1,509 research outputs found

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    A reliable totally-ordered group multicast protocol for mobile Internet

    Get PDF
    Version of RecordPublishe

    A Unified Specification Framework for Spatiotemporal Communication

    Get PDF
    Traditionally, network communication entailed the delivery of messages to specific network addresses. As computers acquired multimedia capabilities, new applications such as video broadcasting dictated the need for real-time quality of service guarantees and delivery to multiple recipients. In light of this, a subtle transition took place as a subset of IP addresses evolved into a group-naming scheme and best-effort delivery became subjugated to temporal constraints. With recent developments in mobile and sensor networks new applications are being considered in which physical locations and even temporal coordinates play a role in identifying the set of desired recipients. Other applications involved in the delivery of spatiotemporal services are pointing to increasingly sophisticated ways in which the name, time, and space dimensions can be engaged in specifying the recipients of a given message. In this paper we explore the extent to which these and other techniques for implicit and explicit specification of the recipient list can be brought under a single unified frame-work. The proposed framework is shown to be expressive enough so as to offer precise specifications for ex-isting communication mechanisms. More importantly, its analysis suggests novel forms of communication relevant to the emerging areas of spatiotemporal service provision in sensor and mobile networks

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Protocol for Supporting Context Provision in Wireless Mobile Ad Hoc Networks

    Get PDF
    The increasing ubiquity of mobile computing devices has made ad hoc networks everyday occurrences. In these highly dynamic environments, the multitude of devices provides a varied and rapidly changing environment in which applications must learn to operate. Successful end-user applications will not only learn to function in this environment but will take advantage of the variety of information available. Protocols for gathering an application’s contextual information must be built into the network to function in a timely and adaptive fashion. This paper presents a protocol for providing context information to such applications. We present an implementation and show how it provides context information to mobile applications in an on-demand manner. We also provide a simulation analysis of the tradeoffs between consistency and range of context definitions in highly dynamic ad hoc networks

    Walkabout : an asynchronous messaging architecture for mobile devices

    Get PDF
    Modern mobile devices are prolific producers and consumers of digital data, and wireless networking capabilities enable them to transfer their data over the Internet while moving. Applications running on these devices may perform transfers to upload data for backup or distribution, or to download new content on demand. Unfortunately, the limited connectivity that mobile devices experience can make these transfers slow and impractical as the amount of data increases. This thesis argues that asynchronous messaging supported by local proxies can improve the transfer capabilities of mobile devices, making it practical for them to participate in large Internet transfers. The design of the Walkabout architecture follows this approach: proxies form store-and-forward overlay networks to deliver messages asynchronously across the Internet on behalf of devices. A mobile device uploads a message to a local proxy at rapid speed, and the overlay delivers it to one or more destination devices, caching the message until each one is able to retrieve it from a local proxy. A device is able to partially upload or download a message whenever it has network connectivity, and can resume this transfer at any proxy if interrupted through disconnection. Simulation results show that Walkabout provides better throughput for mobile devices than is possible under existing methods, for a range of movement patterns. Upload and end-to-end to transfer speeds are always high when the device sending the message is mobile. In the basic Walkabout model, a message sent to a mobile device that is repeatedly moving between a small selection of connection points experiences high download and end-to-end transfer speeds, but these speeds fall as the number of connection points grows. Pre-emptive message delivery extensions improve this situation, making fast end-to-end transfers and device downloads possible under any pattern of movement. This thesis describes the design and evaluation of Walkabout, with both practical implementation and extensive simulation under real-world scenarios
    corecore