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Abstract This paper compares the performances between constrained mutual subspace method (CMSM), or-

thogonal mutual subspace method (OMSM), and also between their nonlinear extensions, namely kernel CMSM

(KCMSM) and kernel OMSM (KOMSM). Although the princeples of the feature extraction in these methods are

different, their effectiveness are commonly derived from the orthogonalization of subspace, which is widely used to

measure the performance of subspace-based methods. CMSM makes the relation between class subspaces similar

to orthogonal relation by projecting the class subspaces onto the generalized difference subspaces. KCMSM is also

based on this projection in the nonlinear feature space. On the other hand, OMSM orthogonalizes class subspaces

directly by whitening the distribution of the class subspaces. KOMSM also utilizes this orthogonalization method in

the nonlinear feature space. From the experimental results, the performances of both the kernel methods (KCMSM

and KOMSM) are found to be very high as compared to their linear methods (CMSM and OMSM) and their

performances levels are well in the same order in spite of their different principles of orthogonalization.

Key words Constrained mutual subspace method, orthogonal mutual subspace method

1. Introduction

This paper deals with the comparison of the constrained

mutual subspace method (CMSM) [5] and the orthogonal

mutual subspace method (OMSM) [6], including the nonlin-

ear extensions of these methods with kernel trick.

These methods used here are the extensions of the mu-

tual subspace method (MSM), which is a generalization of

the subspace method (SM) [1]～[3]. SM is used to calculate

the similarity as the minimum canonical angle θ1 between an

input vector and a reference subspace which represents the

variation of the learning set where an n×n image pattern is

represented as a vector in n×n-dimensional space I.

In the case of MSM, the canonical angle is calculated be-

tween an input subspace and reference subspace as the sim-

ilarity. MSM can deal with various recognition problems of

the sets of images, such as a video image, multi-view images

obtained from a multiple camera system.

MSM has a high ability for absorbing the changes of pat-

tern to achieve higher performance compared to that of SM

using a single image. Since the generated subspaces are inde-

pendent to each other in the case of MSM, the classification

performance is still insufficient for many applications as is the

case with other methods based on PCA [3]. Although each

subspace represents the distribution of the training patterns

well in terms of a least mean square approximation, there is

no reason to assume a priori that it is the optimal subspace

in terms of classification performance.

To improve the ability of classification of MSM, the con-

strained mutual subspace method (CMSM) [5] and the or-

thogonal mutual subspace method (OMSM) [6] have been

proposed. The validity of these methods is due to the or-

thogonalization of class subspaces.

In the case od CMSM, the projection of each class sub-

space is onto the generalized differenece subspace, it extracts

a common subspace of all the class subspaces from each sub-

space, so that the canonical angles between subspaces are en-

larged to approach to the orthogonal relation. On the other

hand, OMSM orthogonalizes directly all the class subspaces

based on the framework of the orthogonalization method pro-

posed by Fukunaga & Koontz [19], [20].

Since the distribution of each class can not be represented

by a linear subspace without overlaping with another sub-

space, the performance of CMSM and OMSM are poor as
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the methods based linear subspace space, when the distribu-

tion of patterns has high nonlinear structures.

In order to overcome this problem, it is valid to represent

such the distribution by a nonlinear subspace generated by

kernel nonlinear PCA [8].

It is vividly stated that SM and MSM have extended to

the kernel subspace method (KSM) [11], [12] and the kernel

mutual subspace method (KMSM) [14], respectively, based

on the frame work of the kernel PCA. Moreover CMSM has

been also extended to the kernel CMSM (KCMSM) [13] to

achieve higher performance compared to KSM and KMSM.

The basis algorithm of OMSM is almost the same as that of

CMSM except a part of the process of calculating similarity.

Therefore in this paper, we will try to extend OMSM to the

kernel nonlinear method, and name the extended method

the kernel nonlinear orthogonal mutual subspace method

(KOMSM).

KOMSM has an interesting characteristic that it can al-

ways orthogonalize all subspaces perfectly regardless of the

number of classes and the dimension of each class subspace

when the Gaussian kernel function is used in kernel trick.

This is because the Gaussian kernel fucntion maps a pattern

onto the infinite dimensional feature space. In contrast, the

oroginal linear OMSM cannot realize the perfect orthogo-

nalization of subspaces unless the product of the number of

classes and the dimension of each subspace is less than the

dimension of the linear feature space.

The nonlinear kernel methods have a lack of requiring a

lot of computing cost depending the number of learning pat-

terns and classes. Especially, the computing cost of KOMSM

is extremely high, because it has to calculate all the eigen-

values and the eigenvectors of a matrix with the size equal

to to the number of classes and the dimension of each class.

Thus, the learning for KOMSM is more difficult as the size

of the matrix becomes larger with increasing the number and

the dimesion of classes.

By contrast, since KCMSM requires only a part of the

eigenvectors corresponding to the larger eigenvalues of all

eigenvectors of the kernel matrix, it does not have such the

serious problem.

The paper is organized as follows. Firstly we outline the

algorithms of MSM, CMSM and OMSM in sections 2, 3 and

4, respectively. In section 5, we describe the kernel trick for

nonlinear extension of CMSM and OMSM. In section 6 we

describe the algorithm of KCMSM. Then, in section 7, we

extend OMSM to the nonlinear kernel OMSM (KOMSM).

In section 8 we compare the performance of all the meth-

ods. The section 9 is the discussion. Finally we conclude the

paper.

2. Mutual subspace method

In this section, we firstly describe the concept of canonical

angle between subspaces. Next we outline the algorithm of

MSM based on the canonocal angles.

2. 1 Canonical angles between subspaces

Assume that P and Q are an N -dimensional input sub-

space and an M -dimensional reference subspaces, in the f -

dimensional space I, which are generated from the pattern

set of input and reference, respectively. We can obtain N

canonical angles (for convenience N <= M) between P and

Q [15].

Let Φi and Ψi denote the i-th f -dimensional orthonor-

mal basis vectors of the subspaces P and Q, respectively.

The value cos2θi of the i-th smallest canonical angle θi

(i = 1, . . . , N) is obtained as the i-th largest eigenvalue λi of

the following N×N matrix X [5], [15]:

Xc = λc (1)

X = (xij), xij =
∑M

k=1
(Ψi ·Φk)(Φk ·Ψj)

The maximum eigenvalue of these matrices represents

cos2θ1 of the minimum canonical angle θ1, whereas the sec-

ond maximum eigenvalue represented cos2θ2 of the minimum

angle θ2 in the direction perpendicular to that of θ1. cos2θi

for i = 3, . . . , N , are calculated similarly.

cos2θi = max
ui⊥uj(=1,...,i−1)
vi⊥vj(=1,...,i−1)

|(ui · vi)|2
||ui||2||vi||2 , (2)

where ui ∈ P ,vi ∈ Q , ||ui|| |= 0,||vi|| |= 0, (·) and || · ||
represent an inner product and a norm respectively.

2. 2 Definition of similarity between two sub-

spaces

We consider the value of the mean of the canonical angles,

S[t] = 1
t

∑t

i=1
cos2 θi, as the similarity between two sub-

spaces. The similarity S[t] has the following characteristics.

In the case that two subspaces coincide completely with each

other, S[t] is 1.0, since all canonical angles are zero. The sim-

ilarity S[t] becomes smaller as the two subspaces separate.

Finally, the similarity S[t] is zero when the two subspaces are

orthogonal to each other. Note that the value S[t] reflects

the structual similarity between two subspaces.

3. Constrained mutual subspace method

To improve the performance of the MSM, we project

an input subspace P and reference subspaces Q onto the

constraint subspace C that satisfies a constraint condition:

“it includes only the essential component for recognition

between class subspaces”, and then the canonical angles
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Fig. 1 Concepts of MSM and CMSM

between the projected input subspace and reference sub-

spaces as shown in Fig.1 are calculated. This MSM with

the projection onto the constraint subspace C is called the

constrained mutual subspace method (CMSM) [5].

3. 1 Generation of constraint subspace

The constraint subspace is a generic name of the subspace

which satisfies the above condition. We can use several dif-

ferent subspaces as constraint subspace. In this paper, we

actually employ the generalized difference subspace.

The generalized different subspace is generated as fol-

lows. Given k(>=2) N -dimensional subspaces, the general-

ized difference subspace D is defined as the subspace which

results by removing the principal component subspace M
of all subspaces from the sum subspace S of these sub-

spaces as shown in Fig.2. According to this definition, D
is spanned by Nd eigenvectors di(i = N×k −Nd, . . . , N×k)

corresponding to the Nd smallest eigenvalue, of the matrix

G =
∑k

i=1
Pi of projection matrices Pi, where the projec-

tion matrix Pi =
∑N

j=1
Φi

jΦ
i
j
T
, Φi

j is the j-th orthonormal

basis vector of the i-th class subspace. The eigenvectors, di

correspond to the i-th eigenvalue λi in descending order.

The effectiveness of the generalized difference subspace can

be explained in several ways. First speaking qualitatively,

the generalized difference subspace is the subspace which

represents the difference among multiple k(>=2) subspaces

as an extension of the difference subspace defined as the dif-

ference between two subspaces [5]. Therefore, the projection

onto the generalized difference subspace is corresponding to

extracting selectively the difference between subspaces. Fi-

nally, the projection onto a generalized difference subspace

enables CMSM to have a higher classification ability besides

the ability to tolerate variations in the face patterns.

From the other viewpoint, the projection onto the gen-

eralized difference subspace D corresponds to removing the

principal (common) component subspace M from the sum

subspace S. Therefore, this projection has the effect of ex-

panding the canonical angles between subspaces and forms

a relation between subspaces which is close to the orthogo-

nal relation, thus improving the performance of classification

based on canonical angles [5]. This orthogonal process is use-

 
Principal component subspace M

Generalized difference subspace D

P1

P2
P3

Pk-1

Pk

MD

Fig. 2 Concept of generalized difference subspace

ful for the methods based on the canonical angles. Since the

orthogonal degree between the projected subspaces changes

with the dimension nc, a proper dimension has to be set by

the pre-experiments.

3. 2 Process flow of CMSM

The flow of CMSM is as follows. In the learning step, all

the reference subspaces are generated from learning patterns

using KL expansion or Gram-Schmidt method, and they are

projected onto the generalized difference subspace.

The subspace P is projected onto the generalized difference

subspace D by the following steps:

1. N orthogonal basis vectors of the subspace P are pro-

jected onto the generalized difference D.

2. The length of each projected vector is normalized.

3. Gram-Schmidt orthogonalization is applied to the nor-

malized vectors to obtain N orthogonal basis vectors of the

subspace PD.

In the recognition step, the input subspace Pin is generated

from input image patterns. Then, the input subspace Pin is

projected onto the generalized difference subspace D. Then,

we compute the canonical angles between the projected input

subspace PD
in and the projected reference subspace PD

k on a

database using MSM, and the registered reference subspace

that has the highest similarity is determined to be that of

the identified class given the similarity is above a threshold.

Instead of using the above method of calculating canoni-

cal angles, we can use the procedure as described in [5]. In

this method, firstly the set of input patterns and the refer-

ence patterns are projected, and then these subspaces are

generated from the projected patterns.

4. Orthogonal mutual subspace method

The essence of OMSM is to carry out MSM using the

class subspaces orthogonalized with each other in advance.

We can orthogonalize class subspaces using the framework

of the orthogonalization method proposed by Fukunaga &

Koontz [19], [20]. This was used for the orthogonal subspace

method (OSM). In this method the orthogonalization is re-

alized by applying a transformation matrix for whitening.

OMSM also utilizes this framework to orthogonalize class
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subspaces. However, strictly speaking, the whitening matrix

used in the OMSM differs from that used in the classical

OSM.

The whitening matrix used in OSM is calculated from the

autocorrelation matrix of the mixture of all the classes. On

the other hand, in the case of OMSM, the whitening ma-

trix is calculated from the sum matrix of all the projection

matrixes of the class subspaces.

4. 1 Calculation of the whitening matrix

In this section, we will describe how to calculate the

whitening matrix O. In the following, we will consider the

case that r m-dimensional class subspaces are orthogonalized

in f -dimensional space I.

At first, we define the f×f sum matrix G of the r projection

matrixes by the following equation.

G =

r∑
i=1

Pi , (3)

where the f×f matrix Pi represents the projection matrix

which is corresponding to the projection onto the subspace

Pi of the class i. Using the eigenvectors and the eigenvalues

of the sum matrix G, the v×f whitening matrix O is defined

by the following equation.

O = Λ−1/2HT , (4)

where v = r×m (v = f, if v > f), and Λ is the v×v di-

agonal matrix with the i-th highest eigenvalue of the matrix

G as the i-th diagonal component, and H is the f×v matrix

whose i-th column vector is the eigenvector of the matrix G

corresponding to the i-th highest eigenvalue. The suffix “T”

represents transposition of a matrix.

We can confirm that the matrix O can whiten the matrix

G by the following transformations of equation.

OGOT = Λ−1/2BT GBΛ−1/2 (5)

= Λ−1/2BT BΛBT BΛ−1/2 (6)

= Iv×v , (7)

where the matrix Iv×v is a v×v unit matrix. In the above

transformation, we used the relation that G = BΛBT .

The process flow of OMSM based on the whitening ma-

trix is as follows. First, all the basis vectors of an input

subspace are orthogonalized by applying the whitening ma-

trix O. Then, the transformed basis vectors are orthogo-

nalized again by Gram-Schmidt orthogonalization to form

the orthogonalized input subspace. One should note that if

the multiple of the number r of classes and the dimension

m of each class is smaller than the dimension f of feature

space, the Gram-Schmidt orthogonalization method is not

required, as transformed basis vectors are orthogonal to each

other. Similarly, all the basis vectors of reference subspaces

are orthogonalized and orthogonalized reference subspaces

are generated from the transformed basis vectors. Finally,

MSM is applied to the orthogonalized input subspace and

the orthogonalized reference subspaces.

5. Kernel PCA

In order to understand the nonlinear extension of the linear

method mentioned before, we review kernel Principal Com-

ponent Analysis (KPCA) in this section.

The nonlinear function φ maps the patterns x =

(x1, . . . , xf )> of an f -dimensional input space I onto an fφ-

dimensional feature space F : φ : Rf → Rfφ , x → φ(x). To

perform PCA on the nonlinear mapped patterns, we need to

calculate the inner product (φ(x) · φ(y)) between the func-

tion values. However, this calculation is difficult, because the

dimension of the feature space F can be very large, possibly

infinite. However, if the nonlinear map φ is defined through

a kernel function k(x,y) which satisfies Mercer’s conditions,

the inner products (φ(x)·φ(y)) can be calculated from the in-

ner products (x · y). This technique is known as the “kernel

trick”. A common choice is to use Gaussina kernel func-

tion [8]:

k(x,y) = exp

(
−||x− y||2

σ2

)
. (8)

The function φ with the above exponential kernel function

maps an input pattern onto an infinite feature space F . The

PCA of the mapped patterns is called kernel PCA [8]. We

should note that a linear subspace generated by the kernel

PCA can be regarded as a nonlinear subspace in the input

space I.

Given the N -dimensional nonlinear subspace Vk of class k

generated from m training patterns xi, (i = 1, . . . , m), the

N orthonormal basis vectors ek
i ,(i = 1, . . ., N), which span

the nonlinear subspace Vk, can be represented by the linear

combination of the m φ(xk
i ),(i = 1, . . . , m) as follows

ek
i =

m∑
j=1

ak
ij φ(xk

j ) , (9)

where the coefficient ak
ij is the j-th component of the eigen-

vector ai corresponding to the i-th largest eigenvalue λi of

the m×m kernel matrix K defined by the following equa-

tions:

Ka = λa (10)

kij = (φ(xk
i ) · φ(xK

j ))

= k(xk
i ,xk

j ) ,

where ai is normalized to satisfy λi(ai · ai)=1. We can com-

pute the projection of the mapped φ(x) onto the i-th or-

thonormal basis vector ek
i of the nonlinear subspace Vk of
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class k by the following equation:

(φ(x), ek
i ) =

m∑
j=1

ak
ij k(x,xk

j ). (11)

6. Kernel constrained mutual subspace
method

6. 1 Generation of the kernel difference subspace

It is possible to compute the projection of a mapped pat-

tern φ(x) onto the kernel generalized difference subspace Dφ

using the kernel trick, since it consists of the inner prod-

ucts in the feature space F . Let the Nφ
d -dimensional Dφ

be generated from the r N -dimensional nonlinear subspace

Vk, (k = 1, . . . , r). Firstly we calculate the orthonormal

bases of kernel generalized difference subspace from all the

orthonormal basis vectors of r nonlinear subspaces, namely,

r×N basis vectors. This calculation corresponds to the PCA

of all basis vectors. Define E to be a matrix, which contains

all basis vectors as columns such as:

E = [e1
1, . . . , e

1
N , . . . , er

1, . . . , e
r
N ]. (12)

Secondly, we solve the eigenvalue problem of the matrix D

defined by the following equations.

Db = βb (13)

Dij = (Ei ·Ej), (i, j = 1, . . ., r×N) (14)

Where Ei represents the i-th column of the matrix E.

The inner product between the i-th orthonormal basis vec-

tor ek
i of the class k subspace and the j-th orthonormal basis

vector ek∗
j of the class k∗ subspace can be obtained as the

linear combination of kernel functions k(xk,xk∗) as follows:

(ek
i · ek∗

j ) = (

m∑
s=1

ak
isφ(xs) ·

m∑
t=1

ak∗
jt φ(x∗t )) (15)

=

m∑
s=1

m∑
t=1

ak
isa

k∗
jt (φ(xs) · φ(x∗t )) (16)

=

m∑
s=1

m∑
t=1

ak
isa

k∗
jt k(xs,x

∗
t ) (17)

The i-th orthonormal basis vector dφ
i of the kernel general-

ized difference subspace Dφ can be represented by a linear

combination of the vectors Ej (j = 1, . . . , r×N).

dφ
i =

r×N∑
j=1

bijEj (18)

Where the coefficient bij is j-th component of the eigenvector

bi corresponding to the i-th smallest eigenvalue βi of matrix

D under the condition that the vector bi is normalized to

satisfy that βi(bi · bi)=1.

Let Ej denote the η(j)-th basic vector of class ζ(j). The

above equation is converted to the following equation:

r×N∑
j=1

bijEj =

r×N∑
j=1

bij

m∑
s=1

a
ζ(j)

η(j)sφ(xζ(j)
s ) (19)

=

r×N∑
j=1

m∑
s=1

bija
ζ(j)

η(j)sφ(xζ(j)
s ) (20)

6. 2 Projection onto the kernel difference sub-

space

Although it is impossible to calculate the orthonormal ba-

sis vector dφ
i of the kernel generalized difference subspace

Dφ, the projection of the mapped pattern φ(x) onto this

vector dφ
i can be calculated from an input pattern x and all

m×r training patterns xk
s (s = 1, . . ., m, k = 1, . . ., r).

(φ(x) · dφ
i )=

r×N∑
j=1

m∑
s=1

bija
ζ(j)

η(j)s
(φ(xζ(j)

s ) · φ(x)) (21)

=

r×N∑
j=1

m∑
s=1

bija
ζ(j)

η(j)sk(xζ(j)
s ,x) (22)

Note that we can compute k(x
ζ(j)
s ,x) through Eq.8 easily.

Finally, each component of the projection τ(φ(x)) of the

mapped φ(x) onto the Nφ
d (< r×N)-dimensional kernel gen-

eralized difference subspace is represented as the following.

τ(φ(x)) = (z1, z2, . . . , z
N

φ
d

)>, zi = (φ(x) · dφ
i ) (23)

6. 3 Algorithm of KCMSM

We construct KCMSM by applying linear MSM to the pro-

jection τ(φ(x)). Fig.3 shows a schematic of the KCMSM

algorithm.

In the training stage, the mapped patterns φ(xki) of the

patterns xk
i , (i = 1, . . . , m) belonging to class k, are pro-

jected onto the kernel difference subspace Dφ. Then, the

Nφ-dimensional linear reference subspace PDφ

k of each class k

is generated from the mapped patterns τ(φ(xk
i )) using PCA.

In the recognition stage, we generate the linear input

subspace PDφ

in on the Dφ from the input patterns xi,(i =

1, . . . , m). Then we compute the similarity S, defined in

Sec.2.3, between the input subspace PDφ

in and each refer-

ence subspace PDφ

k . Finally the reference subspace with the

highest similarity S is determined to be that of the identified

object, given the similarity S is above a threshold.

7. Kernel orthogonal mutual subspace
method

7. 1 Generation of kernel whitening matrix

The procedure of generating a nonlinear kernel whitening

matrix Oφ is almost the same as that of the linear whitening

matrix O. Actually Oφ can be generated by only replacing

the linear subspaces with nonlinear subspaces in the calcu-

lation.

In the following, we will explain how to generate the
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Fig. 3 Flow of object recognition using KCMSM

nk×nk whitening matrix Oφ from all the basis vectors of

r d-dimensional nonlinear class subspaces Vk(k = 1 ∼ r),

that is, r×d basis vectors. This calculation coincides to the

PCA for the basis vectors of all the classes.

Assume that a class k nonlinear subspace Vk is generated

from m learning patterns xk
i (i = 1 ∼ m). The d basis vectors

ek
i (i = 1∼d), which expand the subspace Vk, are defined by

the following equations.

ek
i =

m∑
j=1

ak
ijφ(xk

j ) , (24)

where ak
ij is the coefficient shown in the equation (11). Sim-

ilarly the other nonlinear class subspaces are generated.

Next, assume that E is the matrix where all basis vectors

are arranged as the column component.

E = [e1
1, . . . , e

1
d, . . . , er

1, . . . , e
r
d] . (25)

Then, we solve the eigenvalue problem of the matrix Q

defined by the following equations.

Qb = βb (26)

Qij = (Ei ·Ej), (i, j = 1∼r×d) , (27)

where Ei means the i-th column component of the matrix E.

In the above equation, the inner product between i-th basis

vector ek
i of the class k and j-th basis vector ek∗

j of the class

k∗ can be actually calculated as the linear combination of a

kernel function value k(xk,xk∗) of xk and xk∗ .

(ek
i · ek∗

j ) = (

m∑
s=1

ak
isφ(xk

s ) ·
m∑

t=1

ak∗
jt φ(xk∗

t )) (28)

=

m∑
s=1

m∑
t=1

ak
isa

k∗
jt (φ(xk

s ) · φ(xk∗
t )) (29)

=

m∑
s=1

m∑
t=1

ak
isa

k∗
jt k(xk

s ,xk∗
t ) . (30)

The i-th row vector Oφi of the kernel whitening matrix

Oφ can be represented as the linear combination of the basis

vectors Ej (j = 1 ∼ r×d) using the eigenvector bi corre-

sponding to the eigenvalue βi as the combination coefficient.

Ot
φi

=

r×d∑
j=1

bij√
βi

Ej , (31)

where the vector bi is canonized to satisfy that βi(bi · bi)

is equal to 1.0. Moreover, assume that Ej is the η(j)-th ba-

sis vector of the class ζ(j). Then the above equation can be

changed as follows.

Oφi =

r×d∑
j=1

bij√
βi

m∑
s=1

a
ζ(j)

η(j)sφ(xζ(j)
s ) (32)

=

r×d∑
j=1

m∑
s=1

bij√
βi

a
ζ(j)

η(j)sφ(xζ(j)
s ) . (33)

Although this vector Oφi cannot be calculated practically,

the inner product (φ(x) ·Oφi) with the mapped vector φ(x)

can be calculated.

7. 2 Whitening the mapped patterns

We transform the mapped vector φ(x) by the kernel

whitening matrix Oφ as the follows. This transformation can

be calculated using an input vector x and all r×m learning

vectors xk
s (s = 1∼m, k = 1∼r) using the following equations.

(φ(x) ·Oφi)=

r×d∑
j=1

m∑
s=1

bij√
βi

a
ζ(j)

η(j)s(φ(x) · φ(xζ(j)
s )) (34)

=

r×d∑
j=1

m∑
s=1

bij√
βi

a
ζ(j)

η(j)sk(x,xζ(j)
s ) . (35)

Finally, each component of the whitening transformed vec-

tor χ(φ(x)) of the mapped vector φ(x) is represented as fol-

lows.

χ(φ(x)) = (z1, z2, . . . , zr×d)> (36)

zi = (φ(x) ·Oφi)
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7. 3 Algorithm of KOMSM

We construct the nonlinear kernel orthogonal mutual sub-

space method (KOMSM) by applying the linear MSM to the

linear subspaces generated from the whitening transformed

patterns {χ(φ(x))}. The process flow of KOMSM is as fol-

lows.

In the learning stage:

（ 1） The nonlinear mapped φ(xk
i ) of all the patterns

xk
i (i = 1 ∼ m) belonging to class k are transformed by the

kernel whitening matrix Oφ.

（ 2） The basis vectors of the n-dimensional nonlin-

ear orthogonal k reference subspace PDφ

k are obtained as

the eigenvectors of the autocorrelation matrix generated

from the set of the whitening transformed pattern set

{χ(φ(xk
1)), . . . , χ(φ(xk

m))}, corresponding to the n highest

values.

（ 3） Similarly the other nonlinear orthogonal reference

subspaces are generated on the nonlinear feature space F .

In the recognition stage:

（ 1） The nonlinear orthogonal input subspace PDφ

in is

also generated from the set of the whitening transformed

pattern set {χ(φ(xin
1 )), . . . , χ(φ(xin

m ))}.
（ 2） The canonical angles between the input nonlinear

orthogonal subspace PDφ

in and the nonlinear reference orthog-

onal subspaces PDφ

k are calculated as the similarity．

（ 3） Finally the object class is determined as the nonlin-

ear reference orthogonal subspace with the highest similarity

S, given that S is above a threshold value.

In the above process, it is possible to replace the processes

of generating the nonlinear orthogonal subspaces with the

following processes. Firstly the nonlinear input subspace and

the nonlinear reference subspaces are generated from the set

of the nonlinear mapped patterns. Next the basis vectors

of the generated subspaces are transformed by the kernel

whitening matrix. Finally the whitening transformed basis

vectors are orthogonalized by the Gram-Schmidt method so

that they span a nonlinear subspace.

8. Evaluation experiments

We compared the performances of MSM, CMSM, OMSM,

KMSM, KCMSM, and KOMSM using the open data base of

the multi-view image (Cropped-close128 of ETH-80) [18] and

the data set of front face images collected by our self.

8. 1 3D object recognition (Experiment-I)

We selected 30 similar models from the ETH-80 database

as shown in Fig.4 and used them for the evaluation. The

images of each model were captured from 41 views as shown

in Fig.5. The view directions are the same for all models.

All images are cropped, so that they contain only the object

Fig. 4 Evaluation data, Top: cow, Middle: dog, Bottom: horse.

This figure shows five models of 10 models.

without any border area.

The odd numbered images (21 frames) and the even num-

bered images (20 frames) were used for training and evalua-

tion, respectively. We prepared 10 datasets for each model by

making the start frame number i change from 1 to 10, where

one set contains 10 frames from i-th frame to i + 9-th. The

total number of the evaluation trials is 9000(=10×30×30).

The evaluation was performed in terms of the recognition

rate and separability, which is a normalized index of clas-

sification ability. A higher value allows choosing a larger

rejection threshold. The equal error rate (EER) represents

the error rate at the point where the false accept rate (FAR)

is equal to the false reject rate (FRR).

The experimental condition is as follows. We converted the

180×180 pixels color images to 15×15 pixels monochrome

images and used them as the evaluation data. Thus, the di-

mension f of a pattern is 225(=15×15). The dimensions of

the input subspace and the reference subspaces were set to 7

for all the methods. Gaussian kernel function with σ2 = 0.05

defined by Eq.(8) was used for all the kernel methods.

PD
in and PD

k were generated from the patterns projected on

the generalized difference subspace. The difference subspace

D and the whitening matrix O were generated from thirty 20-

dimensional linear class subspaces. We varied the dimension

Nd of D between 180 and 205 to compare the performance.

The kernel difference subspace Dφ and the kernel whitening

matrix Oφ were generated from thirty 20-dimensional non-

linear class subspaces. We varied the dimension Nφ
d of Dφ

between 100 and 550.

8. 2 Experimental-I results

(1)Recognition rate

Table 1 and Table 2 show the recognition rate and the sep-

arability of each method respectively. The notation used in

the tables is “method type – dimension of the difference sub-

space”. For example, KCMSM-550 means the KCMSM with

a 550-dimensional kernel difference subspace. S[t] denotes

the similarity defined using the multiple eigenvalues.

The recognition of multiple view images is typically a non-

7



Fig. 5 All view-patterns of dog1, the row images indicated by

arrow are used for learning.

Table 1 Recognition rate of each method (%), where the under-

lined values represent the best value (Experiment-I).

　　　 S[1] S[2] S[3] S[4]

MSM 72.7 73.7 76.3 74.3

CMSM-215 75.7 81.3 76.3 73.7

CMSM-200 73.3 81.0 79.3 77.7

CMSM-190 71.0 73.0 73.0 75.0

OMSM 51.3 54.0 56.0 54.0

KOMSM 85.3 87.3 88.0 88.0

KMSM 84.7 87.0 82.0 81.7

KCMSM-550 83.0 85.3 85.7 86.3

KCMSM-500 79.3 85.0 87.0 87.0

KCMSM-450 82.0 88.0 89.3 89.7

KCMSM-400 83.3 87.7 88.3 89.7

KCMSM-300 81.0 87.7 88.7 89.0

KCMSM-200 81.7 81.7 83.3 83.3

KCMSM-100 57.7 62.7 68.0 65.3

KCMSM-50 36.0 35.7 29.0 29.0

linear problem. This is clearly shown by the experimen-

tal results that the performance of the nonlinear methods

(KMSM, KCMSM and KOMSM) is superior to that of the

linear methods (MSM, CMSM and OMSM). In particular,

the high separability of KCMSM and KOMSM are remark-

able. This implies that they can maintain high performance

even in the case of large number of classes.

The performance of MSM was improved by the nonlinear

extension to KMSM where the recognition rate increased

from 76.3% to 87.0% and the separability increased from

0.082 to 0.429. KCMSM improved the recognition rate fur-

ther to 89.7% and increased the separability by a value of

about 0.2 in comparison to KMSM. This confirms the effec-

Table 2 Separability of each method, the underlined value means

best value (Experiment-I)

　　　 S[1] S[2] S[3] S[4]

MSM 0.055 0.074 0.082 0.080

CMSM-215 0.203 0.236 0.242 0.236

CMSM-200 0.215 0.257 0.254 0.245

CMSM-190 0.229 0.255 0.249 0.244

OMSM 0.039 0.095 0.116 0.116

KOMSM 0.537 0.612 0.620 0.621

KMSM 0.375 0.420 0.420 0.429

KCMSM-550 0.538 0.581 0.584 0.538

KCMSM-500 0.556 0.607 0.616 0.612

KCMSM-450 0.549 0.618 0.621 0.621

KCMSM-400 0.529 0.601 0.607 0.609

KCMSM-300 0.483 0.536 0.545 0.545

KCMSM-200 0.340 0.385 0.403 0.408

KCMSM-100 0.141 0.194 0.212 0.213

KCMSM-50 0.057 0.080 0.085 0.089

Table 3 Recognition rate of each method (%)

Linear methods MSM CMSM OMSM

EER(%) 12.0 9.5 25.0

Kernel methods KMSM KCMSM KOMSM

EER(%) 6.0 4.0 4.0

tiveness of the projection onto the kernel difference subspace,

which serves as a feature extraction step in the feature space

F .

KOMSM also improved the performance of OMSM largely

where the recognition rate increased from 54.0% to 88.0%

and the separability increases from 0.116 to 0.621. The re-

sults shows clearly the effectiveness of the orthogonalization

of the class subspaces. The effectivenesses of KCMSM and

KOMSM also appear in the result of ERR.

We can observe that the performance of OMSM was ex-

tremely low. This may be due to the existence of the common

subspace of class subspaces. Although the matrix G has to

have 225 positive eigenvalues if there is no common of class

subspaces, it actually has only 211 positive eigenvalues.

It is very interesting that the performances of KCMSM

and KOMSM are in the same level regardless of their dif-

ferent principles of orthogonalization. We will consider this

result from the view of the degree of orthogonalization later.

The classification ability of the KCMSM and KOMSM

were improved while increasing t of the similarity S[t]. These

results show that the similarity S[1] using a single image is

not sufficient for classification of the models with the simi-

lar 3D shapes, as S[1] utilizes the information obtained from

only a single view.

(2)Mean orthogonal degree between subspaces

In the previous section, we have described that the perfor-
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mances of subspace-based methods depend on the geomet-

rical relation between class subspaces. To confirm this, we

defined the mean orthogonal degree, ω, which represents the

relation between class subspaces. The value of ω is actually

defined by the following equation: ω = 1.0 − cos2θ̂, where

θ̂ is the mean value of the canonical angles θi between sub-

spaces projected onto the general difference subspace or the

nonlinear generalized difference subspace. The ω is closer to

1.0, when the relation between subspaces becomes closer to

orthogonal relation.

Fig.6 shows the changes of the orthogonal degree ωs of

CMSM and KCMSM in the case that thirty 7-dimensional

class subspaces are projected onto the generalized difference

subspace or the nonlinear generalized difference subspace.

The different subspace and the kernel different subspace were

generated from thirty 20-dimensional linear subspaces and

nonlinear subspaces, respectively. In the figure, the horizon-

tal axis represents the dimensions of the general difference

subspace D and the kernel difference subspace Dφ. The ver-

tical axis represents the mean orthogonal degree ω. The lines

labeled as CMSM and KCMSM show the changes of ω of the

both methods respectively.

The ω of MSM is as low as 0.160. The ω of CMSM in-

creased to 0.725 by projecting class subspaces onto the 170-

dimensional general difference subspace. On the other hand,

the ω of OMSM was still as low as 0.611 despite the orthog-

onalization with the whitening matrix.

KOMSM obtained the maximum ω, that is, 1.0. This

means that KOMSM achieved the perfect orthogonalization

as expected theoretically. On the other hand, ω of KCMSM

with the 450-dimensional kernel different subspace also ob-

tained 0.991 (84.5 degree in angle).

The fact that ω of KCMSM is also almost 1.0 is corre-

sponding well to the experimental result that KCMSM and

KOMSM have the same level performance. Moreover, we can

see that the dimension with the largest orthogonal degree ω

is well corresponding to that with the best classification per-

formance.

8. 3 Recognition of face image (Experiment-II)

Next we conducted the evaluation experiment of all the

methods using the face images of 50 persons captured under

10 kinds of lighting. We cropped the 15 ×15 pixels face im-

ages from the 320 × 240 pixels input images based on the

positions of pupils and nostrils [?]．

The normalized face patterns of subjects 1-25 in lighting

conditions L1-L10 were used for generating the difference

subspace D, the kernel difference subspace Dφ, the whiten-

ing matrix O and the kernel whitening matrix Oφ. The face

patterns extracted from the images of the other subjects, 26-

50, in lighting conditions L1-L10 were used for evaluation.
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Fig. 6 Change of the mean orthogonality ω between class sub-

spaces. The ωs of OMSM and KOMSM are 0.611 and 1.0,

respectively. The ωs of MSM and KMSM are 0.160 and

0.965??, respectively.

Table 4 Recognition rate of each method (%)(Experiment-II)

Linear MSM CMSM-200 OMSM

Recognition rate (%) 91.74 91.3 97.09

EER(%) 12.0 7.5 6.3

Nonlinear KMSM KCMSM-450 KOMSM

Recognition rate (%) 91.15 97.40 97.42

EER(%) 11.0 4.3 3.5

The number of the data of each person is 150∼180 frames

for each lighting condition. The data was divided into

15∼18 sub datasets by every 10 frames. The input sub-

space and reference subspaces were generated from these sub

datasets. Finally, the total number of the evaluation trials is

18468(=10C2×25×15∼18).

The dimension of the input subspace and reference sub-

spaces were set to 7 for all the methods.

The difference subspace D and the whitening matrix O

were generated from twenty five 60-dimensional linear sub-

spaces of 1∼25 persons. Similarly the kernel difference sub-

space Dφ and the kernel whitening matrix Oφ were generated

from twenty five 60-dimensional nonlinear class subspaces．

The dimensions of the generalized difference subspace and

the kernel generalized difference subspace were set to 450 and

1050, respectively. We used a Gaussian kernel with σ2 = 1.0

for all the nonlinear methods.

The table 4 shows the recognition rate and the EER of each

method．The high performances of KCMSM and KOMSM

also appear in this experiment. The performance of the linear

MSM is high. This means that the task of face recognition

can be regarded as a linear separable problem.
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9. Discussion

9. 1 Computing time

KOMSM needs to calculate all the eigenvalues and all the

eigen vectors of the kernel matrix K. It becomes harder to

calculate these, while the size of the kernel matrix K be-

comes larger depending on the number of classes. On the

other hand, the calculation is easy in KCMSM since the pro-

jection of a pattern onto the general difference subspace can

be indirectly calculated using only the eigenvectors corre-

sponding to the highest eigenvalues.

9. 2 Selection of the optimal dimension of the gen-

eral difference subspace

The performances of CMSM and KCMSM depend on the

dimensions of the general difference subspace and the kernel

difference subspace. Although the dimensions of them were

selected by the pre-experiments, it is desirable that the opti-

mal dimensions of these difference subspaces can be selected

automatically in advance for real applications where the di-

mensions Nφ
d and Nd of the above difference subspaces are

large.

From the prior discussions, it seems to be natural to con-

sider that the optimal dimensions of the difference subspaces

should be determined based on the degree of the orthogonal-

ization between subspaces. The orthogonalization of OMSM

was realized by whitening the distribution of all the basis vec-

tors of subspaces. This leads to an idea that the distribution

of the projections of all the basis vectors of subspaces on the

general different subspace should be as uniform as possible

in order to achieve higher orthogonalization of subspaces.

Since the distribution of the projection of the basis vec-

tors in each direction is represented by the eigenvalue of the

matrix G，We believe that the measuring the uniformity of

all the eigenvalues is valid to select the optimal dimension in

advance.

10. Conclusion

In this paper, we have compared the performances of

CMSM, OMSM, and their nonlinear extensions: KCMSM

and KOMSM. We confirmed that the effectivenesses of these

methods are commonly derived from the orthogonalization

of subspaces by the experimental result that the dimension

with the largest orthogonal degree was well corresponding to

that with the best classification performance. The evalua-

tion experiments showed that KCMSM and KOMSM have

the high recognition performance compared with CMSM and

OMSM, and the performances of KCMSM and KOMSM are

almost in the same level in spite of having different principle

of orthogonailization. Since, however, the computing time of

KCMSM is less than that of KOMSM, KCMSM has the ad-

vantage over KOMSM for practical applications with many

objects to be classified.
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