270 research outputs found

    TIME SERIES ANALYSIS AND CLUSTERING TO CHARACTERIZE CARDIORESPIRATORY INSTABILITY PATTERNS IN STEP-DOWN UNIT PATIENTS

    Get PDF
    Background: Cardiorespiratory instability (CRI) in noninvasively monitored step-down unit (SDU) patients has a variety of etiologies, and therefore likely manifests in different patterns of vital signs (VS) changes. Objective: We sought to describe differences in admission characteristics and outcomes between patients with and without CRI. We explored use of clustering techniques to identify VS patterns within initial CRI epoch (CRI1) and assessed inter-cluster differences in admission characteristics, outcomes and medications. Methods: Admission characteristics and continuous monitoring data (frequency 1/20 Hz) were recorded in 307 patients. Vital sign (VS) deviations beyond local instability trigger criteria for 3 consecutive minutes or for 4 out of a 5 minute moving window were classified as CRI events. We identified CRI1 in 133 patients, derived statistical features of CRI1 epoch and employed hierarchical and k-means clustering techniques. We tested several clustering solutions and used 10-fold cross validation and ANOVA to establish best solution. Inter-cluster differences in admission characteristics, outcomes and medications were assessed. Main Results: Patients transferred to the SDU from units with higher monitoring capability were more likely to develop CRI (n=133, CRI 44% vs no CRI n=174, 31%, p=.042). Patients with at least one event of CRI had longer hospital length of stay (CRI 11.3 + 10.2 days vs no CRI 7.8 + 9.2, p=.001) and SDU unit stay (CRI 6.1 + 4.9 days vs no CRI 3.5 + 2.9, p< .001). Four main clusters(C) were derived. Clusters were significantly different based on age (p=0.001; younger patients in C1 and older in C2), number of comorbidities (p<0.01; more C2 patients had ≥2), and admission source (p=0.008; more C1 and C4 patients transferred in from a higher intensity monitoring unit). Patients with CRI differed significantly (p<.05) from those without CRI based on medication categories. Conclusions: CRI1 was associated with prolonged hospital and SDU length of stay. Patients transferred from a higher level of care were more likely to develop CRI, suggesting that they are sicker. Future study will be needed to determine if there are common physiologic underpinnings of VS clusters which might inform monitoring practices and clinical decision-making when CRI first manifests

    Aerospace Medicine and Biology: A Cumulative Index to the 1985 Issues

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 268 through 279 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes - subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    The Application of Physiological Metrics in Validating User Experience Evaluation on Automotive Human Machine Interface Systems

    Get PDF
    Automotive in-vehicle information systems have seen an era of continuous development within the industry and are recognised as a key differentiator for prospective customers. This presents a significant challenge for designers and engineers in producing effective next generation systems which are helpful, novel, exciting, safe and easy to use. The usability of any new human machine interface (HMI) has an implicit cost in terms of the perceived aesthetic perception and associated user experience. Achieving the next engaging automotive interface, not only has to address the user requirements but also has to incorporate established safety standards whilst considering new interaction technologies. An automotive (HMI) evaluation may combine a triad of physiological, subjective and performance-based measurements which are employed to provide relevant and valuable data for product evaluation. However, there is also a growing interest and appreciation that determining real-time quantitative metrics to drivers’ affective responses provide valuable user affective feedback. The aim of this research was to explore to what extent physiological metrics such as heart rate variability could be used to quantify or validate subjective testing of automotive HMIs. This research employed both objective and subjective metrics to assess user engagement during interactions with an automotive infotainment system. The mapping of both physiological and self-report scales was examined over a series of studies in order to provide a greater understanding of users’ responses. By analysing the data collected it may provide guidance within the early stages of in-vehicle design evaluation in terms of usability and user satisfaction. This research explored these metrics as an objective, quantitative, diagnostic measure of affective response, in the assessment of HMIs. Development of a robust methodology was constructed for the application and understanding of these metrics. Findings from the three studies point towards the value of using a combination of methods when examining user interaction with an in-car HMI. For the next generation of interface systems, physiological measures, such as heart rate variability may offer an additional dimension of validity when examining the complexities of the driving task that drivers perform every day. There appears to be no boundaries on technology advancements and with this, comes extra pressure for car manufacturers to produce similar interactive and connective devices to those that are already in use in homes. A successful in-car HMI system will be intuitive to use, aesthetically pleasing and possess an element of pleasure however, the design components that are needed for a highly usable HMI have to be considered within the context of the constraints of the manufacturing process and the risks associated with interacting with an in-car HMI whilst driving. The findings from the studies conducted in this research are discussed in relation to the usability and benefits of incorporating physiological measures that can assist in our understanding of driver interaction with different automotive HMIs
    • …
    corecore