2,010 research outputs found

    Comparison between Constrained Mutual Subspace Method and Orthogonal Mutual Subspace Method – From the viewpoint of orthogonalization of subspaces –

    Get PDF
    This paper compares the performances between constrained mutual subspace method (CMSM), orthogonalmutual subspace method (OMSM), and also between their nonlinear extensions, namely kernel CMSM(KCMSM) and kernel OMSM (KOMSM). Although the princeples of the feature extraction in these methods aredifferent, their effectiveness are commonly derived from the orthogonalization of subspace, which is widely used tomeasure the performance of subspace-based methods. CMSM makes the relation between class subspaces similarto orthogonal relation by projecting the class subspaces onto the generalized difference subspaces. KCMSM is alsobased on this projection in the nonlinear feature space. On the other hand, OMSM orthogonalizes class subspacesdirectly by whitening the distribution of the class subspaces. KOMSM also utilizes this orthogonalization method inthe nonlinear feature space. From the experimental results, the performances of both the kernel methods (KCMSMand KOMSM) are found to be very high as compared to their linear methods (CMSM and OMSM) and theirperformances levels are well in the same order in spite of their different principles of orthogonalization

    Hand-Shape Recognition Using the Distributions of Multi-Viewpoint Image Sets

    Get PDF
    This paper proposes a method for recognizing hand-shapes by using multi-viewpoint image sets. The recognition of a hand-shape is a difficult problem, as appearance of the hand changes largely depending on viewpoint, illumination conditions and individual characteristics. To overcome this problem, we apply the Kernel Orthogonal Mutual Subspace Method (KOMSM) to shift-invariance features obtained from multi-viewpoint images of a hand. When applying KOMSM to hand recognition with a lot of learning images from each class, it is necessary to consider how to run the KOMSM with heavy computational cost due to the kernel trick technique. We propose a new method that can drastically reduce the computational cost of KOMSM by adopting centroids and the number of images belonging to the centroids, which are obtained by using k-means clustering. The validity of the proposed method is demonstrated through evaluation experiments using multi-viewpoint image sets of 30 classes of hand-shapes

    On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets

    No full text
    We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    A framework for improving the performance of verification algorithms with a low false positive rate requirement and limited training data

    Full text link
    In this paper we address the problem of matching patterns in the so-called verification setting in which a novel, query pattern is verified against a single training pattern: the decision sought is whether the two match (i.e. belong to the same class) or not. Unlike previous work which has universally focused on the development of more discriminative distance functions between patterns, here we consider the equally important and pervasive task of selecting a distance threshold which fits a particular operational requirement - specifically, the target false positive rate (FPR). First, we argue on theoretical grounds that a data-driven approach is inherently ill-conditioned when the desired FPR is low, because by the very nature of the challenge only a small portion of training data affects or is affected by the desired threshold. This leads us to propose a general, statistical model-based method instead. Our approach is based on the interpretation of an inter-pattern distance as implicitly defining a pattern embedding which approximately distributes patterns according to an isotropic multi-variate normal distribution in some space. This interpretation is then used to show that the distribution of training inter-pattern distances is the non-central chi2 distribution, differently parameterized for each class. Thus, to make the class-specific threshold choice we propose a novel analysis-by-synthesis iterative algorithm which estimates the three free parameters of the model (for each class) using task-specific constraints. The validity of the premises of our work and the effectiveness of the proposed method are demonstrated by applying the method to the task of set-based face verification on a large database of pseudo-random head motion videos.Comment: IEEE/IAPR International Joint Conference on Biometrics, 201
    corecore