1,708 research outputs found

    Formally analysing the concepts of domestic violence.

    Get PDF
    The types of police inquiries performed these days are incredibly diverse. Often data processing architectures are not suited to cope with this diversity since most of the case data is still stored as unstructured text. In this paper Formal Concept Analysis (FCA) is showcased for its exploratory data analysis capabilities in discovering domestic violence intelligence from a dataset of unstructured police reports filed with the regional police Amsterdam-Amstelland in the Netherlands. From this data analysis it is shown that FCA can be a powerful instrument to operationally improve policing practice. For one, it is shown that the definition of domestic violence employed by the police is not always as clear as it should be, making it hard to use it effectively for classification purposes. In addition, this paper presents newly discovered knowledge for automatically classifying certain cases as either domestic or non-domestic violence is. Moreover, it provides practical advice for detecting incorrect classifications performed by police officers. A final aspect to be discussed is the problems encountered because of the sometimes unstructured way of working of police officers. The added value of this paper resides in both using FCA for exploratory data analysis, as well as with the application of FCA for the detection of domestic violence.Formal concept analysis (FCA); Domestic violence; Knowledge discovery in databases; Text mining; Exploratory data analysis; Knowledge enrichment; Concept discovery;

    Curbing domestic violence: instantiating C-K theory with formal concept analysis and emergent self organizing maps.

    Get PDF
    In this paper we propose a human-centered process for knowledge discovery from unstructured text that makes use of Formal Concept Analysis and Emergent Self Organizing Maps. The knowledge discovery process is conceptualized and interpreted as successive iterations through the Concept-Knowledge (C-K) theory design square. To illustrate its effectiveness, we report on a real-life case study of using the process at the Amsterdam-Amstelland police in the Netherlands aimed at distilling concepts to identify domestic violence from the unstructured text in actual police reports. The case study allows us to show how the process was not only able to uncover the nature of a phenomenon such as domestic violence, but also enabled analysts to identify many types of anomalies in the practice of policing. We will illustrate how the insights obtained from this exercise resulted in major improvements in the management of domestic violence cases.Formal concept analysis; Emergent self organizing map; C-K theory; Text mining; Actionable knowledge discovery; Domestic violence;

    Time Aware Knowledge Extraction for Microblog Summarization on Twitter

    Full text link
    Microblogging services like Twitter and Facebook collect millions of user generated content every moment about trending news, occurring events, and so on. Nevertheless, it is really a nightmare to find information of interest through the huge amount of available posts that are often noise and redundant. In general, social media analytics services have caught increasing attention from both side research and industry. Specifically, the dynamic context of microblogging requires to manage not only meaning of information but also the evolution of knowledge over the timeline. This work defines Time Aware Knowledge Extraction (briefly TAKE) methodology that relies on temporal extension of Fuzzy Formal Concept Analysis. In particular, a microblog summarization algorithm has been defined filtering the concepts organized by TAKE in a time-dependent hierarchy. The algorithm addresses topic-based summarization on Twitter. Besides considering the timing of the concepts, another distinguish feature of the proposed microblog summarization framework is the possibility to have more or less detailed summary, according to the user's needs, with good levels of quality and completeness as highlighted in the experimental results.Comment: 33 pages, 10 figure

    Supporting scientific knowledge discovery with extended, generalized Formal Concept Analysis

    Get PDF
    In this paper we fuse together the Landscapes of Knowledge of Wille's and Exploratory Data Analysis by leveraging Formal Concept Analysis (FCA) to support data-induced scientific enquiry and discovery. We use extended FCA first by allowing K-valued entries in the incidence to accommodate other, non-binary types of data, and second with different modes of creating formal concepts to accommodate diverse conceptualizing phenomena. With these extensions we demonstrate the versatility of the Landscapes of Knowledge metaphor to help in creating new scientific and engineering knowledge by providing several successful use cases of our techniques that support scientific hypothesis-making and discovery in a range of domains: semiring theory, perceptual studies, natural language semantics, and gene expression data analysis. While doing so, we also capture the affordances that justify the use of FCA and its extensions in scientific discovery.FJVA and AP were partially supported by EUFP7 project LiMo- SINe (contract288024) for this research. CPM was partially supported by the Spanish Ministry of Economics and Competitiveness projects TEC2014-61729-EXP and TEC2014-53390-P

    Interactive knowledge discovery and data mining on genomic expression data with numeric formal concept analysis

    Get PDF
    Background: Gene Expression Data (GED) analysis poses a great challenge to the scientific community that can be framed into the Knowledge Discovery in Databases (KDD) and Data Mining (DM) paradigm. Biclustering has emerged as the machine learning method of choice to solve this task, but its unsupervised nature makes result assessment problematic. This is often addressed by means of Gene Set Enrichment Analysis (GSEA). Results: We put forward a framework in which GED analysis is understood as an Exploratory Data Analysis (EDA) process where we provide support for continuous human interaction with data aiming at improving the step of hypothesis abduction and assessment. We focus on the adaptation to human cognition of data interpretation and visualization of the output of EDA. First, we give a proper theoretical background to bi-clustering using Lattice Theory and provide a set of analysis tools revolving around K-Formal Concept Analysis (K-FCA), a lattice-theoretic unsupervised learning technique for real-valued matrices. By using different kinds of cost structures to quantify expression we obtain different sequences of hierarchical bi-clusterings for gene under- and over-expression using thresholds. Consequently, we provide a method with interleaved analysis steps and visualization devices so that the sequences of lattices for a particular experiment summarize the researcher’s vision of the data. This also allows us to define measures of persistence and robustness of biclusters to assess them. Second, the resulting biclusters are used to index external omics databases—for instance, Gene Ontology (GO)—thus offering a new way of accessing publicly available resources. This provides different flavors of gene set enrichment against which to assess the biclusters, by obtaining their p-values according to the terminology of those resources. We illustrate the exploration procedure on a real data example confirming results previously published. Conclusions: The GED analysis problem gets transformed into the exploration of a sequence of lattices enabling the visualization of the hierarchical structure of the biclusters with a certain degree of granularity. The ability of FCA-based bi-clustering methods to index external databases such as GO allows us to obtain a quality measure of the biclusters, to observe the evolution of a gene throughout the different biclusters it appears in, to look for relevant biclusters—by observing their genes and what their persistence is—to infer, for instance, hypotheses on their function

    A model for information retrieval driven by conceptual spaces

    Get PDF
    A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model

    Product Family Design Knowledge Representation, Aggregation, Reuse, and Analysis

    Get PDF
    A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In current practice, information captured while designing products in a family is often incomplete, unstructured, and is mostly proprietary in nature, making it difficult to index, search, refine, reuse, distribute, browse, aggregate, and analyze knowledge across heterogeneous organizational information systems. To this end, we propose a flexible knowledge management framework to capture, reorganize, and convert both linguistic and parametric product family design information into a unified network, which is called a networked bill of material (NBOM) using formal concept analysis (FCA); encode the NBOM as a cyclic, labeled graph using the Web Ontology Language (OWL) that designers can use to explore, search, and aggregate design information across different phases of product design as well as across multiple products in a product family; and analyze the set of products in a product family based on both linguistic and parametric information. As part of the knowledge management framework, a PostgreSQL database schema has been formulated to serve as a central design repository of product design knowledge, capable of housing the instances of the NBOM. Ontologies encoding the NBOM are utilized as a metalayer in the database schema to connect the design artifacts as part of a graph structure. Representing product families by preconceived common ontologies shows promise in promoting component sharing, and assisting designers search, explore, and analyze linguistic and parametric product family design information. An example involving a family of seven one-time-use cameras with different functions that satisfy a variety of customer needs is presented to demonstrate the implementation of the proposed framework
    • …
    corecore