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Abstract—We present the functional verification efforts for an
academic RISC-V based vector accelerator, successfully taped-out
in the context of the European Processor Initiative. For our novel
RISC-V based decoupled vector accelerator, we built a verification
infrastructure consisting of a UVM environment, performing step
by step co-simulation of all vector instructions, using the Spike
instruction set simulator as a reference model. Furthermore,
for validating this complex design connected to a scalar core
using a custom interface, we provided automated constrained-
random test generation, simulation and error reporting, and
CI/CD infrastructure. We found 3005 errors during this process
and reached 95.79% functional coverage.

Index Terms—verification, RISC-V, vector accelerator, UVM,
coverage, random binary generation

1. INTRODUCTION

Many open source and research hardware projects have
emerged in the past decade, in which the main objective was
to tape out an entire processing system [8, 9, 4]. To this end, a
significant effort in design verification must be made in order
to avoid fabricating a prone-to-fail design. However, academic
designs are typically not verified at the industrial-grade, often
due to a lack of resources and experience, and different needs
than the industry. Meanwhile, open-source ISAs such as RISC-
V favor collaboration between research and industrial entities,
also providing independence from non-European computing
technologies.

The European Processor Initiative (EPI)1 is a project that
embraces this idea, being conceived to create the first European
processor and accelerators. Many partners are involved in its
development, for example, BSC developed the Vector Accel-
erator that will be directly connected to a scalar RISC-V core
designed by SemiDynamics, while the top-level integration of
the test chip is done by EXTOLL and the tape out is coordinated
by Fraunhofer.

RISC-V is an open-source Instruction Set Architecture (ISA)
[13], which among others, has a vector extension, currently
in version 1.0 [3]. This extension includes the vectorized
version of many arithmetic, logical and memory instructions,
along with vector-specific instructions such as reductions, and
scatter and gather operations. Additionally, the RISC-V Vector
extension (RVV) is vector length agnostic and supports different
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1https://www.european-processor-initiative.eu/accelerator/

element widths via dedicated configuration registers. Our main
goal in this project was to verify our novel, decoupled vector
accelerator functionally, which implemented version 0.7.1 of
the RVV and was connected to the scalar processor core via
the Open Vector Interface (OVI) [12].

With RISC-V many groups have appeared in the open
source world contributing to the community with their projects.
Groups like OpenHW have designed and developed verification
environments [10] for many designs as Parallel Ultra Low
Power (PULP) designs such as RI5CY , Ariane and Ibex.

The main contributions of this paper are:
• Description of an industrial grade verification approach,

with UVM testbench, reference model, assertions and
coverage, for a modern RISC-V vector accelerator.

• Implementation of a common UVM testbench for a novel
interface design and a large-scale RTL project.

• Result comparison of each completed vector instruc-
tion against the reference model via co-simulation of
constrained-random binaries and C programs.

• Automated testing and regression infrastructure to reach
high levels of functional/code coverage, of up to 95.79%.

2. BACKGROUND

The Vector Processing Unit (VPU) is based on ISA Vector
extension 0.7.1v [2], has eight vector lanes, supporting large
vectors of up to a maximum vector length of 256 elements of 64
bits each (16Kb total). It has 32 logical and 40 physical vector
registers. Each lane has one Fused Multiply Accumulate (FMA)
unit capable of calculating two double-precision operations per
cycle, for a total maximum throughput of 16 DFlops/cycle.
It supports 64 and 32-bit floating-point vector operations, as
well as 64, 32, 16 and 8-bit integer vector operations. Memory
operations have limited out of order capability, mostly between
arithmetic and memory operations.

The VPU has all eight vector lanes connected to the memory
operation units, the inter-lane ring and the instruction queues,
which serialize the instructions arriving from the scalar core to
which the VPU is connected (Figure 1). The scalar core is in
charge of executing scalar instructions and sending the vector
instructions to the VPU. Memory accesses for the vector
memory operations are also performed by the core, through
OVI.
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Fig. 1. VPU is connected to the Scalar Core through OVI.

OVI contains the following sub-interfaces:
• ISSUE: through which the core sends the request along

with the instruction, configuration values and scalar input.
• DISPATCH: all issued instructions are either confirmed

or killed. This enables speculative issue of vector instruc-
tions.

• COMPLETED: thorugh which the VPU notifies the in-
struction has been completed, together with metadata and
scalar output.

• MEMOP: start and finish signals of a memory operation
are sent using this interface.

• LOAD: used by the core to send the load data and
metadata.

• STORE: VPU sends the data of store operations to the
core through this interface.

• MASK-INDEX: through which the VPU sends the vector
content to generate the addresses of masked and indexed
memory instructions.

At each vector instruction, many sub-interfaces must be
considered given that some of them can change the instruc-
tion’s behavior or should be looked to retrieve results. ISSUE,
STORE and MASK-INDEX interfaces use a credit system for
handshaking between the VPU and the scalar core.

The VPU was developed in collaboration with another part-
ner, UniZagreb, which was in charge of developing the Floating
Point Unit submodule and its verification.

3. DESIGN VERIFICATION METHODOLOGY

We constructed a set of tools and utilities around the design
under test (DUT) that facilitated the detection of errors. The
tools we developed had to be easy to share with partners as
some verification efforts are shared and reusable for the next-
generation designs. To meet these requirements, we used the
Universal Verification Methodology (UVM) [1], which is built
under the premises of creating a modular, scalable and reusable
verification environment.

At first, we considered verifying individually each VPU
submodule, stimulating them with constrained-random tech-
niques with several UVM environments. As this approach
implied an unbearable amount of effort for our team and the

final specifications were not ready for all the submodules, we
decided to focus at the interface level (OVI) that already had
well-defined specifications.

Once we built the UVM that drives instructions to the DUT ,
we needed a way to evaluate the results of the VPU. For
that purpose, we used a UVM scoreboard that compares these
results with the ones from the reference model, a software
that predicts how the design should behave based on the
inputs. Our reference model accepts instructions as an input
and generates the expected results. We decided to use the
RISC-V ISA simulator Spike [11] for co-simulation in our UVM
environment.

Even if detecting a mismatch in the result of an instruction
is crucial for our job, it may not point out the cause of
the error. We also added SystemVerilog assertions to improve
observability.

4. DESIGN VERIFICATION INFRASTRUCTURE

Fig. 2. Verification Environment Overview

The verification environment we implemented is shown in
Figure 2 and explained in the following sub-sections.

A. UVM

Our environment is composed of the UVM top module,
which instantiates the UVM environment. As we have different
semi-independent sub-interfaces, we created one agent for each
specific sub-interface. For example, at the issue sub-interface,
there is an agent, which contains a sequencer, a driver and a
monitor connected to the virtual interface.

Each virtual sequence creates interface-specific transactions
that are sent to the corresponding interface. When the driver
gets the transaction, it stimulates the corresponding sub-
interface with the incoming transaction values. As the virtual
sequence does not know when the transaction is driven, we
also have a specific monitor that captures the interface state and
sends it back to the virtual sequence through the sequencer. The
corresponding virtual sequence gets the transaction and reacts
to it, producing a new stimulus [7].

All seven sub-interfaces are unique in the environment and
constantly communicate with each other (e.g., masked to load
and issue to dispatch sub-interfaces). To keep them in synchro-
nization, we use UVM events, which are capable of transmitting
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data along with the event trigger. This feature eased the virtual
sequences inter-communication.

The high degree of dependence between the sub-interfaces
complicated the constrained-random stimulus generation.
Therefore, we decided to randomize only the instructions fed
to the issue sub-interface and made all the other sub-interfaces
react according to the instructions driven.

B. RISCV-DV

RISCV-DV [6] is a SystemVerilog/UVM based open-source
instruction generator for RISC-V processor verification devel-
oped by Google. RISCV-DV generates random RISC-V assem-
bly tests, which we used to provide vector instructions to test
the VPU. RISCV-DV implemented a later RVV than 0.7.1, so
we developed and adapted the parts we needed to fit.

The major additions we did to RISCV-DV were:
• Generation of vsetvli instructions through the code and

modification of the generation of memory operations to
allow the change of element width and vector length.

• An option to select the initialization pattern of the data
pages.

• Constraining of the memory addresses accessed by the test
to avoid memory exceptions, specially for vector memory
indexed instructions.

• Adapting to the 0.7.1 RVV .
Additionally, since some of the design modules were in

development for most of the verification process, we had to
initially blacklist many of the instructions from our generated
tests, to get functional tests at each iteration. When a significant
number of errors were fixed, we gradually removed instructions
from the blacklist, until all implemented instructions were
enabled.

C. Spike

In our environment, Spike has two main roles: 1) As a scalar
core, executing scalar instructions and providing the vector ones
to the UVM in program order, and 2) As a golden/reference
model to check the correctness of the DUT results.

To fulfill these two functions, we performed several modifi-
cations to Spike:

• Definition of functions to call Spike in SystemVerilog using
Direct Programming Interface (DPI).

• Creation of a method that resumes the simulation until
a vector instruction is executed, the reference results are
returned to the UVM to compare against VPU results.

• Functions to read from Spike’s memory.
• A function to force the result of reductions into Spike

to avoid execution divergence in unordered floating-point
reductions.

When a vector instruction is found, Spike provides the
instruction, the results and other relevant data to the UVM. The
instruction is then packed as a transaction and sent to the issue
agent. It arrives at the VPU, it’s executed, and the reference
model results are compared to those generated by the VPU.
Also, some changes were done to accommodate Spike to the
0.7.1 RISC-V vector specification:

• The implementation of the vector tail zeroing, replaced by
a different policy after version 0.7.1.

• Instruction decoding to follow the 0.7.1 specification.
• The requirements of Vector Context Status (VCS) fields in

mstatus.

Once the instruction is fed using the issue agent, the UVM
follows the VPU instruction execution flow. This involves the
stimulation/observation of two interfaces: a) DISPATCH where
we must confirm or discard the execution of each instruction
sending this information in instruction order, and b) COM-
PLETED at the end of execution of a confirmed instruction,
the completed monitor will observe a flag being set and will
create a transaction.

With this UVM setup, we could run simple instructions,
which helped in the first stages of the verification process to see
that our design was not stalling. However, this doesn’t assert
the result or the execution of the instruction went well. So, we
introduced a UVM component that checks the correctness of
the results, the scoreboard.

D. Scoreboard

It’s connected to the completed monitor and when an instruc-
tion finishes, a method that compares both results is executed.
The issue monitor would send the transaction to the scoreboard
and the reference model, but we directly take the information
coming from Spike, as we need it to feed the instruction to the
VPU.

The most interesting results from instruction execution are
not always seen as outputs of the VPU. In OVI, the COM-
PLETED sub-interface includes a scalar output and some
flags. In the general case, the VPU will write the result of
the instruction in one physical vector register. At instruction
completion time, the registers are accessed to get the result of
the instruction.

To check whether these results are correct or not, we include
the destination vector register value in the information that we
extract from Spike.

One particular case that we found is with reduction instruc-
tions, more specifically, the floating-point ones. The VPU uses
a different reduction algorithm than Spike, which is allowed
by the RVV specification. This situation caused two problems;
to begin with, we got a mismatch sometimes when executing
these instructions when they were actually correct according to
the rounding mode and algorithm used. The second problem
was that, even if we knew that the mismatch had been a false
positive, the result remained wrong in the Spike vector registers.
These values could later be used in other instructions and cause
mismatches even if the instruction was executed correctly. We
have created an independent reference model in C for the
unordered reductions that implements the same exact reduction
algorithm as the DUT. The VPU result is compared in these
cases against the reduction reference model instead of spike,
and if there is a match, the value is injected into the register
in spike.
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E. Memory Operations

Memory operations are one of the most delicate parts of our
design. The VPU does not have direct access to memory, so it
reads and writes data through the scalar core using the memop,
load, store and mask interfaces, which require plenty of inter
sub-interface communication.

For load operations, we need the data inside memory before
the instruction is executed. Therefore, along with the rest of the
instruction information from Spike, we get the data that should
be read. This data is written in a memory model, based on the
one from the OpenTitan project [9], which is accessed in the
corresponding addresses, and the Spike data is sent through the
load sub-interface of the VPU.

For store operations, we need the data in memory before
the instruction executes to check masked operations, to detect
undesired writes. In a store operation, the VPU sends the data,
which is stored in the memory model. Later on, these values
will be read and compared with the Spike ones.

Masked memory operations involve particular outgoing
transactions from the VPU, which sends the masks or indexes.
These are needed to execute the instruction on the environment
side and compare with the ones in Spike. This comparison
helped to detect the origin of the issue in many of the memory
instructions errors that were mask related.

One interesting case that OVI presents is what we call retries.
Retries occur when the VPU cannot handle all the loaded cache
lines the scalar core sent. If this happens, the instruction will
complete specifying a vstart value,representing the first element
that it could not write in the vector registers, indicating that the
instruction did not finish and that it must be re-executed. This
implies killing the instructions after the retrying one and re-
issuing the instruction starting from the element corresponding
to the stored vstart value. Additionally, memory exceptions for
multiple in-flight loads and stores, were randomized, causing
failing instructions to be killed. An added complexity was
calculating the correct vstart value, deciding between the lowest
received index, mask or data chunk.

Retries implied plenty of changes and were one of the
primary sources of errors in the VPU. We wanted to have the
possibility to increase the chance of causing retries to the VPU
which was randomized using UVM configuration objects.

F. Assertions

One of the critical points of the VPU is the interface, so we
decided to run down the OVI specifications and write System
Verilog Assertions (SVA) [5] that check that it is behaving as
expected, implementing more than 50. At the early stages of the
UVM testbench development, they helped to identify bugs in
the VPU, as well as problems in the UVM stimulation. Most of
the asserted properties were targeted to the memory-related sub-
interfaces and ensured that the OVI specifications were strictly
followed at any point of the project.

G. Coverage

We defined and implemented a functional coverage plan.
We mostly checked things that could be directly observed in
the VPU interface, like instructions, execution parameters and

values in the memory sub-interfaces. This way, we could ensure
that we executed all the instructions in all the possible ways in
the Accelerator. Furthermore, we gathered coverage metrics of
certain internal modules.

For instructions coverage and their different formats in Spec
0.7.1v [2] (Vector Length, Single Element Width, Rounding
Modes, Masks, etc.) we developed a set of of ISA tests, that
quickly tested the key configurations, in parallel with RISCV-
DV random tests for further stress. We also implemented
functional coverage for testing diverse loads and stores sce-
narios, not only for Vector Length, but also considering the
organization of the register file. Loads and their possible retries,
as explained in Section E, with different vstart values were
covered by directed tests that were added to the regressions
suite in order to check these scenarios were still valid on every
RTL change.

In addition to functional coverage, we recorded assertions
usage (active/passed) and code coverage of the simulations run
by continuous integration, which was used to generate and run
tests, and to collect coverage metrics.

H. CI Infrastructure

Our Continuous Integration (CI) infrastructure is built using
the open-source CI server Jenkins, where we created a set of
pipelines that interact with each other to have the most error-
free design possible.

We implemented the following pipelines:
1) New tests: Generates random tests with RISCV-DV ,

compiles the DUT , executes the binaries and does a
classification between passed and failed tests, separated
later into two directories. The first ones are used to create
a regression set and the others are kept for debugging and
checking until the error is fixed.

2) Retry: For each change in the main branch of the DUT
repository, the set of failed tests is re-executed and
classified again in passed and failed.

3) Selection: Every day at midnight, if the number of tests
classified as passed is above a certain threshold, tests are
ranked by the collected coverage and we create two sets
of regressions, a large one, and a small one.

4) Regressions: When there is a change in the DUT , which
is candidate to be merged, we execute the small set of
regressions to check the correctness of these changes.
Also, once per week, the large set is executed to ensure
that recent changes do not break known-good tests.

We used GitLab for version control and as a way to track
down issues in our environment. We also documented the code
and all these features so anyone in the project could run a
simulation and added this documentation as guides and tutorials
using the Wiki feature from GitLab.

5. EXPERIMENTAL RESULTS

This environment was in use for about a year. In this time,
we have managed to find many errors and provide helpful
information to the RTL team to debug these. Apart from that,
we have provided CI pipelines that allowed both teams (RTL
design and verification) to test new features and find new errors.
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The errors we have encountered in the VPU include design
issues and instruction mismatches. Some of these were caused
by specification problems. When an error was found, the
necessary information to reproduce it (e.g. binary, faulty in-
struction) was provided. Furthermore, a table summarizing the
active errors was used to help focussed debugging effort (e.g.
detecting multiple erroneous tests with the same instruction
mnemonic, vector length, element width). Once the cause of
the error was tentatively fixed, regressions were run before the
changes could be merged.

Fig. 3. Errors and number found per month

In Figure 3, the faulting instruction distribution between the
random tests that failed in our daily simulations is shown in
the pie chart. We can see the type of instructions that failed the
most: memory, narrowing and widening vector instructions. We
ran 24 tests every night between April and July, which were
increased to 50 tests between August and the end of November
which marked the RTL freeze before the chip tape out. Each
of these tests contained approximately 500 vector instructions,
we managed to find a total of 3005 errors, and the instructions
above constitute around 70% of them.

In Figure 3, we can see the number of errors per month.
Around April, when we first set up the environment and the
CI pipeline, we had many errors. In that starting phase, the
environment was not complete and the design had many issues,
causing different kinds of instructions to fail. Additionally,

some instructions were not implemented and had to be black-
listed, which artificially made the number of errors decrease
during this phase.

Once the RTL team fixed more errors and finished imple-
menting the missing features, we started whitelisting instruc-
tions, which caused an increase of errors found between June
and September. During this period, we also managed to execute
several vectorized micro-benchmarks like SpMV , Matmul or
axpy. While errors increased temporarily, we were also fixing
more of them, and this decrease can be seen at the final phase
of the plot.

At the end of this testing period, which we called “Night
runs“, we were not getting any more errors. This was a huge
advancement, but we wanted to provide more tests, so we devel-
oped a new set of testing pipelines. These combined ran around
600 tests every day. We used them for collecting coverage
numbers and finding bugs, especially since the development
of the VPU still continued with new features.

TABLE I
FUNCTIONAL COVERAGE PER DESIGN UNIT

Design Unit Coverage Design Unit Coverage
OVI/Pre-issue Queue 91.95% Data Reorder Buffer 88.09%
Instruction Unpacker 100.00% Ctrl FSM 92.64%
Instruction Renaming 100.00% Functional Units 100.00%
Instruction Queue 100.00% Vector Register File 92.37%
Store Management 87.50% Inter-lane Ring 99.18%
Load Management 100.00% Vector Lane 93.61%
Item/Mask Management 100.00%

Table I summarizes the functional coverage achieved, for
an average of 95.79%. Regarding code coverage (average of
72.64%) we have achieved 90.90% in Statements and a 49.83%
in Toggles. We know that we are not driving the design
appropriately in some cases, which were difficult to add in
the environment, and that is reflected in the coverage numbers.
Additionally, the lower code coverage numbers can indicate
some unused data structures or conditions in the RTL.

6. CONCLUSIONS AND RELATED WORK

In this paper, we have described the implementation of a
verification environment targeting an academic RISC-V based
vector accelerator, which was successfully taped-out in the con-
text of a European project. The environment is a reusable and
extendable UVM environment, which implements the protocol
between the OVI and the VPU and checks the correctness of
the completed instructions.

Additionally, assertions and coverage were developed to
observe better and extract metrics to know how well the
verification process was done. Moreover, this environment is
complemented by creating random binaries using the RISCV-
DV generator and the CI infrastructure, which plays an es-
sential role in code health/maintainability and coverage clo-
sure. Thanks to our automated constrained-random test gener-
ation, simulation and error reporting and CI/CD infrastructure,
through this process, we found 3005 errors and reached 95.79%
of functional coverage.
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Regarding the environment, we have learnt that the imple-
mentation of the communication divided among several agents
complicates the maintenance, extension and performance. A
way to cope with these issues would be a single agent that
produces the stimulus. Doing all the interface interaction using
a single module could simplify the sub-interfaces communica-
tion and possible expansions of the design and the environment,
which we will follow as future work.
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