134,441 research outputs found

    Limited-Communication Distributed Model Predictive Control for HVAC Systems

    Get PDF
    This dissertation proposes a Limited-Communication Distributed Model Predictive Control algorithm for networks with constrained discrete-time linear processes as local subsystems. The introduced algorithm has an iterative and cooperative framework with neighbor-to-neighbor communication structure. Convergence to a centralized solution is guaranteed by requiring coupled subsystems with local information to cooperate only. During an iteration, a local controller exchanges its predicted effects with local neighbors (which are treated as measured input disturbances in local dynamics) and receives the neighbor sensitivities for these effects at next iteration. Then the controller minimizes a local cost function that counts for the future effects to neighbors weighted by the received sensitivity information. Distributed observers are employed to estimate local states through local input-output signals. Closed-loop stability is proved for sufficiently long horizons. To reduce the computational loads associated with large horizons, local decisions are parametrized by Laguerre functions. A local agent can also reduce the communication burden by parametrizing the communicated data with Laguerre sequences. So far, convergence and closed-loop stability of the algorithm are proven under the assumptions of accessing all subsystem dynamics and cost functions information by a centralized monitor and sufficient number of iterations per sampling. However, these are not mild assumptions for many applications. To design a local convergence condition or a global condition that requires less information, tools from dissipativity theory are used. Although they are conservative conditions, the algorithm convergence can now be ensured either by requiring a distributed subsystem to show dissipativity in the local information dynamic inputs-outputs with gain less than unity or solving a global dissipative inequality with subsystem dissipativity gains and network topology only. Free variables are added to the local problems with the object of having freedom to design such convergence conditions. However, these new variables will result into a suboptimal algorithm that affects the proposed closed-loop stability. To ensure local MPC stability, therefore, a distributed synthesis, which considers the system interactions, of stabilizing terminal costs is introduced. Finally, to illustrate the aspects of the algorithm, coupled tank process and building HVAC system are used as application examples

    A gauge-invariant reorganization of thermal gauge theory

    Get PDF
    This dissertation is devoted to the study of thermodynamics for quantum gauge theories.The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in mD/T, mf /T and e2, where mD and mf are the photon and electron thermal masses, respectively, and e is the coupling constant.I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in mD/T and g2, where mD is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ~ 2 - 3 Tc. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC.Die Dissertation ist aufgebaut auf den folgenden Veröffentlichungen: • J. O. Andersen, M. Strickland and N. Su Three-loop HTL free energy for QED Physical Review D 80, 085015 (2009) • J. O. Andersen, M. Strickland and N. Su Gluon Thermodynamics at Intermediate Coupling Physical Review Letters 104, 122003 (2010) • J. O. Andersen, M. Strickland and N. Su Three-loop HTL gluon thermodynamics at intermediate coupling arXiv:1005.1603 [hep-ph] (Eingereicht zu Händen des Journal of High Energy Physics

    Analyses of pion-nucleon elastic scattering amplitudes up to O(p4)O(p^4) in extended-on-mass-shell subtraction scheme

    Full text link
    We extend the analysis of elastic pion-nucleon scattering up to O(p4)O(p^4) level using extended-on-mass-shell subtraction scheme within the framework of covariant baryon chiral perturbation theory. Numerical fits to partial wave phase shift data up to s=1.13\sqrt{s}=1.13 GeV are performed to pin down the free low energy constants. A good description to the existing phase shift data is achieved. We find a good convergence for the chiral series at O(p4)O(p^4), considerably improved with respect to the O(p3)O(p^3)-level analyses found in previous literature. Also, the leading order contribution from explicit Δ(1232)\Delta(1232) resonance and partially-included Δ(1232)\Delta(1232) loop contribution are included to describe phase shift data up to s=1.20\sqrt{s}=1.20 GeV. As phenomenological applications, we investigate chiral correction to the Goldberger-Treiman relation %ΔGT\Delta_{GT} and find that it converges rapidly, and the O(p3)O(p^3) correction is found to be very small: ≃0.2\simeq 0.2%. We also get a reasonable prediction of pion-nucleon sigma term σπN\sigma_{\pi N} up to O(p4)O(p^4) by performing fits including both the pion-nucleon partial wave phase shift data and the lattice QCD data. We report that σπN=52±7\sigma_{\pi N}=52\pm7 MeV from the fit without Δ(1232)\Delta(1232), and σπN=45±6\sigma_{\pi N}=45\pm6 MeV from the fit with explicit Δ(1232)\Delta(1232).Comment: The final version published in Phys.Rev. D 87, 054019 (2013

    Penalized estimation in large-scale generalized linear array models

    Full text link
    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension of the parameter vector. A new design matrix free algorithm is proposed for computing the penalized maximum likelihood estimate for GLAMs, which, in particular, handles nondifferentiable penalty functions. The proposed algorithm is implemented and available via the R package \verb+glamlasso+. It combines several ideas -- previously considered separately -- to obtain sparse estimates while at the same time efficiently exploiting the GLAM structure. In this paper the convergence of the algorithm is treated and the performance of its implementation is investigated and compared to that of \verb+glmnet+ on simulated as well as real data. It is shown that the computation time fo
    • …
    corecore