3 research outputs found

    A Framework and Classification for Fault Detection Approaches in Wireless Sensor Networks with an Energy Efficiency Perspective

    Get PDF
    Wireless Sensor Networks (WSNs) are more and more considered a key enabling technology for the realisation of the Internet of Things (IoT) vision. With the long term goal of designing fault-tolerant IoT systems, this paper proposes a fault detection framework for WSNs with the perspective of energy efficiency to facilitate the design of fault detection methods and the evaluation of their energy efficiency. Following the same design principle of the fault detection framework, the paper proposes a classification for fault detection approaches. The classification is applied to a number of fault detection approaches for the comparison of several characteristics, namely, energy efficiency, correlation model, evaluation method, and detection accuracy. The design guidelines given in this paper aim at providing an insight into better design of energy-efficient detection approaches in resource-constraint WSNs

    Energy efficient secured cluster based distributed fault diagnosis protocol for IoT

    Get PDF
    The rapid growth of internet and internet services provision offers wide scope to the industries to couple the various network models to design a flexible and simplified communication infrastructure. A significant attention paid towards Internet of things (IoT), from both academics and industries. Connecting and organizing of communication over wireless IoT network models are vulnerable to various security threats, due to the lack of inappropriate security deployment models. In addition to this, these models have not only security issues; they also have many performance issues. This research work deals with an IoT security over WSN model to overcome the security and performance issues by designing a Energy efficient secured cluster based distributed fault diagnosis protocol (EESCFD) Model which combines the self-fault diagnosis routing model using cluster based approach and block cipher to organize a secured data communication and to identify security fault and communication faults to improve communication efficiency. In addition we achieve an energy efficiency by employing concise block cipher which identifies the ideal size of block, size of key, number of rounds to perform the key operations in the cipher

    The Distributed Convergence Classifier Using the Finite Difference

    Get PDF
    The paper presents a novel distributed classifier of the convergence, which allows to detect the convergence/the divergence of a distributed converging algorithm. Since this classifier is supposed to be primarily applied in wireless sensor networks, its proposal makes provision for the character of these networks. The classifier is based on the mechanism of comparison of the forward finite differences from two consequent iterations. The convergence/the divergence is classifiable only in terms of the changes of the inner states of a particular node and therefore, no message redundancy is required for its proper functionality
    corecore