82,183 research outputs found

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    Automating the IEEE std. 1500 compliance verification for embedded cores

    Get PDF
    The IEEE 1500 standard for embedded core testing proposes a very effective solution for testing modern system-on-chip (SoC). It proposes a flexible hardware test wrapper architecture, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Already several IP providers have announced compliance in both existing and future design blocks. In this paper we address the challenge of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE std. 1500. This is a mandatory step to fully trust the wrapper functionalities in applying the test sequences to the core. The proposed solution aims at implementing a verification framework allowing core providers and/or integrators to automatically verify the compliancy of their products (sold or purchased) to the standar

    Functional verification of a RISC-V vector accelerator

    Get PDF
    We present the functional verification efforts for an academic RISC-V based vector accelerator, successfully taped-out in the context of the European Processor Initiative. For our novel RISC-V based decoupled vector accelerator, we built a verification infrastructure consisting of a UVM environment, performing step by step co-simulation of all vector instructions, using the Spike instruction set simulator as a reference model. Furthermore, for validating this complex design connected to a scalar core using a custom interface, we provided automated constrained-random test generation, simulation and error reporting, and CI/CD infrastructure. We found 3005 errors during this process and reached 95.79% functional coverage.This research has received funding from the European High Performance Computing Joint Undertaking (JU) under Framework Partnership Agreement No 800928 (European Processor Initiative) and Specific Grant Agreement No 101036168 (EPI SGA2). The JU receives support from the European Union’s Horizon 2020 research and innovation programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-SGA2 project, PCI2022-132935 is also co-funded by MCIN/AEI /10.13039/501100011033 and by the UE NextGenerationEU/PRTR.Peer ReviewedPostprint (author's final draft

    Towards a theory of ground-theoretic content

    Get PDF
    A lot of research has recently been done on the topic of ground, and in particular on the logic of ground. According to a broad consensus in that debate, ground is hyperintensional in the sense that even logically equivalent truths may differ with respect to what grounds them, and what they ground. This renders pressing the question of what we may take to be the ground-theoretic content of a true statement, i.e. that aspect of the statement's overall content to which ground is sensitive. I propose a novel answer to this question, namely that ground tracks how, rather than just by what, a statement is made true. I develop that answer in the form of a formal theory of ground-theoretic content and show how the resulting framework may be used to articulate plausible theories of ground, including in particular a popular account of the grounds of truth-functionally complex truths that has proved difficult to accommodate on alternative views of content
    • 

    corecore