1,076,326 research outputs found

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    An algebraic basis for specifying and enforcing access control in security systems

    Get PDF
    Security services in a multi-user environment are often based on access control mechanisms. Static aspects of an access control policy can be formalised using abstract algebraic models. We integrate these static aspects into a dynamic framework considering requesting access to resources as a process aiming at the prevention of access control violations when a program is executed. We use another algebraic technique, monads, as a meta-language to integrate access control operations into a functional programming language. The integration of monads and concepts from a denotational model for process algebras provides a framework for programming of access control in security systems

    Using Control Frameworks to Map Risks in Web 2.0 Applications

    Get PDF
    Web 2.0 applications are continuously moving into the corporate mainstream. Each new development brings its own threats or new ways to deliver old attacks. The objective of this study is to develop a framework to identify the security issues an organisation is exposed to through Web 2.0 applications, with specific focus on unauthorised access. An extensive literature review was performed to obtain an understanding of the technologies driving Web 2.0 applications. Thereafter, the technologies were mapped against Control Objectives for Information and related Technology and Trust Service Principles and Criteria and associated control objectives relating to security risks. These objectives were used to develop a framework which can be used to identify risks and formulate appropriate internal control measures in any organisation using Web 2.0 applications. Every organisation, technology and application is unique and the safeguards depend on the nature of the organisation, information at stake, degree of vulnerability and risks. A comprehensive security program should include a multi-layer approach comprising of a control framework, combined with a control model considering the control processes in order to identify the appropriate control techniques.Web 2.0, Security risks, Control framework, Control Objectives for Information and related Technology (CobiT), Trust Service Principles and Criteria

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar

    Secure Cloud Storage: A Framework for Data Protection as a Service in the Multi-cloud Environment

    Get PDF
    This paper introduces Secure Cloud Storage (SCS), a framework for Data Protection as a Service (DPaaS) to cloud computing users. Compared to the existing Data Encryption as a Service (DEaaS) such as those provided by Amazon and Google, DPaaS provides more flexibility to protect data in the cloud. In addition to supporting the basic data encryption capability as DEaaS does, DPaaS allows users to define fine-grained access control policies to protect their data. Once data is put under an access control policy, it is automatically encrypted and only if the policy is satisfied, the data could be decrypted and accessed by either the data owner or anyone else specified in the policy. The key idea of the SCS framework is to separate data management from security management in addition to defining a full cycle of data security automation from encryption to decryption. As a proof-of-concept for the design, we implemented a prototype of the SCS framework that works with both BT Cloud Compute platform and Amazon EC2. Experiments on the prototype have proved the efficiency of the SCS framework
    corecore