62,330 research outputs found

    SIGHTED: A Framework for Semantic Integration of Heterogeneous Sensor Data on the Internet of Things

    Get PDF
    AbstractSensors are embedded nowadays in a growing number of everyday life objects. Smartphones, wearables, and sensor networks together play an important role in bridging the gap between physical and cyber worlds, a fundamental aspect of the Internet of Things vision. The ability to reuse sensor data integrated from multiple heterogeneous sources is a step towards building innovative applications and services. In this paper SIGHTED, a sensor data integration framework, is proposed exploiting semantic web technologies and linked data principles. It provides a layered structure as a guideline for integrating sensor data from various sources supporting accessibility and usability. DotThing, a demo platform, is implemented as an instantiation of SIGHTED framework and evaluated. Smartphones and sensor nodes are connected to DotThing showing the ability to query and reuse integrated sensor data from multiple sources to create more flexible horizontal applications. DotThing implementation also demonstrates the need for adding a semantic layer to existing IoT cloud-based platforms, like Xively, that generally lack such layer resulting in proprietary vertical solutions with limited data integration and discovery capabilities. DotThing makes use of vocabularies from existing ontologies on the linked data cloud providing a unified model to annotate data and link it to existing resources on the web

    Linked Vocabulary Recommendation Tools for Internet of Things: A Survey

    Get PDF
    The Semantic Web emerged with the vision of eased integration of heterogeneous, distributed data on the Web. The approach fundamentally relies on the linkage between and reuse of previously published vocabularies to facilitate semantic interoperability. In recent years, the Semantic Web has been perceived as a potential enabling technology to overcome interoperability issues in the Internet of Things (IoT), especially for service discovery and composition. Despite the importance of making vocabulary terms discoverable and selecting most suitable ones in forthcoming IoT applications, no state-of-the-art survey of tools achieving such recommendation tasks exists to date. This survey covers this gap, by specifying an extensive evaluation framework and assessing linked vocabulary recommendation tools. Furthermore, we discuss challenges and opportunities of vocabulary recommendation and related tools in the context of emerging IoT ecosystems. Overall, 40 recommendation tools for linked vocabularies were evaluated, both, empirically and experimentally. Some of the key ndings include that (i) many tools neglect to thoroughly address both, the curation of a vocabulary collection and e ective selection mechanisms; (ii) modern information retrieval techniques are underrepresented; and (iii) the reviewed tools that emerged from Semantic Web use cases are not yet su ciently extended to t today’s IoT projects

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    Enabling discoverable trusted services for highly dynamic decentralized workflows

    Get PDF
    Fifth generation (5G) mobile networks will revolutionize edge-based computing by providing fast and reliable network capabilities to remote sensors, devices and microservices. This heralds new opportunities for researchers, allowing remote instrumentation and analytic capabilities to be as accessible as local resources. The increased availability of remote data and services presents new opportunities for collaboration, yet introduces challenges for workflow orchestration, which will need to adapt to consider an increased choice of available services, including those from trusted partners and the wider community. In this paper we outline a workflow approach that provides decentralized discovery and orchestration of verifiably trustable services in support of multi-party operations. We base this work on the adoption of standardised data models and protocols emerging from hypermedia research, which has demonstrated success in using combinations of Linked Data, Web of Things (WoT) and semantic technologies to provide mechanisms for autonomous goal-directed agents to discover, execute and reuse new heterogeneous resources and behaviours in large-scale, dynamic environments. We adopt Verifiable Credentials (VCs) to securely share information amongst peers based on prior service usage in a cryptographically secure and tamperproof way, providing a trust-based framework for ratifying service qualities. Collating these new service description channels and integrating with existing decentralized workflow research based on vector symbolic architecture (VSA) provides an enhanced semantic search space for efficient and trusted service discovery that will be necessary for 5G edge-computing environments

    Semantic Transformation of Web Services

    Get PDF
    Web services have become the predominant paradigm for the development of distributed software systems. Web services provide the means to modularize software in a way that functionality can be described, discovered and deployed in a platform independent manner over a network (e.g., intranets, extranets and the Internet). The representation of web services by current industrial practice is predominantly syntactic in nature lacking the fundamental semantic underpinnings required to fulfill the goals of the emerging Semantic Web. This paper proposes a framework aimed at (1) modeling the semantics of syntactically defined web services through a process of interpretation, (2) scop-ing the derived concepts within domain ontologies, and (3) harmonizing the semantic web services with the domain ontologies. The framework was vali-dated through its application to web services developed for a large financial system. The worked example presented in this paper is extracted from the se-mantic modeling of these financial web services

    Interoperability in IoT through the semantic profiling of objects

    Get PDF
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.Portuguese Science and Technology Foundation (FCT) [UID/MULTI/00631/2013
    • …
    corecore