.30 97.55 97.05
3C-FCRN (2651 classes) 93.53 92.86 97.15 96.50 95.50 94.73 97.75 97.31

Upper: 7356 classes; Lower: less than 3000 classes.
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Fig. 7. Unconstrained handwritten Chinese text lines with their corresponding labels and the result predicted by the systems.

a fixed size that is determined by its network architecture.
Therefore, the implicit LM is an ideal alternative option for
the statistical language model in the case of a large corpus,
e.g. CLDC.

It should be noted that the implicit LM requires a sig-
nificant amount of time for training in the experiments.
With the small corpus of PH and PFR, it takes about 10
days to achieve good convergence with the simple FCRN
recognizer. As for CLDC corpus that has at least 12 times
more corpus than PH and PFR, we spent approximately 9
weeks for optimizing implicit LM to outperform statistical
LM. Although its training process is time-consuming, in
return, implicit LM provides more accurate and much faster
predictions in the test phase, exhibiting great potential in
practical applications. As listed in Table 4, the system per-
formance can be further improved by jointly applying both
the implicit LM and the statistical language model, which
further verifies the complementarity between them.

6.3.4 Comparison with Published State-of-the-art Methods
The methods of Wang et al. [1], Zhou et al. [3] [4] and VO-
3 [58] were all based on the segmentation strategy, which
are different from our segmentation-free MC-FCRN that in-
corporate the recently developed FCN, LSTM, and CTC. As
listed in Table 5, our proposed method, 2C-FCRN with the
implicit LM trained on corpus CLDC, demonstrates supe-
rior performance to state-of-the-art results on both Dataset-
ICDAR and Dataset-CASIA. Furthermore, we integrate the
implicit LM with the statistical language model to leverage
the complementarity of them and the results are listed in
Table 5. It can be observed that our method significantly
outperforms the best results on Dataset-ICDAR and Dataset-
CASIA, with a relative error reduction of 29.04% and 47.83%
on accuracy rate, respectively. Unlike the above-mentioned

systems that have 7356 classes, Sun et al. [66] applied deep
stacked LSTM with only 2675 classes to tackle the OHCTR
problem. For a relatively fair comparison, we reduced our
network category so that it had 2650 classes, similar to
the training set of CASIA2.0-CASIA2.2. The experiments
shows that our network have a much more balanced and
better results on both Dataset-ICDAR and Dataset-CASIA
compared to Sun et al. [66].

6.4 Error Analysis

In this section, we offer typical examples, as shown in
Fig. 7, to show the effectiveness of our method. The left-
top examples shown in Fig. 7 demonstrate that sig3 takes
advantage of online information to recognize ambiguous
characters. The left-middle examples show that the residual
recurrent network improves the optimization of the net-
work. The left-bottom examples exhibit that MC-FCRN has
a strong capability of capturing spatial context information
for recognition. Finally, as shown in the right panel of the
figure, the implicit LM exhibit better capability of leveraging
semantic context information as well as confidence informa-
tion of predicted words for recognition, as compared to the
statistical language model.

7 CONCLUSION

In this paper, we addressed the challenging problem of un-
constrained online handwritten Chinese text recognition by
proposing a novel system that incorporates path signature, a
multi-spatial-context fully convolutional recurrent network
(MC-FCRN), and an implicit language model. We exploited
the spatial structure and online information of pen-tip trajec-
tories with a powerful path signature. Experiments showed



A SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

that the path signature truncated at level two achieves a
reasonable trade-off between efficiency and complexity for
OHCTR problem. For spatial context learning, we presented
the residual recurrent network to accelerate the convergence
process and improve the optimization results without in-
troducing extra parameters or computational burden to the
system. For multi-spatial context learning, we demonstrated
that our MC-FCRN successfully exploits multiple spatial
contexts from receptive fields with multiple scales to robust-
ly recognize the input signature feature maps. For semantic
context learning, an implicit LM was developed to learn
to make predictions conditioned on the entire predicting
feature sequence, significantly improving the system per-
formance. In the experiments, our best result significantly
outperformed all other existing method on two standard
benchmarks Dataset-ICDAR and Dataset-CASIA.

One limitation of the proposed implicit LM is that it
involves too much training time in the case of large corpus.
How to accelerate the training procedure of the RNN-based
implicit LM is still a challenging problem and remains for
further study.
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