14,225 research outputs found

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Lost in translation: data integration tools meet the Semantic Web (experiences from the Ondex project)

    Full text link
    More information is now being published in machine processable form on the web and, as de-facto distributed knowledge bases are materializing, partly encouraged by the vision of the Semantic Web, the focus is shifting from the publication of this information to its consumption. Platforms for data integration, visualization and analysis that are based on a graph representation of information appear first candidates to be consumers of web-based information that is readily expressible as graphs. The question is whether the adoption of these platforms to information available on the Semantic Web requires some adaptation of their data structures and semantics. Ondex is a network-based data integration, analysis and visualization platform which has been developed in a Life Sciences context. A number of features, including semantic annotation via ontologies and an attention to provenance and evidence, make this an ideal candidate to consume Semantic Web information, as well as a prototype for the application of network analysis tools in this context. By analyzing the Ondex data structure and its usage, we have found a set of discrepancies and errors arising from the semantic mismatch between a procedural approach to network analysis and the implications of a web-based representation of information. We report in the paper on the simple methodology that we have adopted to conduct such analysis, and on issues that we have found which may be relevant for a range of similar platformsComment: Presented at DEIT, Data Engineering and Internet Technology, 2011 IEEE: CFP1113L-CD

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Collaborative Development and Evaluation of Text-processing Workflows in a UIMA-supported Web-based Workbench

    Get PDF
    Challenges in creating comprehensive text-processing worklows include a lack of the interoperability of individual components coming from different providers and/or a requirement imposed on the end users to know programming techniques to compose such workflows. In this paper we demonstrate Argo, a web-based system that addresses these issues in several ways. It supports the widely adopted Unstructured Information Management Architecture (UIMA), which handles the problem of interoperability; it provides a web browser-based interface for developing workflows by drawing diagrams composed of a selection of available processing components; and it provides novel user-interactive analytics such as the annotation editor which constitutes a bridge between automatic processing and manual correction. These features extend the target audience of Argo to users with a limited or no technical background. Here, we focus specifically on the construction of advanced workflows, involving multiple branching and merging points, to facilitate various comparative evalutions. Together with the use of user-collaboration capabilities supported in Argo, we demonstrate several use cases including visual inspections, comparisions of multiple processing segments or complete solutions against a reference standard, inter-annotator agreement, and shared task mass evaluations. Ultimetely, Argo emerges as a one-stop workbench for defining, processing, editing and evaluating text processing tasks

    DARIAH and the Benelux

    Get PDF
    corecore